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Abstract

Accurate delineation of tumor margins is vital to the

successful surgical resection of brain tumors. We have

previously developed a multimodal nanoparticle CLIO-

Cy5.5, which is detectable by both magnetic resonance

imaging and fluorescence, to assist in intraoperatively

visualizing tumor boundaries. Here we examined the

accuracy of tumor margin determination of orthotopic

tumors implanted in hosts with differing immune re-

sponses to the tumor. Using a nonuser-based signal

intensity method applied to fluorescent micrographs

of 9L gliosarcoma green fluorescent protein (GFP)

tumors, mean overestimations of 2 and 24 Mm were

obtained using Cy5.5 fluorescence, compared to the

true tumor margin determined by GFP fluorescence, in

nudemice and rats, respectively. To resolvewhich cells

internalized the nanoparticle and to quantitate degree

of uptake, tumors were disaggregated and cells were

analyzed by flow cytometry and fluorescence micros-

copy. Nanoparticle uptake was seen in both CD11b+

cells (representing activated microglia and macro-

phages) and tumor cells in both animal models by both

methods. CD11b+ cells were predominantly found at

the tumor margin in both hosts, but were more pro-

nounced at the margin in the rat model. Additional

metastatic (CT26 colon) and primary (Gli36 glioma)

brain tumor models likewise demonstrated that the

nanoparticle was internalized both by tumor cells and

by host cells. Together, these observations suggest

that fluorescent nanoparticles provide an accurate

method of tumor margin estimation based on a com-

bination of tumor cell and host cell uptake for primary

and metastatic tumors in animal model systems and

offer potential for clinical translation.

Neoplasia (2006) 8, 302–311

Keywords: Brain tumor, optical imaging, nanoparticle, fluorescence, MRI.

Introduction

Completeness of resection has been correlated with im-

proved survival in studies of various brain tumor populations

[1,2]. Accurate brain tumor delineation is a challenging task

that is crucial to improving the degree of resection while

preserving normal tissues. Over the years, a variety of op-

tical agents have been employed to improve this process.

The low-molecular-weight fluorochrome fluorescein was

employed more than 50 years ago to assess whether it could

help differentiate gliomas from normal brain during biopsy [3].

More recently, indocyanine green was evaluated for its ability

to enhance tumor boundaries [4,5]. Although these fluoro-

chromes provide intraoperative fluorescence in the region of

the tumor, they have not been widely accepted as providing

accurate margin delineation. These small molecules have lim-

ited circulation time and readily diffuse into and out of the inter-

stitial space. A similar pharmacokinetic pattern is obtained

with low-molecular-weight gadolinium chelates, which are ad-

ministered minutes before contrast-enhanced magnetic reso-

nance imaging (MRI) is obtained and do not remain in the same

distribution over the hours required for tumor resection. Wash-

out and diffusion of such agents progressively decrease con-

trast enhancement.

We recently developed a nanoparticle CLIO-Cy5.5, which

is both an MRI contrast agent and a near-infrared fluorescent

optical probe [6]. CLIO-Cy5.5 is composed of a superpara-

magnetic iron oxide core coated with crosslinked dextran to

which the fluorochromeCy5.5 is covalently attached. The nano-

particle has significant advantages over previously used optical

agents in terms of brain tumor delineation. Unlike low-molecular-

weight fluorescent dyes or gadolinium chelates, the nano-

particle is internalized by cells before surgery commences

and does not diffuse out of cells or through the interstitial space

during surgery. A comparison of long versus short circulating

iron oxides used clinically showed that only the long circulating

nanoparticles accumulated in human brain tumors [7]. MION,

the parent nanoparticle of CLIO, has a blood half-life of about

24 hours in humans [8], whereas MION and the amino-CLIO

nanoparticle have a blood half-life of 10 hours in mice [9]. Long

circulating magnetic nanoparticles may be useful for visualiz-

ing some blood–brain barrier disruptions that are not detected

by standard gadolinium-enhancedMRI in human infarcts [10] or

with some brain tumor metastatic foci [7]. Over a period of 3 to

7 days, the iron of injected superparamagnetic iron oxides

is degraded and used [11]. Thus, long circulating nanoparticles
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slowly accumulate in brain tumors, but are even more slowly

degraded, yielding a window of approximately 12 to 48 hours

postinjection when they are trapped inside cells and can be

used to visualize tumor margins. In addition, regions of intra-

operative fluorescence can be directly comparedwith regions

of nanoparticle-induced signal loss seen on preoperative MR

images. Moreover, the use of a near-infrared fluorochrome

(Cy5.5) provides both markedly improved light transmission

through tissues [12] and decreased autofluorescence com-

pared to fluorescein or other visible wavelength-emitting

fluorochromes. Finally, near-infrared emission permits simul-

taneous full-color spectrum white light imaging while acquir-

ing and displaying fluorescence separately [13], allowing

real-time fluorescence-based updates of resected tumor

margins without sacrificing color-based cues.

We previously employed the CLIO-Cy5.5 nanoparticle to

delineate brain tumor margins in a rat model using a 9L glio-

sarcoma that is stably transfected to express green fluores-

cent protein (GFP) [6]. The goals of the present study were

as follows: 1) to examine nanoparticle-based margin de-

lineation with the 9L gliosarcoma cell line implanted in hosts

with differing immune responses to the tumor (immuno-

competent rats and nude mice); 2) to use a predefined signal

intensity–based quantitativemethod to define tumormargins

with fluorescent micrographs, and to assess the accuracy of

margin delineation; 3) to determine which cells internalize the

CLIO-Cy5.5 nanoparticle by disaggregation of the tumors of

injected animals, analysis of cell populations by fluorescence-

activated cell sorter (FACS) analysis, and fluorescence

microscopy; 4) to examine the distribution of host cells (astro-

cytes and C11b+ cells) inside and around both tumor models;

and, finally, 5) to see if the uptake of CLIO-Cy5.5 by tumor and

CD11b+ cells observed with the 9L tumor occurred with other

primary and metastatic brain tumor models. CD11b is ex-

pressed on both endogenously activated microglia and

exogenous host cells such as macrophages [14] and is thus

a useful marker of host response to tumors in the brain. We

find that, with the 9L tumor implanted in nude mouse or rat

hosts, CLIO-Cy5.5 was effective at delineating tumor mar-

gins due to its internalization by both tumor and CD11b+

cells. The nanoparticle was internalized both by tumor and

host cells in a model of brain metastasis using a mouse colon

tumor line (CT26) and a second primary brain tumor model

(Gli36 glioma).

Materials and Methods

Cell Culture

Rat 9L gliosarcoma and human Gli36 glioblastoma cell

lines that were stably transfected to express GFP [15,16], as

well as the 9L parent cell line from the American Type Culture

Collection (ATCC; Manassas, VA), were cultured in DMEM

supplementedwith 10% fetal bovine serum (FBS), L-glutamine

(2 mM), and penicillin (100 U/ml)/streptomycin (100 mg/ml).

The mouse CT26 colon carcinoma cell line from ATCC was

grown in RPMI 1640 supplemented with 10% FBS, L-gluta-

mine (2 mM), penicillin (100 U/ml)/streptomycin (100 mg/ml),

HEPES (10 mM) (Cambrex, Walkerville, MD), sodium pyru-

vate (1mM), and 14mMglucose. All cell lines were cultured at

37jC in a humidified 5% CO2 atmosphere. Unless otherwise

mentioned, products were from Cellgro (Herndon, VA).

Animal Models

Wistar male rats (200–250 g; Jackson Laboratory, Bar

Harbor, ME), female nude mice (20–25 g, nu/nu, Cox-7,

MGH, Boston, MA), and female GFP-expressing mice

[20–25 g, FVB.Cg-Tg(GFPU)5Nagy/J; Jackson Laboratory]

were anesthesized with isoflurane/O2 and immobilized in a

stereotactic frame. Tumor cell implantation in the brain was

performed as previously described [6]. For mice, 4 ml of cell
suspension containing 106 cells was injected 2 mm lateral

to the bregma at a depth of 2 mm from the dural surface. The

injection was performed slowly over 20 minutes, and the

needle was withdrawn over another 2 minutes. For rats,

the injection was performed over 15 minutes, and the needle

was withdrawn over 2 minutes. The rat 9L GFP cell line was

implanted in both rat and nude mouse brains. The mouse

CT26 colon carcinoma was implanted in GFP-expressing

mouse brain, and the human Gli36 GFP was implanted in

nude mouse brain. For both rat and mouse, tumor cells were

inoculated for 7 to 10 days.

MRI

Rat brain MRI studies were performed on a small animal

Bruker 4.7-T Pharmascan magnet (Bruker, Billerica, MA) using

a 38-mm-diameter rat head transmit–receive radiofrequency

coil. Fast spin-echo axial T1-weighted, T2-weighted, and pro-

ton density images were acquired from the vertex to the skull

base. All scans were acquired with a field of view = 3.5 cm,

matrix size = 256� 256, slice thickness = 0.8 mm, and NEX =

16. For T1-weighted scans, TE = 5.37 milliseconds and

RARE factor = 4 for an effective TE = 12.2 milliseconds, TR =

500 milliseconds, and total acquisition time = 8 minutes

51 seconds. For T2-weighted scans, TE = 17.0 milliseconds

and RARE factor = 8 for an effective TE = 68.9 milliseconds,

TR = 2000 milliseconds, and total acquisition time = 18 min-

utes 9 seconds. For proton density scans, TE = 5.37 mil-

liseconds and RARE factor = 8 for an effective TE =

21.8 milliseconds, TR = 2000 milliseconds, and total acqui-

sition time = 17 minutes 24 milliseconds. All images were

acquired 24 hours after the administration of 15 mg/kg

CLIO-Cy5.5 through tail vein injection. The superpara-

magnetic nanoparticle CLIO labeled with Cy5.5 was synthe-

sized as previously described [6]. T2-weighted images were

acquired before the administration of Gd-DTPA, whereas

T1-weighted images were acquired after the intravenous ad-

ministration of 0.3 mmol/kg Gd-DTPA (Magnevist; Schering,

Berlin, Germany). The T1-weighted images were thus ac-

quired with both CLIO-Cy5.5 and Gd-DTPA present.

Optical Imaging

Animals were injected with 15 mg/kg CLIO-Cy5.5 through

tail vein injection. Twenty-four hours after injection, anesthe-

sized animals were slowly perfused with 100 ml of saline sol-

ution by inserting a large bore needle into the left ventricle

Fluorescent Nanoparticle Delineates Brain Tumors Tréhin et al. 303
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and by snipping the vena cava to allow the blood to leave

the body. When appropriate, animals were further perfused

with 100 ml of 4% paraformaldehyde (PFA; Fisher Scientific,

Pittsburgh, PA) for tissue fixation. Craniotomy was per-

formed to operatively remove the brain. Noninvasive optical

imaging was performed as previously described [6]. Images

of GFP, Cy5.5, and white light channels were acquired with

an exposure time ranging from 100 to 800 milliseconds.

Immediately after optical imaging, brains were frozen in an

embeddingmedium (Sakura FinetekUSA, Torrance, CA) and

kept at �80jC, or tumors were isolated and disaggregated

for flow cytometry.

Flow Cytometry for In Vivo Uptake Evaluation

After optical imaging, 9L tumors expressing GFP were

isolated from non–PFA-fixed rat and nude mouse brains and

further incubated with collagenase/dispase enzyme solution

(Roche Diagnostics, Penzberg, Germany) for 1 hour at 37jC.
When tumors had been entirely disaggregated, the cell

suspensions was filtered and centrifuged on a density gra-

dient of 44%Histopaque-1083 (Sigma, St. Louis, MO) HBSS.

After aspiration of the supernatant, cell pellets were recov-

ered and incubated for 1 hour at room temperature under

agitation with R-phycoerythrin– labeled monoclonal mouse–

anti-rat or rat–anti-mouse antibody CD11b for activated mi-

croglial and macrophage detection (used at 1 ml for 106 cells;
Serotec, Oxford, UK). After antibody incubation, cells were

washed with HBSS and incubated with 1% propidium iodide

(PI; Molecular Probes, Eugene, OR) 1 minute before flow

cytometry analysis to identify nonviable cells.

Immunohistochemistry and Fluorescent Microscopy

Frozen PFA-fixed and nonfixed brain from nude mice,

GFP-expressing mice, and rats were cryosectioned into

20-mm-thick slices. For nonfixed tissue, brain sections

were incubated for 5 minutes in PFA and washed twice in

phosphate-buffered saline (PBS) before blocking. All sec-

tions were blocked with 10% normal goat serum (Jackson

ImmunoResearch Laboratories, West Grove, PA) for 1 hour

at room temperature. For glial fibrillary acidic protein (GFAP)

immunolabeling, 0.3% Triton X-100 was added to the serum

solution for plasmamembrane permeabilization. After 1 hour,

slides were washed thrice with PBS for 5 minutes each. After

washing, brain sections were incubated with monoclonal

mouse anti-rat or rat anti-mouse antibody CD11b (diluted 1/

1000; Serotec) or polyclonal GFAP to detect astrocytes

(diluted 1/500; DakoCytomation, Glostrup, Denmark). After

1 hour at room temperature, slices were washed with PBS

thrice for 5 minutes each and then incubated with Cy3-conju-

gated goat anti-mouse or anti-rat antibodies for CD11b� and

goat anti-rabbit for GFAP immunostaining (Jackson Immuno-

Research Laboratories; diluted 1/200). Secondary antibody

solutions were complemented with 2% mouse or rat se-

rum, depending on the animal tissue studied. After 1 hour

at room temperature, slides were washed thrice with PBS for

5 minutes each and mounted in Vectashield mounting medi-

um (Vector Laboratories, Burlingame, CA). Sections were

immediately examined using an Eclipse 80i fluorescent

microscope (Nikon, Melville, NY). Fluorescent images were

captured with a forced-air–cooled CCD87 camera (Cascade

512B; Photometrics, Tucson, AZ). No labeling was visualized

when the primary antibodies were omitted. In the case of

CT26 and Gli36 cell lines implanted in GFP-expressing

mouse and nude mouse, respectively, brain sections were

observed without immunostaining. Frozen sections were di-

rectly mounted in Vectashield medium before image capture.

For the study of CLIO-Cy5.5 uptake, the cell suspension

was mounted on glass slides and immediately observed by

fluorescent microscopy.

Determination of Tumor Delineation Using CLIO-Cy5.5

The 9L gliosarcoma cell line expressing GFP was im-

planted in nudemouse and rat brains. Nonfixed frozen tumors

were entirely cryosectioned into 20-mm-thick coronal slices.

For each animal model, six slices were selected from the

center of the tumor, with a minimum distance of 50 mm
between each slice. Four to five digital images of tumor and

surrounding brain tissue were captured in both GFP and

Cy5.5 channels for each slice using the fluorescent micro-

scope described above. Using proprietary software devel-

oped by the authors (CMIR image, written using Interactive

Data Language; Research Systems, Inc., Boulder, CO), the

border of the tumors defined by GFP and Cy5.5 fluorescence

was determined by calculating a threshold. The threshold

corresponding to the mean between normal brain and tumor

values for each slice was determined separately for GFP and

Cy5.5, according to Eq. (1):

Threshold ¼ Bþ 0:5ðT� BÞ ð1Þ

where B is the pixel intensity of the background and T is

the pixel intensity of the tumor. Specifically, an automated

growing region-of-interest (ROI) algorithm was used, and the

threshold was set at a value of 1/2 between the positive area

(determined by the mean intensity of a circular ROI of tumor

away from the border) and the negative area (determined

by the mean intensity of a circular ROI of normal brain away

from the tumor), with a boundary width of one pixel. Preset

points on the y-axis were chosen (either at 1/2 of the distance

from the top and bottom pixels or at 1/3 and 2/3 points) to

minimize any bias in the analysis. A line was drawn from

this point on the GFP demarcation line to the nearest point

on the Cy5.5 line. All images for measurement were acquired

at �100 magnification, and measurement was calibrated

by imaging a hemocytometer grid at the same magnifica-

tion and by converting pixel values to micrometers. For each

image, the distance between Cy5.5 and GFP borders was

evaluated at two to three different predetermined posi-

tions, as detailed above, resulting in 66 and 65 margin mea-

surements for nude mouse and rat, respectively. When the

Cy5.5 border was found beyond the GFP border, we qualified

the margin evaluation as an ‘‘overestimation.’’ On the con-

trary, it was an ‘‘underestimation’’ when the GFP border was

found beyond the Cy5.5 border. The values were plotted as

a histogram, where the x-axis represents margin measure-

ments organized in six equally spaced groups from the
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smallest (greatest underestimation) to the highest values

(greatest overestimation).

Results

Intraoperative Optical Imaging of the 9L Brain Tumor

in Nude Mouse and Rat Hosts

The CLIO-Cy5.5 nanoparticle was previously demon-

strated to act as a preoperative MRI and an intraoperative

fluorescent contrast agent with a 9L GFP-expressing glioma

tumor implanted in a rat [6]. To evaluate whether host re-

sponse was an important variable in visualizing tumors with

CLIO-Cy5.5 through fluorescence, we repeated the implan-

tation in the rat brain, where it is known to be highly immu-

nogenic [17], and in nude mice, which lack many facets of

a normal immune response. Figure 1A shows a T2-weighted

image of an orthotopically implanted 9L tumor, which was

taken 24 hours after CLIO-Cy5.5 administration, and a T1-

weighted image of the same slice after the addition of

Gd-DTPA. The T1 image reflects both possible T1 enhance-

ment by the CLIO-Cy5.5 and enhancement due to Gd-DTPA.

Overall, the two images appear to delineate similar re-

gions; however, onmagnification (Figure 1B), the T2-weighted

nanoparticle image shows a more mottled appearance

with notably dark regions at the border (white arrows). The

T2-weighted image suggests a higher intracellular accumu-

lation of the CLIO-Cy5.5 at the tumor periphery compared

with the tumor center, whereas tumor center accumulation

is much higher than the adjacent brain. After craniotomy and

removal of the brain, rat and nude mouse brains were im-

aged in white light, GFP, and Cy5.5 channels (Figure 1C).

For both animal models, tumor delineation is clearly visu-

alized by Cy5.5 fluorescence and is correlated with tumor

extent as determined by GFP fluorescence. Further studies

on the relationship between the GFP-defined tumor border

and nanoparticle uptake evident by Cy5.5 fluorescence are

described below.

Determination of the Cellular Uptake of Nanoparticles

by Disaggregation and FACS

To determine the cellular uptake of CLIO-Cy5.5 in vivo,

we performed flow cytometry on disaggregated tumor tis-

sues from seven nude mice and seven rats with implanted

9L tumors that were injected with CLIO-Cy5.5. Only PI� (live)

cells were included in the analysis. As depicted in Figure 2A,

we detected three cellular populations within the tumor:

CD11b+ cells, tumor cells (GFP+), and a double-negative

(DN) population without fluorescence (i.e., CD11b� and

GFP�). In nude mice, the percentage of tumor cells was ap-

proximately four-fold higher than that of CD11b+ cells (Figure

2B). In rats, both cell types were in equal amounts, sug-

gesting a greater immune response to the tumor in this

model. The DN cells represent the major cellular population

in both nude mouse and rat. However, this population also

includes some tissues outside of the tumor, which was re-

sected and included in the disaggregated suspension. The

uptake of CLIO-Cy5.5 was determined for each population

and was represented as histograms wherein uptake and

events were illustrated in a logarithm scale (Figure 2A). In

nude mouse and rat, both tumor cells and CD11b+ cells,

which together comprise the vast majority of uptake, showed

Figure 1. CLIO-Cy5.5 nanoparticle as a preoperative MRI and as an intraoperative optical contrast agent. (A) A T1-weighted image 10 minutes after gadolinium

injection and 24 hours after CLIO-Cy5.5 injection, and an identically located T2-weighted image in the same rat taken 24 hours after CLIO-Cy5.5 injection but before

gadolinium injection. (B) Magnification of tumor region shown in (A), with arrows highlighting tumor borders. The CLIO-contrasted tumor is mottled, with a dark

clearly defined margin on T2-weighted imaging. (C). Optical images of mouse brain and rat brain after craniotomy. From left to right, the images are white light, GFP

fluorescence, and CLIO-Cy5.5 fluorescence. Bar = 5 mm.
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CLIO-Cy5.5 uptake; no CLIO-Cy5.5 uptake was observed

in the DN population (Figure 2B).

Subsequently, the intracellular distribution of CLIO-Cy5.5

inside CD11b+ and tumor cells was studied by microscopy

using disaggregated cells. As depicted in Figure 3, the fluo-

rescence of the nanoparticle was colocalized with the fluo-

rescence of both tumor and CD11b+ cells, validating FACS

data and demonstrating in vivo the uptake of the nanoparticle

by tumor cells and host cells from the tumor. The distribution

of the nanoparticle within the cells was cytoplasmic and

vesicular, suggesting endocytosis as the uptake mechanism

of CLIO-Cy5.5.

Accuracy of Tumor Margin Determination and Spatial

Localization of Activated Microglia/Macrophages

and Astrocytes

The margins using tumor fluorescence (GFP fluores-

cence) and CLIO-Cy5.5 nanoparticle fluorescence (Cy5.5

fluorescence) were compared, as shown in Figure 4. Fig-

ure 4A illustrates an example tumor border in green and a

nanoparticle border in red. The margin between the two bor-

ders was calculated over 130 measurements as described

above and is represented in Figure 4, B and C. The aver-

age overestimation of the CLIO-Cy5.5 border compared to

that of the GFP border was approximately 0.02 mm in the rat

and 0.002 mm in the nude mouse, showing good similarity

between the two species. The data depicted in Figure 4, B

and C, were highly reproducible and show a high degree

of accuracy, demonstrating the potential for precise intra-

operative optical tumor margin determination in conditions of

varying immune responses. When looking at the distribution

of CLIO-Cy5.5 and CD11b+ cells within the tumor, colocaliza-

tion of both fluorescent signals was found at the periphery of

the tumor (Figure 4D). In addition, the CD11b+ cells infiltrated

the tumor and colocalized with the nanoparticle inside the

tumor. No CLIO-Cy5.5 was found in normal brain tissue. The

minimal overestimation of the CLIO-Cy5.5 border, compared

to the GFP border, could thus be explained by uptake of the

nanoparticle inside activated microglia/macrophages at the

periphery of the tumor. Inside the tumor, both the CD11b+

cells and the tumor cells internalized the nanoparticle. The

0.018-mm difference in mean margin measurement between

the nude mouse and the rat could be explained by the higher

immune response found by flow cytometry analysis in the rat

model. There were more activated microglia/macrophages

at the periphery of the tumor in the case of the rat model.

In both animal models, the CD11b+ cells showed a hetero-

geneous distribution with a very low level in normal brain, a

medium level in the central portion of the tumor, and a high

level at the periphery (Figure 5, A and B). In contradiction,

astrocytes were found only beyond the tumor border, and no

infiltration was detected inside the tumor (Figure 5, C–F ).

Moreover, as shown in Figure 5C, no colocalization of CLIO-

Cy5.5 and GFAP signal could be found, suggesting no

uptake of the nanoparticle by astrocytes.

Cellular Internalization of CLIO-Cy5.5 in a Model of Brain

Metastasis and in a Second Primary Brain Tumor Model

As a metastasis brain tumor model, we chose the mouse

CT26 colon carcinoma cell line. The nonfluorescent cell line

was implanted inside the brain of GFP-expressing mice,

allowing us to detect host cells by GFP fluorescence. As

Figure 2. Flow cytometry of CLIO-Cy5.5 in cells from the 9L gliosarcoma. (A) A tumor-bearing animal was sacrificed 24 hours after injection with CLIO-Cy5.5, and

the tumor was dissected and disaggregated. A dot plot showing three distinct cell populations is shown in the upper right panel. Populations were as follows:

CD11b+/GFP� (I); CD11b�/GFP�, DN, (II); and CD11b�/GFP+ (III). The uptake of CLIO-Cy5.5 as Cy5.5 fluorescence was analyzed in each of the three

populations that are evident on the dot plot. CD11b+ (I) and GFP+ (III) cells internalized the nanoparticle as illustrated by the shift of the peaks. However, the

DN population did not take up CLIO-Cy5.5. (B) The percentages of cells (left) and the relative median fluorescence (CLIO-Cy5.5 uptake; right) are given for each

population of cells in both animal models.
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shown in Figure 6A, CLIO-Cy5.5 was found in both host

cells and tumor cells. Host cells mainly colocalized with

CLIO-Cy5.5 at the periphery of the tumor, with some host

cells infiltrating the tumor and showing colocalization with

CLIO-Cy5.5. Arrowheads pointed to a clear uptake of the

nanoparticle inside the host cells. The shape of the host cells

was very similar to that of the CD11b+ cells found in the 9L

model, suggesting that activated microglia/macrophages

infiltrated the CT26 tumor, as in the primary brain tumor

model. Nanoparticles found inside the tumor but not co-

localized with the GFP+ host cells were internalized by

intrinsically nonfluorescent tumor cells.

As a second model for primary brain tumor, we chose the

glioblastoma cell line Gli36 expressing GFP. As shown in

Figure 6B, CLIO-Cy5.5 colocalized with the GFP fluores-

cence expressed by tumor cells, demonstrating tumor cell

uptake of the nanoparticle. The CLIO-Cy5.5 that did not

colocalize with tumor cells was likely internalized by acti-

vated microglia/macrophages, as in the 9L case. In addition,

Figure 6C shows in the center of a 9L tumor uptake of CLIO-

Cy5.5 inside both tumor cells (arrow heads) and CD11b+

cells (arrow). CLIO-Cy5.5 nanoparticle uptake by tumor and

CD11b+ cells occurred in both models, suggesting that nano-

particle uptake may provide an accurate method of margin

delineation in these models as it does on 9L-based models.

Discussion

The similarity of MION and CLIO-Cy5.5 nanoparticles, and

the history of use of MION to visualize brain tumors provide

a unique rationale for studying the CLIO-Cy5.5 nanoparticle

as an intraoperative margin-delineating agent. The MION

nanoparticle has been used for brain tumor visualization with

preclinical models [18–20] and with clinical studies in mul-

tiple centers [7,21,22]. As is shown in Figure 1 and as dem-

onstrated by the literature, MION and CLIO-Cy5.5 uptake

occurs with brain tumors and can be visualized byMRI. In ad-

dition, MION and CLIO-Cy5.5 nanoparticles have similar

physical and biologic properties that include similar sizes,

magnetic properties, blood half-lives, and biodistributions [9].

The studies performed here extend our earlier studies

using CLIO-Cy5.5 for tumor margin delineation in a number

of important directions [6].

Immune Response

To explore whether host immune response might play a

role in nanoparticle uptake, we employed 9L gliosarcoma in

rats, which developed a strong immune response to the

tumor, and in immunocompromised nude mice. By FACS

data with disaggregated tumor tissue, a higher percentage

of CD11b+ cells internalized the nanoparticle (Figure 2B) in

the rat, and there was a slightly greater overestimation of

the margins with the rat than with the mouse (Figure 4B).

However, with both hosts, both CD11b and tumor cells inter-

nalized nanoparticles.

Method and Accuracy of Margin Estimation

Unlike earlier studies, amethod ofmargin estimation using

predefined thresholds was employed, and the magnification

used for examining the margins was increased from 20-fold

[6] (the whole tumor section was visualized) to 100-fold.

Predefined thresholds and locations for margin determina-

tion were used to remove the possibility of any bias in se-

lecting borders and allowed for a greater number of sampled

Figure 3. CLIO-Cy5.5 uptake in cells from the 9L gliosarcoma. Activated microglia/macrophages were detected with R-phycoerythrin – labeled anti-CD11b (blue) in

the rat host. Cells were disaggregated from intact tumors 24 hours after intravenous administration of CLIO-Cy5.5. For a CD11b+ disaggregated cell, CD11b

fluorescence (blue; A), CLIO-Cy5.5 fluorescence (red; B), and a merged image (C) are shown. For a GFP+ disaggregated cell, GFP fluorescence (green; D), CLIO-

Cy5.5 fluorescence (E), and a merged image (F) are shown. The nanoparticle appears to be in cytoplasmic vesicles within disaggregated cells and is in both tumor

and CD11b+ cells. Bar = 25 �m.
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points. We found that the mean overestimation was 2 mm
for 9L tumors in nudemice andwas 24 mm in rats. Importantly,

the maximum overestimation was 65 and 151 mm, respec-

tively, and the maximum underestimation was 64 and 57 mm,

respectively. This suggests that, even with full immune re-

sponse, the tumor boundary reported was within a few cell

diameters of the true boundary. Importantly for resection, the

maximum underestimation was even less than the areas of

slight overestimation. The fact that both tumor cells and

host cells take up the particle helps prevent areas of gross

underestimation due to focal lack of macrophages or acti-

vated microglia. This also suggests that the nanoparticle

should be reported accurately in conditions in which the host

response may be blunted, such as after chemotherapy.

Determination of Cells Internalizing CLIO-Cy5.5

by Disaggregation and FACS

To determine the cells internalizing the nanoparticle, we

supplemented fluorescence microscopy on tissue sections

with tumor disaggregation followed by the determination of

cell fluorescence using FACS. To our knowledge, this is the

first time that such an analysis has been applied to deter-

mine nanoparticle uptake in brain tumor models. In both the

nude mouse and the rat, three cellular populations were

seen: tumor cells, activated microglia/macrophages, and a

distinct third population. Microglia are known to be a major

component of the central nervous system (CNS) immune

response participating in the CNS response to several neu-

rologic disorders, including tumors [23]. On activation, those

cells change their physiologic and morphologic properties

and increase their phagocytic capacities [24]. In addition,

some studies showed a significant increase in the per-

centage of macrophages and microglia within malignant

gliomas, rising up to 50% of the tumor area [25,26]. Interest-

ingly, normal mouse and rat brains show no CD11b+ cells or

diffuse expression of CD11b antigen (Tréhin et al., unpub-

lished observations).

Distribution of Host Cells within Tumors

By fluorescent microscopy, we analyzed the distribution

of different cellular populations within the 9L tumor in both

the rat and themouse hosts. CD11b+microglia/macrophages

Figure 4. Tumor border determination using CLIO-Cy5.5. (A) Tumor border determined using signal intensity measurements. The border was determined using

Eq. 1 (9L gliosarcoma/nude mouse host) based on GFP fluorescence (green boundary) or CLIO-Cy5.5 fluorescence (red boundary). GFP fluorescence is shown in

gray. (B) Accuracy of tumor border by CLIO-Cy5.5 fluorescence. The Cy5.5 border extension beyond the GFP border is defined as overestimation; the reverse is

defined as underestimation. The majority of measurements between the two borders were close to zero for both rat and nude mouse models. (C) Accuracy of

border determination by CLIO-Cy5.5 fluorescence. The standard deviation (SD), standard error of the mean (SEM), maximum overestimation, and maximum

underestimation are given. (D) Etiology of slight differences in margin determination between models. Fluorescent microscopy micrograph of a 20-�m-thick brain

slice labeled with anti-CD11b antibody for microglia/macrophage staining (blue); tumor cells are in green, CLIO-Cy5.5 is in red, and normal brain is in black. (D)

Inset: Accumulation of CLIO-Cy5.5 inside CD11b+ cells (microglia/macrophages). The nanoparticle localizes at the periphery of the tumor inside microglia/

macrophages and in the tumor inside tumor cells and microglia/macrophages. The slight overestimation in rat brains corresponds to the nanoparticle localized

around the tumor inside microglia/macrophages.
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were mostly located at the periphery of the tumor, forming

a ring-like pattern around the tumor (Figures 4D and 5, A

andB). However, occasional CD11b+ cells were seen through-

out the tumor (Figures 4D Figures 5, A and B, Figures 6C).

This distribution may be explained by increased vascularity

peripherally relative to the tumor center and reflects a pattern

of macrophage infiltration [27,28]. By immunohistochemistry,

GFAP+ cells (astrocytes) did not internalize CLIO-Cy5.5

(Figure 5,C–F )—an observation consistent with the high per-

centage of GFP� CD11b� cells obtained with flow cytometry

data on disaggregated tumors (Figure 2B).

Cellular Internalization of CLIO-Cy5.5 in Different Brain

Tumor Models

We found that the CLIO-Cy5.5 nanoparticle was inter-

nalized by both CD11b+ cells and tumor cells in four animal

Figure 5. Distribution of microglia/macrophages and astrocytes with the 9L gliosarcoma. (A) Fluorescence from anti-CD11b antibody stain (microglia/

macrophages) in the rat. (B) Fluorescence from anti-CD11b antibody stain in the nude mouse. CD11b+ cells form a ring-like pattern around the tumor that is more

pronounced in the rat than in the nude mouse. (C) Tumor margin in the rat host after staining with anti-GFAP, a marker of astrocytes. Astrocytes are in blue, CLIO-

Cy5.5 is in red, and tumor GFP is in green. Astrocytes lack CLIO-Cy5.5 and are not present in the tumor. (D) Tumor GFP fluorescence at low magnification. (E) Anti-

GFAP fluorescence of astrocytes at low magnification. The antibody was Cy3-labeled. (F) Color merge of (D) and (E). Astrocytes do not centrally infiltrate brain

tumor and do not internalize CLIO-Cy5.5. Bar = 200 �m.

Figure 6. CLIO-Cy5.5 uptake by tumor and host cells in primary and metastatic tumor models. (A) Nonfluorescent CT26 colon carcinoma implanted in GFP-

expressing mouse, injected with CLIO-Cy5.5, and imaged. CLIO-Cy5.5 (red) is found in GFP (green)–expressing cells (host) and in regions of no GFP (tumor cells).

(B) Gli36 GFP tumor (green) shows CLIO-Cy5.5 fluorescence (red) associated with GFP, demonstrating tumoral uptake. CLIO-Cy5.5 nanoparticles that do not

colocalize with tumor cells are in CD11b+ cells. (C) The center of the 9L tumor expressing GFP. Tumor cells are in green, CLIO-Cy5.5 is in red, and microglia/

macrophages are in blue. The arrow points to the colocalization of the CLIO-Cy5.5 with microglia/macrophages, and arrowheads point to colocalization with

tumor cells.
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models. They were the 9L gliosarcoma in the rat host, the 9L

tumor in the nude mouse host, the CT26 colon carcinoma

implanted in a GFP-expressing mouse, and a human Gli36

tumor implanted in a nude mouse.

The cellular disposition of magnetic nanoparticles in

brain tumors has been examined by different groups with

somewhat different conclusions. Uptake by microglia/macro-

phages has been seen in animal models [20] and in clinical

studies [7,22]. However, uptake by tumor cells has been

noted in other animal models [15,18,19]. The contrasting

observations may be explained by the use of techniques of

varying sensitivity and specificity to detect the presence

of nanoparticles. Detection of nanoparticles with clinical

samples, and in many animal studies as well, relies on iron

staining that detects both injected and endogenous iron. In

contrast, the background fluorescence used in detecting the

Cy5.5 fluorescence of the nanoparticle is essentially zero

because the brain has no naturally occurring materials that

fluoresce in the near-infrared region of the spectrum. Fluo-

rescent microscopy easily detects small populations of cells

that have high concentrations of label, but has difficulty

distinguishing small amounts of label present in a high per-

centage of cells from background fluorescence. For that

reason, we employed tissue disaggregation, followed by

quantitation of cell-associated label by FACS, as a method

of detecting fluorescence in different populations of cells.

After obtaining similar results with disaggregation/FACS

and fluorescence microscopy in two 9L-related models, we

employed fluorescence microscopy to examine nanoparticle

distribution in two additional animal models. Our conclusion

that nanoparticle uptake occurs both in tumor and in host

cells is supported by multiple techniques and multiple ani-

mal models.

The tumor models we employed featured relatively defini-

tive margins, in comparison to clinical versions of glioblastoma

multiforme, which are highly infiltrative. However, the models

we selected were adequate to attain the major goals of the

study, which were to characterize the 9L model with respect to

the cellular basis of nanoparticle uptake using an improved

FACS-based quantitation, to apply that technology in different

tumor cell lines and different hosts, and to develop a reader-

independent accurate methodology for margin delineation.

Based on the results of the current study, the use of magne-

to-optical nanoparticles for margin determination might be

successfully extended to ectopic rodent brain tumor models

using cell lines that have demonstrated highly infiltrative

behavior and/or micrometastases similar to those seen in

human brain cancer. These include RT2 glioma [29,30], C6

glioblastoma [31,32], and F98 glioma [17,33]. Moreover, the

generally grim outlook for brain cancer patients due to tumor

cell dissemination has not prevented either resection as

treatment or efforts to improve resection technique by provid-

ing the surgeon with nonvisible light-based sources of infor-

mation on which to base decisions. Techniques investigated

for their ability to provide intraoperative information, in addi-

tion to our own approach usingmagneto-optical nanoparticles,

include intraoperative MRI [34,35], intraoperative ultrasound

[36,37], and intraoperative fluorescence from probes includ-

ing porphyrins, [38,39], indocyanine green [5], fluorescein [40],

and fluorescein–albumin [41].

In conclusion, with the 9L model, we demonstrated that

the CLIO-Cy5.5 nanoparticle accurately delineates tumor

margins by localizing inside tumor cells and microglia/macro-

phages, with no uptake detected in other cell types. Similar

results were obtained with both immunodeficient and immu-

nocompetent hosts. A pattern of combined tumor cell and

host cell uptake was seen in a glioblastoma primary tumor

(Gli36) and in a colon carcinoma metastatic tumor model

(CT26). The techniques developed here to assess the accu-

racy of margin determination and to identify the cells inter-

nalizing nanoparticles can be applied to a wider variety of

animal brain tumor models, in an effort to understand more

fully the value of developing a fluorescent nanoparticle that

is suitable for clinical use as an intraoperative contrast agent

for tumor delineation.
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