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Abstract

Estrogen receptor (ER)-B is the predominant ER sub-

type in prostate cancer (PCa). We previously demon-

strated that ICI 182,780 (ICI), but not estrogens, exerted

dose-dependent growth inhibition on DU145 PCa cells

by an ER-B–mediated pathway. Transcriptional pro-

filing detected a greater than three-fold upregulation of

seven genes after a 12-hour exposure to 1 MM ICI. Semi-

quantitative reverse transcriptase polymerase chain re-

action confirmed the upregulation of four genes by ICI:

interleukin-12A chain, interleukin-8, embryonic growth/

differentiation factor, and RYK tyrosine kinase. Treat-

ment with an ER-B antisense oligonucleotide reduced

cellular ER-B mRNA and induced loss of expression of

these genes. Sequence analysis revealed the presence

of consensus NFKB sites, but not estrogen-responsive

elements, in promoters of all four genes.Reporter assay

and chromatin immunoprecipitation experiments dem-

onstrated that ICI-induced gene expression could be

mediated by crosstalk between ER-B and the NFKB

signaling pathway, denoting a novel mechanism of ER-

B–mediated ICI action. Therefore, combined therapies

targeting ER-B and NFKB signaling may be synergistic

as treatment for PCa.
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Introduction

In the United States, prostate cancer (PCa) is the second

leading cause of cancer deaths in men. Approximately 50%

of men with PCa have locally advanced or metastatic

disease [1], and 30% of patients with apparent localized dis-

ease have biochemical relapse after the first line of treat-

ment [2]. Androgen ablation therapy is the mainstay

treatment for metastatic PCa [3], although most neoplasms

ultimately become androgen-refractory, at which time virtu-

ally no effective therapies are available. Therefore, there is a

strong demand for alternatives to the treatment of androgen-

insensitive PCa.

The pioneering work of Huggins and Hodges [4,5] estab-

lished the use of diethylstilbestrol (DES) as a low-cost and

effective treatment of metastatic PCa. However, because of

serious adverse side effects associated with DES treatment,

including exacerbation of heart failure, vascular complications,

and gynecomastia [6], this therapy has gone out of fashion

during the past two decades. Recently, interest in using estro-

genic therapies for advanced PCa has reemerged, primarily in

response to the following developments [7]. First, lower doses

of DES [DES in conjunction with antiandrogen therapies, an

estrogenic herbal therapy (PC-SPES), and 2-methoxy-estradiol

therapy] have proven effective in subpopulations of patients

with advanced PCa in phase 2 trials [8–10]. Second, admin-

istration of estrogens parenterally, which avoids hepatic first-

pass metabolism, appears to lower the risk of thromboembolism

[9]. Last, a second estrogen receptor (ER), the b subtype, has

been cloned [11] and shown to be expressed at high levels in

normal and malignant prostate epithelial cells [11–17], offering

a new molecular target for devising novel therapies.

We now know that the biologic effects of estrogens/anti-

estrogens are mediated by two ER subtypes ER-a and ER-b,

which are ligand-dependent transcription factors belonging to

the steroid/thyroid nuclear receptor superfamily [18]. Although

the DNA-binding domains of ER-a and ER-b share a high level

(86%) of amino acid homology, their N-termini, C-termini, and

ligand-binding domains (LBDs) have 23%, 17%, and 58% ho-

mology, respectively. Because of the divergence in their LBDs,

the two ER subtypes bind ligands (agonists or antagonists)

with different affinities [19,20]. After the ligands have bound to

these receptors, the complexes interact with specific DNA

sequences, known as estrogen response elements (EREs), on

the promoter regions of target genes, recruit coregulators and

components of the transcriptional machinery to the transcrip-

tional start site, and initiate transcription. Recent studies have

shown, however, that ERs may transactivate target genes by
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interacting with other transcriptional factors (TFs) such as

AP-1, instead of binding directly to EREs [21,22]. The utiliza-

tion of other TF-binding sequences is specific for both ligand

and receptor subtype [22]. This latter scenario adds com-

plexity to the mode of action of estrogens and/or antiestro-

gens and has presented new challenges in our attempts to

fully understand their action.

Using a highly specific ER-b antibody, we recently dem-

onstrated that ER-b is the predominant ER subtype ex-

pressed in normal basal epithelial cells of the prostate, in

local PCa, and in PCa metastasized to the lymph nodes and

bones [14]. We also showed that ER-b is expressed in

abundance in most established PCa cell lines, including

DU145, which we found to express only the b subtype of

ER [23,24]. Collectively, these data suggest that ER-b may

confer survival advantages to PCa cells [7]. Thus, targeted

activation or blockade of ER-b action with selective ligands

may present an attractive strategy for the therapeutic inter-

vention of PCa.

Our previous study [23] reported the inhibition of DU145

cell growth by the antiestrogen ICI 182,780 (ICI), but not 17-b
estradiol (E2), by an ER-b–dependent mechanism. Our

primary goal for this study was to discover putative ER-b–

regulated genes using transcriptional profiling to identify ICI-

regulated genes in DU145 cells. The proximal promoters of

four confirmed gene candidates all harbor NFnB cis-acting

elements, but not EREs. We further demonstrated the teth-

ering of ER-b with NFnB components. Collectively, these

data suggested that ER-b–NFnB crosstalk could be a new

mechanism of ER-b signaling with ligand or tissue specificity.

Materials and Methods

Cell Culture

The human PCa cell line DU145 and the human embry-

onic kidney cell line HEK293 were obtained from the Ameri-

can Type Culture Collection (ATCC; Manassas, VA). Cells

were routinely maintained in ATCC-recommended conditions.

Plasmids

The pSp13 luciferase reporter construct was kindly pro-

vided by Dr. Stephen Safe (Texas A&M University, College

Station, TX); the pNFnB luciferase reporter construct was

kindly provided by Dr. Francis Chan (University of Massa-

chusetts Medical School, Worcester, MA); the luciferase re-

porter plasmid (pt109-ERE3-Luc) carrying �3 vitellogenin

ERE was kindly provided by Dr. Criag Jordan (Fox Chase

Cancer Center, Philadelphia, PA); the ER-b expression plas-

mid was provided by Dr. Leigh C. Murphy (University of

Manitoba, Winnipeg, Canada); and the ERbD8 expression

vector was prepared by removing exon 8 of full-length ER-b
transcript, which we found to have no intrinsic transactivation

activity (unpublished data).

Chemicals and Reagents

The steroid E2 was purchased from Sigma (St. Louis, MO),

and ICI was a generous gift from Zeneca Pharmaceuticals

(Macclesfield, UK). E2 and ICI were dissolved in absolute

ethanol (Pharmco, Brookfield, CT). LipofectAMINE PLUS re-

agent was purchased from Invitrogen (Carlsbad, CA), whereas

the luciferase assay and b-galactosidase enzyme assay sys-

tems were purchased from Promega (Madison, WI).

cDNA Microarray Analysis

The Atlas Human cDNA Expression Array (Clontech, Palo

Alto, CA), which includes 588 known genes, was used as

previously described [25]. Briefly, cells maintained in culture

medium containing 5% charcoal-stripped heat-inactivated

fetal bovine serum (FBS) were treated for 12 hours in the

absence or presence of 1 mM ICI. Cellular RNA was ex-

tracted and treated with DNase I, whereas polyadenylated

RNA was isolated with two rounds of affinity chromatography.

[a-32P]dCTP was used for cDNA probe synthesis from polyA-

RNA samples obtained from untreated and ICI-treated cells.

Approximately 0.6 � 106 cpm of each probe was hybridized

overnight to the membrane microarray with continuous agi-

tation at 68jC. After washing, hybridization signals on the

screens were read by phosphorimager Storm 830 (General

Electric Healthcare, Piscataway, NJ). The signal intensities of

spots were quantified with Kodak Image Analysis Software

(Eastman Kodak, Rochester, NY) and normalized against

the intensities of control cDNA on the arrays. Hybridization

signals from two separate experiments were used to identify

ICI-induced changes in gene expression profile.

Treatment of DU145 Cells with ICI, E2, or ER-� Antisense

Oligodeoxynucleotide (ODN)

DU145 cells were seeded in six-well plates at a density of

3 � 105 cells/well in a final volume of 2 ml of culture medium

with 5% charcoal-stripped FBS. The effective concentration

of ICI to trigger apoptosis was determined previously [23].

Twenty-four hours after seeding, triplicate wells of cells were

treated with ICI (1 or 10 mM), E2 (10 or 100 nM), or 2.5 mM

ER-b antisense ODN for 4 days. The sequence of ER-b
antisense ODN has been described previously [23].

Reverse Transcriptase Polymerase Chain Reaction

(RT-PCR)

Total RNA was isolated with TRI reagent (Sigma) accord-

ing to the manufacturer’s protocol. After isolation, 1 mg of total

RNA was reverse-transcribed for 65 minutes at 42jC in 60 ml

of reaction mixture, including 5 mM MgCl2, 1� GeneAmp

PCR buffer II (50 mM KCl, 10 mM Tris–HCl, pH 8.3), 1 mM of

deoxynucleoside triphosphate, 5 nmol of random hexamers,

60 U of ribonuclease inhibitor, and 150 U of MuLV reverse

transcriptase. All reagents were purchased from Perkin-

Elmer (Shelton, CT). RT reaction was terminated by heating

to 95jC for 5 minutes, and 1 ml of the resulting cDNA was

used in each PCR.

Relative expression levels of interleukin-12a chain (IL-12),

interleukin-8 (IL-8), embryonic growth/differentiation factor

(GDF-1), RYK tyrosine kinase (RYK ), BFL-1, ER-a, ER-b,

and GAPDH were determined by semiquantitative RT-PCR

[23]. The sequences of primers used in this study are listed

in Table 1. Hot-start PCR using AmpliTaq Gold DNA
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polymerase (Perkin-Elmer) was used in all amplification re-

actions. The PCR programs were 24 cycles for GAPDH;

34 cycles for ER-a and ER-b; and 30 cycles of 30 seconds at

95jC, 45 seconds at 60jC, and 45 seconds at 72jC for other

genes. PCR products were subjected to electrophoresis in 2%

agarose gel with ethidium bromide, and fluorographs under

ultraviolet irradiation were captured by a Kodak DC290

digital camera (Eastman Kodak). The signals of the PCR prod-

uct were quantified with Kodak 1D Image Analysis software

(Eastman Kodak). Levels of GAPDH cDNA served as loading

control. Relative levels of mRNA for the genes were calcu-

lated following normalization against the signal intensity for

GAPDH mRNA.

Transient Transfection and Luciferase Assay

DU145 or HEK293 cells (4 � 104 cells/well) were plated

in 24-well plates (Corning, Corning, NY) in a final volume of

0.5 ml of culture medium with 5% charcoal-stripped FBS.

Cells were seeded for 24 hours before transfection so that

they could reach 70% confluence on the day of transfection.

All experiments were performed in triplicate. After 24 hours,

cells were transfected with LipofectAMINE PLUS reagent

(Invitrogen). Cells were transfected with 0.2 mg of lucifer-

ase reporter plasmid. Human ER-b expression plasmid

(0.05 mg) was applied to HEK293 cells during transfection,

and ERbD8 expression vector was used in the same experi-

ments to serve as control. Transfection efficiency was nor-

malized by cotransfecting 0.02 mg of pSV-b-galactosidase

control vector (Promega) in each case. After 24 hours, the

medium was changed, and cells were treated with vehicle

(dimethyl sulfoxide), E2, ICI, or a combination of E2 and ICI

for 48 hours. Luciferase assays were performed with the

Luciferase Assay System (Promega). b-Galactosidase ac-

tivity was measured with the b-Galactosidase Enzyme Assay

System (Promega).

Chromatin Immunoprecipitation (ChIP) Assay

DU145 cells were cultured in charcoal-stripped medium

for 3 days before treatment with E2 or ICI at a final concen-

tration of 10 nM and 1 mM, respectively, for another 24 hours.

Cells were incubated in a cross-linking buffer (1% formal-

dehyde) at 37jC for 10 minutes. Cells were harvested,

washed once with ice-cold 1� phosphate-buffered saline,

and resuspended in 500 ml of lysis buffer [1% sodium dodecyl

sulfate (SDS), 5 mM EDTA, 50 mM Tris–HCl (pH 8.1), and

1� Calbiochem protease inhibitor cocktail]. Cells were incu-

bated on ice for 10 minutes and sonicated thrice for 10 sec-

onds. The resulting lysate was precleared by centrifugation

for 10 minutes at 4jC and incubated with 45 ml of protein G

agarose beads (Upstate Biotechnology, Charlottesville, VA),

2 mg of sheared salmon sperm DNA, and 40 ml of normal

rabbit serum (Santa Cruz Biotechnology, Santa Cruz, CA) for

1 hour. After a brief centrifugation, the supernatant was

incubated with 8 mg of either p65- or ERb-specific antibody

(Santa Cruz Biotechnology) for 16 hours at 4jC. Immune

complexes were mixed with 40 ml of a protein G agarose sus-

pension followed by incubation for 1 hour at 4jC with rota-

tion. Bead pellets were sequentially washed for 10 minutes

with 1 ml each of the following buffers: low-salt wash buffer

[0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–Cl

(pH 8.1), and 150 mM NaCl], high-salt wash buffer [0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–Cl (pH 8.1),

and 500 mM NaCl], and LiCl wash buffer [0.25 mM LiCl, 1%

Nonidet P-40, 1% sodium deoxycholate, 1 mM EDTA, and

10 mM Tris–Cl (pH 8.1)]. The beads were then washed

thrice with 1 ml of TE buffer [Tris–HCl (pH 8.0) and 1 mM

Table 1. Primer Sequence for RT-PCR Analysis.

Target Gene Primer Sequence Location (nt) Expected Size (bp)

RYK

RYK-F 5V-ATTTCCTGCACTTCACCTGG-3V 414 – 433 633

RYK-R 5V-CTTTGGCCTCCAAAAGAGTG-3V 1046 –1065

GDF-1

GDF-1-F 5V-CTCATCGTCTCCTCCTACGC-3V 637 – 656 491

GDF-1-R 5V-GTTCAGAAGCGCTTGTCCTT-3V 1127 –1146

IL-12

IL-12-F 5V-ACTCCAGACCCAGGAATGT-3V 402 – 421 590

IL-12-R 5V-AGGGACCTCGCTTTTTAGGA-3V 991 – 1010

IL-8

IL-8-F 5V-GTCTGTCAGCCAGGATCCAC-3V 845 – 864 499

IL-8-R 5V-ACACAGCTGGCAATGACAAG-3V 1343 –1362

BFL-1

BFL-1-F 5V-TCTCAGCACATTGCCTCAAC-3V 116 – 135 482

BFL-1-R 5V-TACAAAGCCATTTTCCCAGC-3V 599 – 618

ER-b
ER-b-F 5V-TGAAAAGGAAGGTTAGTGGGAACC-3V 230 – 253 528

ER-b-R 5V-TGGTCAGGGACATCATCATGG-3V 737 – 757

ER-a
ER-a-F 5V-TACTGCATCAGATCCAAGGG-3V 41– 60 650

ER-a-R 5V-ATCAATGGTGCACTGGTTGG-3V 671 – 690

GAPDH

GAPDH-F 5V-CCACCCATGGCAAATTCCATGGCA-3V 152 – 175 598

GAPDH-R 5V-TCTAGACGGCAGGTCAGGTCCACC-3V 726 – 749
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EDTA (pH 8.0)]. The immune complexes were eluted with

100 ml of freshly prepared elution buffer (1% SDS and 100 mM

NaHCO3). Cross-linking reaction was reversed by overnight

incubation of DNA at 65jC, and samples were recovered

by DNA purification spin columns (Promega). Approximately

5% of the bound DNA fraction was used for PCR to detect

the proximal promoter region of the IL-8 locus, which has

been reported to contain a functional NFnB element [26].

As a control experiment, we have used a pair of primers to

amplify a DNA sequence containing an AP-2 site.

Statistical Analysis

Data are expressed as the mean of three experiments,

each with triplicate samples for individual treatments or

dosage regimens. Statistical analysis was carried out with

two-tailed Student’s t tests. Values are presented as mean ±

95% confidence intervals. All statistical tests were two-sided

and considered statistically significant at P < .02. One-way

ANOVA with Tukey B post hoc analysis was applied to de-

termine significance among different treatment groups in

DU145 transfection experiments.

Results

Investigation of Differential Gene Expression through

cDNA Microarray Analysis

To identify novel molecular targets of ICI in DU145 cells,

the Atlas Human cDNA Expression Array (Clontech) was used

for transcriptional profiling. The DU145 cells were used for

these experiments because this cell line exclusively expresses

ER-b [24]. Two independent transcriptional profiling experi-

ments were performed to identify ICI-induced changes in

DU145 cells. A three-fold increase in intensity was arbitrarily

used as a significant increase in gene expression (data not

shown). Seven genes (IL-12, IL-8,RYK,GDF-1,BFL-1, IGF-1,

and HTR-1A) were upregulated by antiestrogen treatment

in both array experiments. Among them, four genes (IL-12,

IL-8, GDF-1, and RYK ) were confirmed by semiquantitative

RT-PCR to show upregulation in ICI-treated DU145 cells

(Figure 1). The expression of other genes, which are observed

to be upregulated in the arrays, was found unaltered by ICI

treatment in confirmation experiments.

Upregulation of Gene Expression by ICI, But Not E2

Four genes were confirmed to be upregulated following

the treatment of DU145 cell cultures with ICI (Figure 1). A

three-fold increase in RYK and 2.0- to 2.5-fold increases in

GDF-1, IL-8, and IL-12 expression were detected when the

DU145 cells were treated with 1 or 10 mM ICI. It appears that

treatment with 1 mM ICI achieved almost the maximal level of

stimulation. In contrast, BFL-1 and ER-b gene expression did

not change significantly under the same experimental con-

ditions (Figure 1). Similarly, IGF-1 and HTR-1A expression

remained unchanged following ICI treatment (unpublished

data). Parallel experiments using 10 and 100 nM E2 as treat-

ment regimens did not induce expression changes in ICI-

regulated genes (unpublished data).

Effect of ER-� Antisense ODN on Gene Expression

in DU145 Cells

To determine whether upregulation of target gene expres-

sion was mediated by an ER-b pathway, we used an ER-b
antisense ODN [23] to reduce ER-b mRNA levels in DU145

cells (Figure 2). A 60% reduction in the ER-b mRNA level

was achieved following transfection of PCa cells with 2.5 mM

ER-b antisense ODN. Concomitantly, the transfection re-

duced the expression of RYK, GDF-1, IL-12, and IL-8, but

Figure 1. Confirmation of ICI-induced gene expression in a dose-dependent study. DU145 cells (3 � 105 cells/well) were plated in triplicate on a six-well plate. After

24 hours of cell attachment, the cells were treated for 4 days with two concentrations of ICI: 1 �M (grey bars) and 10 �M (black bars). Cells treated with vehicle

(white bars) were used as controls. Three individual experiments were performed. Data are presented as mean (columns) and standard deviation (bars); Student’s

t test was applied to compare gene expression levels of ICI-treated cells (1 or 10 �M) versus their respective controls. **P < .02 compared with control.
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not BFL-1 (Figure 2). Reduction in the levels of RYK, GDF-1,

IL-12, and IL-8 mRNA in the transfected cells ranged from

30% to 80%. These results indicated that downregulation of

ER-b expression in DU145 cells was associated with re-

duced expression of newly identified ICI-regulated genes.

Analysis of Cis-Acting Elements in the Gene

Promoter Region

To further elucidate the mechanisms underlying the reg-

ulation of gene expression in prostate by ICI, we used

MatInspector (www.genomatix.de) to identify common cis-

acting elements in the proximal promoter regions of these

ICI-regulated genes (Table 2). Interestingly, all of the genes

have the NFnB-binding element, whereas the Sp1 site was

found in three of four genes. However, only one of the gene

promoters contained an ERE. These results suggested that

transcriptional activities of ICI-regulated genes were related

to these cis-acting elements.

Transcriptional Activation of ER-b by ICI or E2

by an NFnB/Sp1–Binding Sequence

To provide experimental evidence that the transcrip-

tional activation of ER-b by ICI or E2 is mediated by an NFnB-

B- or an Sp1-binding element, we transiently transfected

DU145 cells, which we demonstrated to express only the b
subtype of ER [23,24], with a luciferase reporter gene driven

by a promoter carrying either a tandem NFnB- or an Sp1-

binding sequence. Relative luciferase activity data showed

that transactivation at the NFnB element was about 10 times

more robust than that at the Sp1 element in untreated DU145

cells (background activities). We then evaluated the li-

gand dependency of transactivation by these two cis-acting

elements by treating the cells with ICI and/or E2 (Figure 3A).

ICI was found to be more potent than E2 in the transactiva-

tion of the reporter gene. Cotreatment of DU145 cells with ICI

and E2 markedly reduced reporter activity to a level lower

than that induced by ICI, suggesting that the two ligands

competed for the same endogenous ER-b pool.

To demonstrate that ICI preferentially used NFnB/Sp1

over the classic ERE, we then conducted transfection experi-

ments in HEK293 cells, which have no detectable expression

of ER (-a and -b, data not shown). HEK293 was transiently

transfected with expression vectors carrying wild-type ER-b
or an inactive mutant (ERbD8). In the absence of ligand, no

transactivation activities were detected with all combinations

of receptors and cis-regulatory elements. As expected, at the

classic ERE, E2 exerted agonistic action, whereas ICI was

antagonistic. In contrast, at the NFnB element, both E2 and

ICI were potent inducers of luciferase expression, with a

three-fold induction. Similarly, two ligands both served as

agonists at the Sp1 site, inducing an approximately 2.5-fold

increase in reporter activity. These data confirmed the find-

ing that ER-b could tether on Sp1 for transactivation [27], but

revealed for the first time that ER-b also crosstalked with

the NFnB signaling. To definitely demonstrate direct inter-

action between ER-b and the subunit of the NFnB complex

in DU145 cells, we performed a ChIP assay with a well-

characterized promoter (IL-8) that contains a single NFnB-

binding element in a specific promoter region [26]. Our data

clearly demonstrated that ER-b was recruited to an NFnB-

binding site on the IL-8 promoter possibly by interaction

with p65. To demonstrate sequence specificity, we have

conducted control experiments using primers to amplify an

Figure 2. Downregulation of ER-� expression is associated with reduction in the expression of putative ICI-regulated genes. DU145 cells (3 � 105 cells/well) were

plated in triplicate on a six-well plate. Cells were treated with ER-� antisense ODN (black bar). After 4 days of treatment, total RNA was extracted and subjected to

RT-PCR analyses. Three individual experiments were performed. Student’s t test was applied to compare gene expression in antisense ODN-treated cells versus

their untreated controls. Data are presented as mean (columns) and standard deviation (bars). **P < .02 compared with control.

Table 2. Promoter Region Analyses in ICI-Regulated Genes.

NFnB Sp1 AHRARNT ERE AP-1 E2F

IL-8 + +

IL-12 + + + +

RYK + + + + +

GDF-1 + + + +
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unrelated DNA sequence (AP-2 site), and we found no

amplification products (Figure 3C).

Discussion

We have successfully used transcriptional profiling to identify

ICI-regulated genes in the DU145 PCa cell line. Among the

genes identified by array analysis, four genes (IL-12, IL-8,

GDF-1, and RYK ) were confirmed by semiquantitative RT-

PCR to be upregulated by ICI, but not E2. Reduction of cellular

ER-b mRNA levels achieved with antisense ODN transfec-

tion in DU145 cells resulted in downregulation of these

genes, suggesting that ER-b plays an essential role in their

maintenance. In silico analysis revealed the presence of a

consensus NFnB cis-acting element, but not ERE, in the pro-

moters of all four genes and of an Sp1 site in the promoters

of three genes. In DU145 cells that expressed only ER-b, ICI,

but not E2, acted as a potent agonist in activating reporter

expression by the NFnB, whereas both ligands could trans-

activate gene transcription by an Sp1-responsive element. In

contrast, in an ER-null cell line (HEK293) expressing trans-

genic ER-b, E2 and ICI both acted as agonists at both NFnB

and Sp1 sites but served as an agonist and an antagonist,

respectively, at the classic ERE. ChIP analysis using chroma-

tin isolated from DU145 cells revealed a direct interaction

between the ER-b and a short region of the IL-8 promoter

containing an NFnB-binding site. Collectively, these data sug-

gested that ER-b may use multiple and diverse mechanisms

in gene regulation.

Estrogens and antiestrogens, including several selective

estrogen receptor modulators (SERMs), have been implicated

as potential therapeutic agents for androgen-independent

Figure 3. (A) Effects of E2 and ICI on the induction of Sp1- and NFjB-driven reporter activities in DU145 cells. Cells were transiently transfected with pSp13 or

pNFjB luciferase reporter plasmid. After 24 hours of transfection, cells were treated with vehicle only (untreated), 10 nM estradiol (E2), 10 �M ICI (ICI), or 10 nM E2

+ 10 �M ICI (E2 + ICI). After 48 hours, cells were harvested and assayed for luciferase activity. Luciferase values were corrected for transfection efficiency by

measuring the �-galactosidase activity of cotransfected pSV-�-galactosidase construct. Three individual experiments were performed. Data are presented as

mean (columns) and standard deviation (bars). One-way ANOVA with Tukey B post hoc analysis was applied to determine significance among different treatment

groups in this experiment. *P < .01 compared with untreated Sp1 control; #P < .01 compared with untreated NFjB control. (B) Comparison of ER-� transactivation

efficiency on various DNA-binding elements on E2 and ICI treatment in ER-� –overexpressed HEK293 cells. Transfection experiments were performed as

described in Materials and Methods section. After 24 hours of transfection, cells were treated with vehicle (dimethyl sulfoxide), 10 nM E2, or 1 �M ICI. ER-� and

ER�D8 are the expression vectors expressing wild-type ER-� and inactive mutant, respectively, whereas ERE, NFjB, and Sp1 are the reporter vectors used in

this study. Three individual experiments were performed. Data are expressed as mean (columns) and standard deviation (bars). (C) ChIP analysis of ER-� and p65

on IL-8 promoter. DU145 cells were treated with either 10 nM E2 (left panel) or 1 �M ICI (right panel). ChIP assay was performed as described in Materials and

Methods section. After reverse cross-linking and DNA purification, PCR was performed to confirm the involvement of the NFjB element on the IL-8 promoter. As a

control for sequence specificity, PCR was performed using primers for a sequence containing an AP-2 element. No signal was detected in any of the

immunoprecipitated pulldown products, except for the total DNA input.
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PCa [7]. However, their mechanisms of action in the genesis

and progression of PCa are still unclear. It seems controver-

sial that both estrogen agonists and antagonists can induce

the inhibition of cell growth or apoptosis in androgen-

independent human PCa cell lines [28–30]. This observation

is due, in part, to the complexity of the interactions between

ER and the coactivators/corepressors within the promoter

regions of target genes [14]. The discovery of the ER-b sub-

type in human prostates [31] opened up a new chapter in the

understanding of estrogen signaling pathways and provided

important clues into the role of estrogen/ER in prostate

carcinogenesis. In this study, we chose DU145 cells, which

expressed only the ER-b subtype, to study the mechanism

of cell growth inhibition by the pure antiestrogen ICI [11].

The induction of G0–G1 cell cycle arrest by ICI was mediated

by the ER-b subtype because this biologic effect could be

reversed by exposure of the cells to an ER-b antisense ODN.

Recently, another SERM, raloxifene, which is a mixed estro-

gen agonist/antagonist, has been shown to induce apoptosis

in DU145 cells, mostly likely mediated by ER-b [29]. In con-

trast, the antiprostatic and antitumor responses in the PAIII

rat PCa cells elicited by trioxifene (LY133314) are mediated

by ER-a, but not by ER-b, and are considered to be an SERM

with selective ER-a antagonist activity in prostate malig-

nancy [30]. The different responses of ER-a and ER-b to dif-

ferent SERMs may be attributed to structural dissimilarities

in their N-terminal A/B and LBDs, as well as to their interac-

tions with different coregulators in target tissues. In addition,

homodimerization or heterodimerization among ER sub-

types also plays a significant role in the determination of

ligand-binding affinity [32].

Gene regulation mediated by ER uses classic and non-

classic pathways [33]. In a classic pathway, ligand-bound ER

directly binds to a palindromic ERE to turn on gene transcrip-

tion. Ligands such as E2 are classified as estrogens if they

are agonistic at the ERE, and as antiestrogens (ICI or tamoxi-

fen) if they exert antagonistic action at the same site. How-

ever, in noncanonic pathways, ER initiates transcription by

interacting with third-party proteins, such as Jun/Fos, that

transactivate at an AP-1 site [34] or with an Sp1 protein bind-

ing to an Sp1 element [35]. Using this mechanism, anti-

estrogens may behave like agonists [22]. In the presence of

E2 or classic estrogens, ER-a tends to use the classic path-

way. In contrast, when ER-b binds to SERMs or antiestrogens

such as ICI, it prefers to activate target genes by molecular

tethering to AP-1 [34] or Sp1 sites [27,36]. We observed here

that both ICI and E2 were agonistic at an Sp1 site through

interaction with endogenous ER-bs in DU145 cells or with

transgenic ER-bs in HEK293 cells. These findings suggested

that, in DU145 cells, ER-b activated by ICI employs non-

classic pathways for signaling. Recognizing the small number

of probes in our cDNA array, it is logical to predict that if high-

density arrays were to be used in future experiments, many

ICI-regulated molecular targets could be identified. It will be

interesting to determine which subsets of these targets would

use these nonclassic ER-b signaling pathways.

Another molecular tether for ER-b in DU145 cells that we

found was NFnB. Although NFnB has been reported to in-

teract with ER-a to mediate gene transcription [37], before

our study, no direct evidence has demonstrated its inter-

action with this ER subtype. In DU145 cells, only ICI, but not

E2, caused significant enhancement of reporter activity. Un-

expectedly, in HEK293 cells expressing transgenic ER-b, we

found that both E2 and ICI can transactivate the reporter

through the NFnB element. Taken together, these data sug-

gested that ligand-dependent activation of ER-b on the NFnB

cis-acting element is dependent on cell context, which may

include the absence/presence of different nuclear receptor

coactivators, as well as posttranslational activation of the

receptor. Additionally, ChIP assays using chromatin ex-

tracted from DU145 cells treated with either E2 or ICI showed

direct interactions between ER-b and p65 targeting at the

NFnB site, yet only ICI caused significant transactivation

in this cancer cell line. One explanation for this discrepancy

is that only ICI-liganded ER-b could recruit a functional set

of coregulators to trigger transactivation, whereas the

E2-liganded ER-b could not. Further investigations are need-

ed to dissect the complexity of TF crosstalk in various cell

types, such as those exemplified in our model.

NFnB-regulated genes are often shown to be antiapop-

totic and to enhance survival in specific cell types [38].

Inhibition of NFnB by salicylate has been shown to sensitize

the cells to programmed cell death by proapoptotic drugs [39].

We previously reported that 4 days of treatment of DU145

cells with ICI induced the inhibition of cell growth [23], which

we now discovered to be caused by apoptosis (unpublished

data). In this study, we identified several early-response (12

hours) genes that are upregulated by an ICI-induced ER-b/

NFnB tethering mechanism. This finding appears to be

paradoxical to the general belief that NFnB-regulated genes

protect against apoptosis. A possible explanation is that

upregulation of the NFnB gene family is the first line of cellular

response when DU145 cells are challenged with ICI. With

prolonged treatment, other ICI-stimulated ER-b signaling

pathways are turned on and finally trigger apoptosis. The

involvement of ER-b in ICI-induced apoptosis is further

supported by the inability of ICI to initiate programmed cell

death in ER-b–null glioma cells [39]. This finding raises the

possibility that modulation of NFnB signaling may signifi-

cantly alter the apoptotic sensitivity of PCa cell toward ICI-

induced ER-b–mediated cell death.

In summary, we have identified several ICI-induced early

response genes in DU145 cells whose expression may be

regulated by a novel mechanism involving ER-b tethering on

an NFnB complex. Because both primary and metastatic PCa

express primarily the ER-b subtype, therapies targeting both

TFs may give rise to novel modalities for the treatment of PCa.
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