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Abstract

Homeobox protein HOXA5 functions as a transcrip-

tional factor for genes that are not only involved in

segmentation identity but also in cell differentiation.

Although HOXA5 has been shown to regulate the

expression of the tumor-suppressor protein p53, its

role in breast tumorigenesis is not well understood.

Using yeast as a model system, we now demonstrate

that overexpression of HOXA5 in yeast can be used to

identify downstream target genes that are homologous

in humans. One such identified gene was that of the

mismatch repair pathway component MutL homolog 1.

Analysis of the promoter region of the gene for human

MutL homolog 1 (hMLH1) displayed several putative

HOXA5-binding sites. In transient transfection experi-

ments, the overexpression of HOXA5 transactivated

the hMLH1 promoter–reporter construct. In addition,

chromatin immunoprecipitation assay using a human

breast cancer cell line MCF-7 demonstrated that HOXA5

binds to the hMLH1 promoter in vivo. Furthermore, we

demonstrate that, in the presence of HOXA5, there is an

increase in in vivo repair activity in MCF-7 cells. Taken

together, our results indicate that HOXA5 is a transcrip-

tional regulator of hMLH1 in breast cancer cells.
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Introduction

The homeobox protein HOXA5 has been shown to partici-

pate in the developmental regulation of the lung, gastro-

intestinal tract, spleen, kidney, and vertebrae in eukaryotic

embryos [1]. Its function as a transcriptional factor is to

modulate the expression of various proteins during the

ontogeny of normal development. Besides its role in devel-

opment, it has been recently demonstrated that dysregula-

tion of HOXA5 in breast epithelium can contribute to breast

cancer biogenesis primarily by regulating the expression of

the tumor-suppressor protein p53 and the progesterone

receptor [2,3]. Homeotic genes encode master regulatory

transactivating proteins that likely regulate other genes

within the mammary epithelium. To identify downstream

target genes of HOXA5, we used yeast (Saccharomyces

cerevisiae) as a model system. Overexpressing human

HOXA5 in yeast cells resulted in a library of genes whose

transcription was increased by HOXA5. One of the genes found

to be upregulated was the humanMutL homolog 1 (hMLH1) [4],

a component of the mismatch repair (MMR) system.

The mammalian MMR system consists of multiple protein

components, which detect and correct base mismatch abnor-

malities and insertion/deletion loops occurring within double-

stranded DNA [4]. In addition to normal replication errors,

environmental factors such as chemical toxins and ultraviolet

radiation contribute to base modifications, which are also cor-

rected by the MMR pathway [5]. Any disruption of cellular path-

ways that compromises genomic integrity is disastrous, giving

rise to cell death or propagation of abnormal genetic codes.

Thus, the absence of a complete set of MMR proteins results

in replication errors, which contribute to genomic instability.

It is now established that many cancer types are deficient

in MMR, which gives rise to genomic instability in these can-

cers. For example, hereditary nonpolyposis colorectal cancer

(HNPCC) has germline mutations in human MutS homolog 2

(hMSH2) and hMLH1 in 98% of cases studied [6]. In breast

cancer cell lines, it was shown that the hMLH1 gene canmutate

[7]. Moreover, hMLH1 has been shown to be mutated in a sub-

set of patients with lobular carcinoma in situ of the breast,

resulting in truncated protein [8]. In addition, immunohisto-

chemistry has shown that hMLH1 can be lacking or reduced

in approximately 28% to 38% of human sporadic breast cancer

cases [9]. Hypermethylation of hMLH1 promoter was shown to

account for most of this loss of expression. However, in approxi-

mately 15% of these cases, the loss of hMLH1 was not ex-

plained. Thus, alternative mechanisms contributing to the loss

of hMLH1 function in breast cancer exist.

Here we report that the putative HOXA5 DNA-binding sites

found within the distal promoter of the human MLH1 gene bind

HOXA5, but not other homeotic (HOX) proteins tested. In vivo

binding of HOXA5 to the hMLH1 promoter was determined

in breast cancer cells using chromatin immunoprecipitation

(ChIP) assay and was also shown in luciferase (Luc) reporter
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analyses. In addition, overexpression of HOXA5 in the pres-

ence of a basepair mismatch within a reporter plasmid in-

dicated that HOXA5 can be functionally relevant to the MMR

in breast cancer cells, as repair of the mismatch was greatly

increased during the overexpression of HOXA5. Taken to-

gether, we conclude that HOXA5 can regulate hMLH1 gene

in breast cancer cells.

Materials and Methods

Generation of Full-Length cDNA Clone Encoding HOXA5

in a Yeast Shuttle Vector

The coding region of HOXA5 was cloned into the eukary-

otic expression vector pcDNA3 (a gift of Dr. Judy Gasson,

University of California at Los Angeles, Los Angeles, CA)

and sequenced to rule out possible errors introduced during

cloning. As pcDNA3 contains the T7 promoter at the 5V end

of the gene, in vitro transcription and translation, along with

sodium dodecyl sulfate polyacrylamide gel electrophoresis,

were performed to confirm that the protein product obtained

from this clone was of the appropriate size. An EcoRI frag-

ment containing the full-length HOXA5 clone and the in-

frame FLAG epitope at the N-terminus were then cloned

into pYES2.1, a Gal1 yeast-inducible vector from Invitrogen

(Carlsbad, CA). Following transformation into Escherichia

coli DH5a cells, plasmid DNA was purified using a kit

(Qiagen, Valencia, CA) and sequenced again.

Yeast Transformation

Yeast cells were transformed using the alkali cation

method, as described by Ito et al. [10].

Growth and Induction of HOXA5 in Yeast Strain 334

Yeast strains used in this study were grown in synthetic

media minus uracil (URA selection marker) plus 2% glucose

for 12 to 14 hours at 30jC. Cells were then washed and

seeded during logarithmic growth (optical density, OD =

0.6–0.9) in synthetic media minus URA plus 2% raffinose

for an additional 12 to 14 hours. Induction was initiated by the

addition of 1% galactose to raffinose-containing media, and

HOXA5 expression was monitored in aliquots taken at reg-

ular intervals for the next 24 hours.

Affymetrix GeneChip Arrays

Within 2 hours following the induction of HOXA5 by

galactose, RNA was extracted using a hot phenol method

and purified using the oligotex mRNA kit (Qiagen). The tar-

get was prepared, processed, and hybridized to the Yeast

Genome S98 Array (Affymetrix, Santa Clara, CA) according

to the manufacturer’s protocol. Experimental parameters for

scanning the chip are defined by the GeneChip software

(Affymetrix) installed on a PC workstation with a Windows

NT operating system (Redmond, WA). Probe array, sample

description, and hybridization conditions were entered into

the software and saved. The probes were scanned for ac-

curacy at least three to four times using the HP Gene Array

scanner (Affymetrix). The mean intensity of each probe was

calculated and analyzed using the GeneChip software. The

entire hybridization, scanning, and data analysis were per-

formed at the Affymetrix core station located at the Johns

Hopkins University School of Public Health and Hygiene

(Baltimore, MD).

Microarray Data Analysis

Scanned output files were analyzed with the Affymetrix

Microarray Suite 5.0 and independently normalized to an

average intensity of 500 before comparison. To identify differ-

entially expressed transcripts, pairwise comparison analysis

was carried out with Data Mining Tool 3.0 (Affymetrix). The

analysis compared differences in perfect match-to-mismatch

values of each probe pair on baseline array to its matching

probe pair on experimental array. P value was determined by

Wilcoxon signed rank test and expressed as an increase,

decrease, or no change. Data Mining Tool analysis also pro-

vided signal log ratio, which estimates the magnitude and

direction of change of a transcript when two arrays are com-

pared (experimental versus baseline). For convenience, we

have converted the signal log ratio output into fold change

using the formula recommended by Affymetrix: Fold change =

2a (a > 0) or (�) 2 � (a) (a < 0), where a is the signal log ratio.

For this study, four pairwise comparisons were performed

for each group [experimental (n = 2) versus baseline (n = 2)].

Only those altered genes that appeared in four of four

comparisons were selected. This conservative analytic ap-

proach limited the number of false positives. In addition, a

Mann-Whitney pairwise comparison test was performed in

Data Mining Tool to rank the results by concordance as a

calculation of the significance (P) of each identified change in

gene expression.

Transfections

MCF-7 breast cancer cells were maintained in Eagle’s

minimal essential medium supplemented with 10% fetal bo-

vine serum. Transfectionswere conducted using the Trans-IT

transfection kit (Mirus Bio Corp. Madison, WI) according to

the manufacturer’s protocol. All transfections were allowed to

proceed for 24 hours before cell harvest and analysis.

ChIP

ChIP was carried out following established protocols [11]

using MCF-7 cells transfected with pcDNA3-HOXA5. Ten

10-cm plates, each with 2� 106 MCF-7 cells (20� 106 cells),

were each transfected with 3 mg of pcDNA3-HOXA5. After

24 hours, DNA was crosslinked to bound proteins by the

addition of formaldehyde (1% vol/vol, final concentration) to

the culture medium with 5-minute incubation at room tem-

perature. Glycine was then added to a final concentration

of 0.125 M to quench the reaction. Cells were harvested,

nuclei were isolated and lysed, and all 10 chromatin–protein

preparations were combined. Samples were sonicated

using a microtip with 1-second pulses for a total of 210 sec-

onds, which sheared DNA–protein fragments to between

600 and 1000 bp of DNA. The sonicator was set at the

50% duty cycle and at the ‘‘microtip limit.’’ An aliquot (100 ml)
of sonicated chromatin was designated as ‘‘total input
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chromatin.’’ Chromatin–protein complexes were immuno-

precipitated using rabbit anti-HOXA5, anti-histone deacety-

lase, or anti-snail antibodies. Anti-snail samples, along with

samples prepared without antibodies, served as negative

controls. Sample crosslinking was reversed in 0.3 M NaCl.

The DNA was extracted from the proteins using phenol/

chloroform/isoamyl alcohol (25:24:1), precipitated with ab-

solute alcohol, resuspended in water, and subsequently

analyzed by polymerase chain reaction (PCR) using hMLH1

promoter-specific primers.

hMLH1 promoter primers used in PCR flanked HOXA5 cis

elements and are listed in Table 1 as ChIP S1/ChIP AS1 and

ChIP S2/ChIP AS2. PCR contained 0.025 mM deoxynucleo-

side triphosphates, 0.25 mM of each primer, 2 mM Mg2+, and

5 ml of each ChIP sample. PCR began with a 2-minute de-

naturation at 94jC and was then cycled 35 times with a melt-

ing temperature of 94jC (0 second), an annealing temperature

of 54jC (0 second), and an extension at 74jC (15 seconds) in

a Rapid Cycler (Idaho Technologies, Salt Lake City, UT).

Cloning the hMLH1 Promoter

Specific PCR primers (hMLH1p S and hMLH1p AS in

Table 1) to the hMLH1 promoter were designed from its

sequence (PubMed accession no. AB017806) using Primer-

Select (Lasergene, DNAStar, Madison, WI). PCR was per-

formed using a gradient annealing temperature scale

(annealing range, 50–60jC). A 1.75-kb amplified DNA was

purified from an agarose gel, ligated into pCR2.1 (Invitrogen),

and sequenced. The promoter was then cloned into the

pGL2-Basic vector (Promega, Madison, WI) upstream of the

firefly Luc coding sequence.

Eight putative HOXA5-binding sites were identified in

the hMLH1 promoter based on the reported HOXA5 core-

binding consensus site of TAAT [12].

pGL2-Basic-hMLH1 Promoter Deletion Constructs

The 3V proximal promoter region [13] of hMLH1 was

excised by digestion with ApaI and HindIII. All further pro-

moter deletion constructs were prepared from this 3V trun-

cation product. All plasmids were sequenced to verify the

deletions generated.

Dual-Reporter Luc Assay

Transcriptional activation of pGL2-Basic-hMLH1 promoter

deletion constructs was assayed using the Dual-Luciferase

Reporter Assay kit (Promega) according to the manufac-

turer’s instructions. MCF-7 breast cancer cells (5 � 105 )

were transfected with a combination of 1 mg of a pGL2-Basic-

hMLH1 promoter vector construct plus 0.5 mg of pcDNA3-

HOXA5 or 0.5 mg of pcDNA3-HOXB4, pcDNA3-HOXB5,

pcDNA3-HOXB7, or pCR3.1 empty vector plus 5 ng ofRenilla

plasmid as transfection control. Samples were cultured over-

night and then lysed using Passive Lysis Buffer (Promega,

Madison, WI).

Luminositymeasurementswere obtained using aBerthold

Sirius (Oak Ridge, TN) luminometer. Each Luc measurement

was divided by its corresponding Renilla measurement,

which normalized transfection efficiencies. To investigate fold

activation due to HOXA5 andHOX variants, the ratios of HOX

samples were divided by the ratios obtained for pCR3.1

cotransfected samples.

MMR Assay

A modified pEGFP-N1 vector (Clontech Mountain View,

CA) p95-1 was a generous gift from Dr. Sun (University of

Texas at San Antonio, San Antonio, TX). The p95-1 construct

lacks the mammalian SV40ori site, which eliminates replica-

tion in mammalian cells [14]. p95-1 (30 mg) was digested with

SalI and NruI, which excised the start codon of enhanced

green fluorescent protein (EGFP) cDNA. Purified digested

p95-1 was combined with annealed 5V-phosphorylated MMR

S2/MMR AS2 oligonucleotides (see Table 1) at a plasmid/

oligonucleotide molar ratio of 1:1.5 and ligated. This intro-

duced a G–G mispair in the EGFP start codon (ATG/TAG),

generating Dp95-1. MCF-7 cells (3 � 105) were transfected

with 0.25 mg of Dp95-1 and 0.5 mg of pCR3.1-HOXA5 or

pCR3.1-hMLH1 cDNA. Transfectionswith 0.25 mg of p95-1, in
lieu of Dp95-1, constitute positive controls. All transfected

cells were cotransfected with 0.25 mg of pDsRed2-N1 (Clon-

tech) as internal control of transfection efficiencies.

Results

Identifying Downstream Effector Genes of HOXA5

in S. cerevisiae

The question arises as to whether HOX genes are pres-

ent in single-cell eukaryotes. In support of this, it is been

reported that the mating type A1 gene of yeast shares func-

tional similarity with HOX genes [15]. To follow up on this line

Table 1. PCR Primer and MMR Assay Oligonucleotide Sequences.

Primer Designation Sequence

hMLH1p S 5V-TTCTCTGAGGGCAGGAAAGTCTGTTAG-3V

hMLH1p AS 5V-ACGTCTAGATGCTCAACGGAAGTGC-3V

ChIP S1 5V-GCAAAGACTTTACTAACTCG-3V

ChIP AS1 5V-AATCTGAATCAGAGCATGG-3V

ChIP S2 5V-AATTCAGGTCGCCTAACG-3V

ChIP AS2 5V-TGTAGGCCCTGAGTTGG-3V

MMR S2 5V-TCGACGGTACCGCGGGATCCACCGGTCGCCACCATGGTGAGCAATCG-3V

MMR AS2 5V-CGATTGCTCACGATGGTGGCGACCGGTGGATCCCGCGGTACCG-3V

Boldface indicates the G–G mispair that was introduced into the third nucleotide of the translation start site of the GFP cDNA.
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of reasoning, we did a protein BLASTsearch within the yeast

genome database of the homeodomain region ofHOX genes.

We found that there is a striking conservation between ho-

meobox-binding domains of yeast homeodomain proteins:

Yox1 (AVQIWFQNKR), Pho1 (RVQVWFQNRR), and Pho2

(NVRIWFQNRR) and the same region of Antennapedia

(QIKIWFQNRR), a homeodomain protein from Drosophila

Moreover, the DNA sequence (TCTAATCC) that binds the

Drosophila bicoid gene is nearly identical to a potential Yox1

DNA-binding sequence [TC(T/C)AATA(C/A)] [16]. This indi-

cates the rationale for attempting to use yeast as a model

system to study HOX gene functions, which would be in line

with numerous similar model yeast systems where find-

ings such as cyclin genes were extended and found to be

ubiquitous to eukaryotes in general.

Effect of the Overexpression of HOXA5 in Yeast Strain 334

We explored the effect of HOXA5 expression on the

growthof several yeast strains.Followingdeterminationof op-

timal induction conditions, we were able to achieve a robust

expression of HOXA5 within 2 hours of galactose induction,

as determined by immunoblotting (Figure 1A).

At established optimum induction conditions, we per-

formed a growth curve experiment to determine whether

these yeast cells would mimic the effect of HOXA5 expres-

sion in MCF-7 cells (i.e., show signs of hindered growth).

This was the case as we observed a rapid decrease in cell

growth, asmeasured by cell density, over a period of 36 hours

(Figure 1B). To further confirm this finding, HOXA5 was

induced in yeast cells, which exhibited a petite phenotype

(Figure 1C). The change in morphology was observed in

several yeast strains used in this study. Thus, the expression

of HOXA5 in yeast cells appears to interfere with cell cycle

progression in a way that is phenotypically similar to that

observed in breast cancer cell lines.

A petite phenotype for yeast cells is thought to be primarily

due to loss of normally functioning mitochondria [17]. Thus,

before performing gene expression studies, we wanted to

confirm that the expression of HOXA5 in yeast cells did not

disrupt mitochondrial activity. To address this question, we

expressed HOXA5 under the control of a constitutive alcohol

dehydrogenase promoter in strain Y190. Following plating

onto a synthetic media minus URA and with glycerol as the

sole source of carbon, we observed no difference in the col-

ony morphology of cells expressing HOXA5 vs control (data

not shown). This indicated that the effects of HOXA5 protein

on cell size and growth rate were not directly due to com-

promised mitochondrial function.

Gene Expression Profiles of Strain 334 in the Presence

and Absence of HOXA5

Following procurement of Affymetrix data, gene homol-

ogy searches were performed to identify the mammalian

counterpart of each of the upregulated yeast genes. Once

potential candidate genes had been chosen, we next sought

to verify whether there were any putative HOX core-binding

sites (TAAT) in their promoter regions. The finding of putative

HOX-binding sites within the promoter region of human gene

homologs provided strong support for the significance and

relevance of using yeast as a model system to study HOX

gene functions.

From the panel of genes that were upregulated by HOXA5

within 2 hours of induction in yeast, MutL had an average fold

activation of 4.58 (SE ± 0.125). The hMLH1 gene was one

of the promoters that contained putative HOX-binding sites.

Because of its importance in MMR and the known functional

significance of MMR in carcinogenesis, the hMLH1 promoter

was selected for detailed analysis.

HOXA5 Transactivates hMLH1 Promoter–Reporter

Constructs

To assess whether HOXA5 transcriptionally modulates

hMLH1 expression, cotransfection experiments were per-

formed in breast cancer cell lines using effector and reporter

plasmids. A schematic representation of different promoter

deletion constructs indicating putative HOX-binding sites

Figure 1. Effects of HOXA5 expression in S. cerevisiae. (A) Time course

evaluation of HOXA5 induction by galactose in S. cerevisiae strain 334.

Following induction of HOXA5 gene by galactose in 334 cells, representative

aliquots of cells were collected at the time points indicated and then lysed, and

HOXA5 protein amount was estimated by Western blot assay with an affinity-

purified polyclonal HOXA5 antibody (custom-made). (B) HOXA5 expres-

sion slows the growth of S. cerevisiae. Control and HOXA5-expressing

S. cerevisiae cells were grown for 3 days in synthetic media minus URA plus

2% galactose. OD measurements were taken at different intervals during the

course of 3 days. (C) Expression of HOXA5 in S. cerevisiae results in for-

mation of petite colonies.
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(open box), a possible p53-binding element (oval), and the

proximal promoter (hatched box) is depicted in Figure 2A.

Our preliminary results showed that inclusion of the proximal

and core promoter [13] into reporter vector constructs pro-

duced confounding results with unaltered high-Luc activity

regardless of any upstream deletions. Thus, all promoter

deletion constructs were prepared from a starting vector in

which the proximal (basal) promoter had been excised. Fol-

lowing excision of these sites, the promoter–reporter con-

struct (con-1) gave a 6.6 ± 0.4–fold increase in Luc activity in

the presence of HOXA5. A similar strategy was used for the

excision of a possible p53 cis element (oval) along with

surrounding sequences. The absence of the p53 cis element

(con-2) from con-1 resulted in a 13.8 ± 0.3–fold increase of

Luc activity. Thus, either p53 or any other transcriptional factor

that binds with the excised region represses promoter activity.

When the two 3V most putative HOX-binding sites (i.e., sites 7

and 8, Figure 2; con-3) were also excised, reporter activity

dropped to 5.7 ± 0.6–fold activation. In contrast, excision of

the p53 site and the first three 5V HOX-binding sites (i.e., 1, 2,

and 3, Figure 2; con-4) increased reporter activity to 22.5 ±

3.5–fold activation. However, excision of the p53 site and

the five 3V HOX-binding sites (i.e., 4, 5, 6, 7, and 8, Figure 2;

con-5) gave a reporter activity of 9.6 ± 1.7–fold activation. An

evaluation of these last three results appeared to indicate

that the promoter sequence that contains the last two 3V

HOX-binding sites contributes the most to reporter activity

in MCF-7 cells. To test whether this is the case, we excised

sites 7 and 8 while maintaining the p53 site (con-6). This

construct, in the presence of HOXA5, was completely re-

pressed (0.5 ± 0.001–fold activation). Thus, all promoter

constructs that lacked HOXA5-binding sites 7 and 8 had ac-

tivation activity lower than those that included these sites.

Furthermore, the inclusion of the p53 site in the absence of

sites 7 and 8 (con-6) eliminated the activation activity of the

first six sites (cf. con-3 with con-6, Figure 2). Finally, removal

Figure 2. HOXA5 transactivates hMLH1 promoter– reporter activity in MCF-7 cells. MCF-7 breast cells were transfected with a combination of 1 �g of one of the

pGL2-Basic-hMLH1 promoter vector constructs plus 0.5 �g of pcDNA3-HOXA5 or 0.5 �g of pcDNA3-HOXB4, pcDNA3-HOXB5, pcDNA3-HOXB7, or pCR3.1

empty vector plus 5 ng of Renilla plasmid as transfection control. (A) Schematic representation of the 1.75-kb hMLH1 promoter fragment studied. Open boxes

labeled 1 to 8 represent the relative positions of putative HOX cis elements; the open oval indicates the position of the p53-binding site; the proximal promoter is

represented by a hatched rectangle; and +1 indicates the translational start site. (B) Left: hMLH1 promoter – reporter deletion constructs depicting the different

HOX-binding sites (open boxes). Right: The corresponding bar graph, which indicates fold activation of Luc activity in the presence of HOXA5 in MCF-7 cells. (C)

Effect of HOXB4, HOXB5, and HOXB7 on the reporter activity of different hMLH1 promoter– reporter constructs in MCF-7 cells.
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of all putative HOX cis elements (con-7) resulted in essen-

tially no increase in fold activation (1.8 ± 0.4). Taken together,

these results indicate that the eight HOX-binding sites modu-

late reporter activity in MCF-7 cells, with sites 7 and 8 contrib-

uting the most to the activation and apparently being capable

of partially overcoming the repressor activity of the p53 region

of the promoter. Similar results were obtained using SK-BR-3

and Hs 578T breast cancer cells (data not shown).

In addition, we have demonstrated that the transactiva-

tion of the hMLH1 promoter–reporter construct is specific for

HOXA5 and is not affected by other HOX proteins, as shown

in Figure 2C. HOXB4, HOXB5, and HOXB7 showed little

or no activation of Luc transcription compared with samples

transfected with HOXA5. This indicates that transcrip-

tional activation of the hMLH1 gene can occur through spe-

cific interaction with HOXA5 protein and not by other tested

HOX proteins.

In Vivo Binding of HOXA5 to Its Cognate Sequence

in the hMLH1 Promoter

ChIP assays were used to assess whether HOXA5 binds

in vivo to the hMLH1 promoter in MCF-7 cells overexpressing

HOXA5. Two sets of PCR primers were designed for spe-

cific amplification of the first four or the last four HOX-binding

sites in the hMLH1 promoter, respectively, as schematically

shown in Figure 3. As shown in Figure 3, A andB (lane 3), the

use of either primer pair in the PCR of ChIP DNA generated

from anti-HOXA5 precipitations resulted in amplified prod-

ucts of 228 and 386 bp. The same amplification products

were seen in positive control experiments. That is, hMLH1

promoter sequences were amplified from unprocessed chro-

matin and from the ChIP DNA generated from anti–acetyl-

histone H3 precipitations (Figure 3, A and B, lanes 2 and 6,

respectively). In contrast, nonspecific antibody-mediated

precipitations resulted in DNA templates that were not am-

plified (Figure 3, A and B, lane 4). In addition, no amplification

was seen in the samples that were processed in the ab-

sence of precipitating antibodies (Figure 3, A and B, lane 5 ).

These results indicate that HOXA5 binds directly or as part

of a complex to the endogenous hMLH1 promoter in vivo.

As ChIP analysis is dependent on the degree of shearing

of chromosomal DNA, it is essential to perform additional

PCR for a sequence distal to the promoter that does not

contain any consensus HOX-binding sites. Based on PCR of

the coding region of hMLH1, we did not observe any am-

plified products from the anti-HOXA5 immuoprecipitated

sample, demonstrating the specificity of immunoprecipitation

(data not shown).

Overexpression of HOXA5 Enhances MMR Assay

in MCF-7 Cells

As HOXA5 could bind and transactivate the hMLH1 pro-

moter, we wanted to determine if transient overexpression

of HOXA5 in MCF-7 cells would increase the MMR capa-

bilities of these breast cancer cells. To evaluate the in vivo

functional role of HOXA5 in MMR, we used the method re-

cently described by Lei et al. [14]. A vector encoding the red

fluorescent protein, which served as transfection control, was

included. A schematic representation of the native (p95-1)

versus the mismatched (Dp95-1) portion of the vectors used

in the assay is shown in Figure 4A. Figure 4B shows the four

transfections tested (Dp95-1, Dp95-1 + HOXA5, Dp95-1 +

hMLH1, and p95-1), along with representative photomicro-

graphs of red or green fluorescence and a corresponding

bar graph of fluorescence with a scale of average relative

fluorescence units (RFU). The positive transfection (p95-1)

gave 9452 ± 1276 RFU. In contrast, Dp95-1 transfections

alone averaged only 3124 ± 974 RFU. However, transfecting

Dp95-1 with HOXA5 or hMLH1 resulted in 7218 ± 1479 and

4528 ± 747 RFU, respectively. No significant difference in

red fluorescence intensity was observed across all trans-

fected wells. The results from this assay provide evidence

that HOXA5 induces MMR in MCF-7 cells. In addition, over-

expression of HOXA5 in MCF-7 cells increases hMLH1 syn-

thesis (Figure 4C). Taken together, the results indicate that

HOXA5 is a transcriptional regulator of hMLH1 and provides

an alternative mechanism to the loss of hMLH1 expression

in some breast carcinomas.

Figure 3. In vivo binding of HOXA5 protein to the hMLH1 promoter sequence. (A) Top: Schematic representation of the portion of the hMLH1 promoter that contains

putative HOX-binding sites represented as open boxes (see Figure 2). Small arrows above and below the promoter represent sense (ChIP S1:

5 V-GCAAAGACTTTACTAACTCG-3 V) and anti-sense (ChIP AS1: 5 V-AATCTGAATCAGAGCATGG-3 V) primer sites, respectively. Primers amplify a 228-bp

fragment. Bottom: Agarose gel showing the ChIP S1/ChIP AS1–directed PCR product. (B) Top: Similar schematic presentation, as described above. Sense (ChIP

S2: 5 V-AATTCAGGTCGCCTAACG-3 V) and anti-sense (ChIP AS2: 5 V-TGTAGGCCCTGAGTTGG-3 V) priming sites are depicted with a PCR product of 366 bp. Lane

1, DNA ladder. PCR samples: lane 2, total input chromatin; lane 3, anti-HOXA5 precipitation; lane 4, nonspecific antibody precipitation; lane 5, no antibody; lane 6,

anti –acetyl-histone H3 precipitation. Identical volumes from the final precipitate were used for PCR. Molecular weights indicated to the left of the gels are given

in basepairs.
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Discussion

Historically, HOX proteins have been considered as master

transcriptional regulators of coordinated gene expression

during development. HOX genes are essential for the proper

control of anterior–posterior segmentation identity during

development and are evolutionarily conserved over a broad

range of metazoan species [18–20] (e.g., homologs have

been identified in sea urchins, Drosophila, mice, and hu-

mans). However, in recent years, it has been shown that

HOX proteins have important regulatory functions in normal

adult tissues [21]. For example, Hoxa9, Hoxb9, and Hoxd9

have been shown to modulate adult mouse mammary gland

development during pregnancy [22]. Dysregulation of HOX

protein expression is now known to occur in many human

cancers [21,23]. Examples include HOXC8 in prostate cancer

[24], HOXD3 in lung cancer [25], and HOXA1, HOXB3,

HOXB4, HOXB7, and HOXC6 in breast cancer [26–28].

Along these lines, we have previously demonstrated that

HOXA5 can regulate both p53 and progesterone receptor

expression in breast cancer [2,3]. As loss of HOXA5 expres-

sion is correlated to advanced breast carcinoma, we sought

to decipher the possible multifaceted functions of HOXA5

in regulating cellular transformation. Although analyzing

gene expression patterns in cancer cell lines overexpressing

HOXA5 was an option, our interest was to use a homoge-

nous system with little or no chromosomal variations. Based

on the precedent of exploring humanized yeast systems

[29], we used an inducible strategy in yeast to overexpress

HOXA5 and to determine downstream effector genes.

To determine whether yeast could serve as a model sys-

tem for studying HOX functions in eukaryotes, we did a

protein BLAST search within the yeast genome database of

the homeodomain region of HOX genes to first confirm that

potential HOX-like proteins, along with their cis elements,

are present in yeast. The findings showed that homeo-

domain motifs of yeast Yox1 (AVQIWFQNKR), Pho1

(ARVQVWFQNRR), and Pho2 (NVRIWFQNRR) are strikingly

similar to the same region of Antennapedia (QIKIWFQNRR),

a homeodomain protein from Drosophila. Moreover, the cis

element (TCTAATCCC) that binds Drosophila bicoid gene

appeared to be nearly identical to a potential Yox1 DNA-

binding sequence (TCGAATCCC), as initially reported by

Kaufmann [30], and fine mapping of the core-binding se-

quence [(T/C)AATA(C/A)] confirmed that report [16]. Al-

though the phylogenetic distance between yeast and Homo

sapiens is very large, yeast has historically been used as a

general eukaryotic model system. For example, cell cycle–

regulatory genes were initially identified in yeast, subsequent

to their identification in mammalian cells [31]. In addition,

yeast has been used as a model in which to identify human

genes whose products function in DNA repair [32]. Further-

more, detailed genetic information is now available for yeast

cells, which provides a well-characterized model in which to

study the effector functions of HOX genes. Thus, the use of

the yeast model as a screen for identifying the downstream

effector genes of HOXA5 has been effective, and we antici-

pate that it will provide much useful information about poten-

tial, as yet unidentified, targets of HOXA5 regulation.

In this report, we focused on one of the genes that were

identified using the yeast system, human homolog of bacte-

rial MutL [4] or hMLH1, a component of theMMR system. The

mammalian MMR system consists of multiple protein compo-

nents, which detect and correct basemismatch abnormalities

and insertion/deletion loops occurring within double-stranded

DNA [4]. In addition to normal replication errors, environ-

mental factors such as chemical toxins and ultraviolet ra-

diation contribute to base modifications, which are also

corrected by the MMR pathway [5]. The components of the

Figure 4. HOXA5 expression increases repair activity in MCF-7 cells. (A) Schematic representation of native (p 95-1) and mismatched (Dp95-1) regions of reporter

plasmids used in the assay. (B) Cotransfections of reporter plasmids and effector plasmids (HOXA5 and hMLH1) in MCF-7 cells. MCF-7 cells were transfected with

0.25 �g of Dp95-1 and 0.5 �g of pCR3.1-HOXA5 or pCR3.1-hMLH1 cDNA. Transfections with p95-1 constitute positive controls. Plasmid pDsRed2-1 was used as

internal control for transfection efficiencies. The graph represents relative fluorescent units. (C) Western blot analysis showing the activation of hMLH1 by HOXA5

in MCF-7 cells.
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MMRpathway (hMutLa and hMutLb) are dimers composed of

hMLH1 and its partners human postmeiotic segregation 2

(hPMS2) and hPMS1, respectively [4,31]. hMutLa is involved

in the repair of mismatched basepairs [5], whereas hMutLb
participates in apoptosis signaling [32]. Thus, a fully func-

tional MMR system is involved in maintaining cellular genetic

integrity. In fact, an absence or a decrease in the expression

levels of a complete set of MMR proteins results in replication

errors, which contribute to genomic instability.

Analysis of the distal portion of the hMLH1 promoter iden-

tified eight putative HOX-binding (cis) elements. System-

atic deletion of these potential HOXA5-binding sites, in the

absence of the proximal promoter, affected the expression

of Luc in an in vivo reporter assay. In all studies, Luc ac-

tivity increased when promoter constructs containing HOX-

binding sites were cotransfected with a HOXA5-encoding

vector in MCF-7 breast cancer cells. Deletion of the region

of the promoter containing a putative p53-binding site further

increased reporter activation. In addition, the sequence con-

text of HOX-binding sites affects the optimal activation of

the reporter gene. That is, within the context of all eight

sites, the first three 5V HOX-binding sequences appear to be

associated with some repressor activity, as their removal re-

sulted in a large increase in reporter activity. However, when

these first three 5V sites were used alone, half of the maxi-

mal reporter activation returned. Nevertheless, removal of the

last two 3V HOX-binding sequences resulted in the largest

decrease in reporter activity, indicating that one or both of

these sites are essential for optimal activation process.

When the last two 3V HOXA5-binding sites were absent and

the p53 region was present, Luc expression was abolished.

This finding suggests that several HOXA5-related regula-

tory mechanisms could affect hMLH1 expression. For ex-

ample, repressor activity at or near the p53-binding site

could attenuate hMLH1 expression in circumstances of di-

minishedHOXA5 expression, or in loss of HOXA5 expression,

or through mutation, epigenetic silencing, or blocking of

these two 3V most HOXA5 cis elements. The possible repres-

sion by p53 is in agreement with recent reports [33–35] indi-

cating that p53 can be a repressor of gene activity in certain

cases where its two cis element half sites are inversions

of each other. The p53 site found in the hMLH1 promoter has

a topology that partially matches this description. Impor-

tantly, other HOX family members (HOXB4, HOXB5, and

HOXB7) had little or no affect on reporter activity, which

means that the observed increases in Luc activity in vivo in

MCF-7 breast cancer cells were specific to binding and ac-

tivation by HOXA5. These data confirmed the utility of the

yeast system and helped identify hMLH1 as a potential target

for HOXA5 regulation.

Previous reports aimed at characterizing the hMLH1

promoter have focused on the transcriptional regulation of

basal activity or epigenetic regulation through methylation of

CpG islands [36–39]. Kane et al. [36] initially described that

methylation within the �670 to �67 region, relative to the

transcription start site, gave rise to the loss of hMLH1 expres-

sion. This report also mentioned the presence of a p53 cis

element, but it did not note its exact location. A refined

mapping study narrowed a region of methylation, linked to

relevant loss of expression apparently, to the �248 to �178

region [37]. However, none of these analyses has described

the inactivation of the HOXA5 region of the promoter (i.e.,

roughly from �1690 to�1090) by epigenetic processes. The

core or the proximal promoter for hMLH1 has been reported

to be within the first 300 bp upstream of the transcription

start site [10,37,38]. In addition, a �577 promoter–Luc

construct generated similar levels of Luc activity as a �914

construct [39]. Both results are consistent with our analy-

ses of the characterization of the hMLH1 promoter. Moreover,

it was also reported that truncation of the promoter from

�1781 to �914 resulted in loss of approximately one third

of the activation of Luc [39], which supports the conclusion

that the region of the promoter studied by the authors is

important for full activation of hMLH1. It is possible that

regulation of hMLH1 expression by HOXA5 is cell type–

specific [39]. At this time, it is not yet fully understood under

what circumstances HOXA5 exerts its possible enhancing

affects on hMLH1 expression, and there have been no re-

ports as to the developmental regulation of hMLH1 expres-

sion with respect to specific transcriptional factors.

In addition to transient cotransfection Luc reporter experi-

ments, which are used to identify putative target promoters,

an evaluation of putative endogenous regulation of gene

activity by a transcriptional factor such as HOXA5 can be

obtained through the use of ChIP assay. Of course, the ex-

tent of shearing of chromosomal DNA may have resulted

in both primer regions being precipitated together. Thus,

appropriate controls, including PCR within the coding region,

were performed to verify the specificity of immunoprecipita-

tion (i.e., no PCR products were observed when distal por-

tions of the hMLH1 gene were targeted for amplification).

Thus, our ChIP data demonstrated that, within the intact

nucleus of MCF-7 cells, HOXA5 can specifically interact with

regions of the hMLH1 promoter that contain HOXA5-binding

sites. Finally, we sought to determine if binding of HOXA5

to the hMLH1 promoter could affect MMR activity in MCF-7

cells. Recently, Lei et al. [14] described an elegant assay for

assessingMMR activity in vivo. Using their approach, we were

able to show that HOXA5 expression increased the MMR

capabilities of MCF-7 cells in vivo. Furthermore, we dem-

onstrated that overexpression of HOXA5 in MCF-7 cells

increased hMLH1 protein levels, thus underscoring the im-

portance of HOXA5 in regulating MMR-related activities.

Lack of MMR activity can initiate carcinogenesis by aug-

menting genomic instability. One cause of this instability is

loss of MMR proteins and, thus, reduced DNA damage sig-

naling, which contributes to reduced apoptosis [4,32]. For ex-

ample, in HNPCC, germline mutations in hMSH2 and hMLH1

have been observed in 98% of cases studied [6]. Moreover,

loss or diminished function of hMLH1 in breast cancer cell lines

has been demonstrated to be due to missense mutation [7],

which brings about microsatellite instability. Furthermore, trun-

cated hMLH1 protein can be detected in a subset of patients

with lobular carcinoma in situ of the breast [8]. Other studies

have shown that hMLH1 gene expression can be silenced by

promoter hypermethylation in approximately 28% to 38% of
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sporadic breast cancer cases [9], again resulting in micro-

satellite instability. However, in approximately 15% of the

cases, the loss of hMLH1 expression remains unexplained.

Thus, alternative mechanisms contributing to the loss of

hMLH1 function in breast cancer exist. The evidence pre-

sented here indicates that HOXA5 can contribute to the

regulation of hMLH1 expression in breast cancer cells and,

by increasing or maintaining normal expression levels, may

abrogate the deleterious effects that loss of MMR has on

genomic instability. The present study describes the use of a

yeast system for the identification of HOXA5 downstream

effector targets. This approach has provided a list of potential

genes that are regulated by HOXA5. This screen identified the

MMR component hMLH1 as being potentially modulated by

HOXA5. The results presented here indicate that HOXA5may

regulate hMLH1 in human breast cancer cells and thus have

an indirect effect on the integrity of genetic information.
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