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Abstract

Malignant pleural mesotheliomas (MPMs) are usually

wild type for the p53 gene but contain homozygous

deletions in the INK4A locus that encodes p14ARF, an

inhibitor of p53–MDM2 interaction. Previous findings

suggest that lack of p14ARF expression and the pres-

ence of SV40 large T antigen (L-Tag) result in p53 in-

activation in MPM. We did not detect SV40 L-Tag mRNA

in either MPM cell lines or primary cultures, and treat-

ment of p14ARF-deficient cells with cisplatin (CDDP)

increased both total and phosphorylated p53 and en-

hanced p53 DNA-binding activity. On incubation with

CDDP, levels of positively regulated p53 transcrip-

tional targets p21WAF, PIG3, MDM2, Bax, and PUMA

increased in p14ARF-deficient cells, whereas negatively

regulated survivin decreased. Significantly, p53-

induced apoptosis was activated by CDDP in p14ARF-

deficient cells, and treatment with p53-specific siRNA

rendered them more CDDP-resistant. p53 was also

activated by: 1) inhibition of MDM2 (using nutlin-3);

2) transient overexpression of p14ARF; and 3) targeting

of survivin using antisense oligonucleotides. How-

ever, it is noteworthy that only survivin downregula-

tion sensitized cells to CDDP-induced apoptosis. These

results suggest that p53 is functional in the absence

of p14ARF in MPM and that targeting of the down-

stream apoptosis inhibitor survivin can sensitize to

CDDP-induced apoptosis.
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Introduction

Malignant pleural mesothelioma (MPM) is a cancer of meso-

thelial cells that line lung pleural membranes. The incidence

of MPM is highly associated with exposure to asbestos [1].

Due to the long latency period of the disease, projections

suggest that the number of MPM-related deaths in western

Europe will double each year until 2018 [2]. MPM is a

treatment-resistant tumor with a very poor prognosis [3].

Although there is no standard treatment for MPM, current

multimodality interventions include combined chemotherapy

with cisplatin (CDDP) and pemetrexed or gemcitabine [4].

p53 has been termed as the ‘‘guardian of the genomes’’

because it mediates the effects of DNAdamage and, depending

on cellular context, induces cell cycle arrest and DNA repair or

death. p53-induced apoptosis involves the transcription of

proapoptotic genes (such as Bax and PUMA) and the repres-

sion of antiapoptotic genes (such as survivin and Bcl-2) [5]. p53

also displays transcription-independent proapoptotic functions

by interacting directly with Bcl-xL and Bax and by inducing

the mitochondrial pathway of apoptosis [6]. In resting cells,

p53 regulates its own expression by inducing the synthesis of

the inhibitor MDM2, which binds p53 and blocks DNA trans-

activation. MDM2 also has E3 ligase activity that promotes

the ubiquitination and degradation of p53 through the 26S

proteosome [7]. Recognition of DNA damage leads to the sta-

bilization of p53 through posttranslational modifications such

as phosphorylation, acetylation, and sumoylation, which inter-

fere with p53–MDM2 interaction [5]. During oncogenic stress,

inhibition of p53 by MDM2 is also abrogated by the tumor-

suppressor protein p14ARF, which binds to MDM2, sequesters

it in the nucleolus, and blocks its E3 ligase activity [8]. p14ARF

expression has also been described to play a role in the re-

sponse of p53 to DNA damage [9,10], although these results

are controversial [11,12].

Most cancers have evolved mechanisms to deregulate p53,

and inactivating mutations in the p53 gene arise in approxi-

mately 50% of human tumors [13]. In those tumors with wild-

type p53, there are often alterations in genes that regulate

p53, such as amplifications of the MDM2 gene or, as is the

case for MPM, homozygous deletions in the INK4A locus en-

coding p14ARF [14]. Yang et al. [15] proposed that p53 is in-

active in MPM cells as a result of p14ARF deficiency because

MPM cells were sensitive to infection by the oncolytic virus

ONYX-015. In addition, the SV40 large T antigen (L-Tag) has

been proposed to block p53 function in MPM [16]; however,
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recent studies question the frequency of SV40 infection in

MPM tumors [17].

In the present study, we investigated the status of p53 in

MPM cells lacking p14ARF. Our findings suggest that p53

is functional in MPM in the absence of p14ARF and that it is

activated by DNA damage.

Materials and Methods

Cell Culture

The MPM cell lines SPC212, ZL5, ZL55, and ZL34 were

generated in our laboratory and have been described pre-

viously [18]. The Met5A cell line (Dr. J. F. Lechner; NCI,

Bethesda, MD) corresponds to normal human mesothelial

cells immortalized by transfection with an SV40 early region

plasmid [19], and the NCI-H28 cell line was obtained from

ATCC (Manassas, VA). Primary MPM cultures were derived

from MPM pleural effusions, as described previously [18],

and were characterized by the positive staining of cells with

antibodies specific for calretinin. All cells were grown in

RPMI 1640 (Sigma, St. Louis, MI) supplemented with 2 mM

L-glutamine, 1 mM sodium pyruvate, 10% fetal bovine serum,

and 1% (wt/vol) penicillin/streptomycin at 37jC in a humidi-

fied atmosphere containing 5% CO2. Where indicated, CDDP

(Bristol-Myers Squibb AG, Baar, Switzerland) and nutlin-3

(Alexis Corporation, Lausen, Switzerland) were added. Nutlin-

3 was dissolved in dimethyl sulfoxide (DMSO) and compared

to cells treated with similar volumes of DMSO alone.

Reverse Transcription–Polymerase Chain Reaction

(RT-PCR)

RNA was isolated from cell lines using the RNeasy kit

(Qiagen, Basel, Switzerland), according to the manufac-

turer’s instructions. One microgram of RNA was used in

RT-PCR using the One-Step RT-PCR kit (Qiagen). The

following primers were used: SV40 T antigen: 5V primer (5V-

AGTCCTCGAGTCTTTGCAGCTAATGGACCT) and 3V

primer (5V-AGTCTCTAGATCCTTTGTGGTGTAAATAGC);

p14ARF: 5V primer (5V-TGCTCACCTCTGGTGCCAAAG) and

3V primer (5V-TGGTCTTCTAGGAAGCGGCTG); GAPDH:

5V primer (5V-GAGTCAACGGATTTGGTCGT) and 3V primer

(5V-TGACAAAGTGGTCGTTGAGG).

PCR cycle conditions were as follows: 35 cycles of 94jC
for 40 seconds, 58jC for 40 seconds, and 72jC for 40 sec-

onds for SV40 L-Tag; and 28 cycles of 94jC for 30 seconds,

64jC for 30 seconds, and 72jC for 50 seconds for p14ARF

and GAPDH. Ten microliters of PCR products was analyzed

by electrophoresis on 2.5% agarose gels, and GAPDH band

was used as standardized control.

p53 DNA-Binding Activity

Nuclear extracts were prepared using the Nuclear Extract

kit (Active Motif, Carlsbad, CA), and p53 DNA-binding activity

was assayed using the TransAM p53 kit (Active Motif),

according to the manufacturer’s instructions. Binding to p53

target DNA sequence was measured by colorimetric assay,

and absorbance was read at 450 nm. Samples were per-

formed in quadruplicate, and the mean and standard devia-

tions were calculated. Experiments were performed in

triplicate, and representative data are shown.

p53 Sequencing

DNA sequencing was performed on DNA isolated from

SPC212 cells using Affymetrix p53 Gene Chip Array and Se-

quencing Analysis (BRT Laboratories, Inc., Baltimore, MD).

Western Blot Analysis

Cells were lysed with RIPA buffer (Upstate Cell Signaling

Solutions, Dundee, UK) in the presence of phosphatase in-

hibitors (Sigma) for 30 minutes on ice. Lysates were clarified

by centrifugation (10,000g for 30 minutes at 4jC). Western

blot analysis was performed as described previously [20].

Antibodies with specificity for survivin (R&D Systems, Inc.,

Minneapolis, MN), b-actin (C4; ICN Biomedicals, Inc., Au-

rora, OH), phospho-p53 (ser15) (Cell Signaling Technology,

Inc., Beverly, MA), p14ARF (C18), p21WAF (H-164), p53 (DO-

1),MDM2 (N-20), PIG-3 (C20), Bax (N-20), andPUMA (N-19)

(Santa Cruz Biotechnology, Santa Cruz) were used.

Flow Cytometry

Both adherent and floating cells were collected from

samples and washed in phosphate-buffered saline (PBS).

Cells were then fixed in 50% ethanol and incubated with

propidium iodide (PI)/RNase (BD Pharmingen, San Diego

CA) for 15 minutes at room temperature. Alternatively, live

cells were resuspended in binding buffer and stained with

Annexin V–FITC (Calbiochem, Darmstadt, Germany) for

15 minutes at room temperature. Ten thousand events were

analyzed by flow cytometry using a FACScalibur flow cy-

tometer (Becton Dickinson, Mountain View, CA). For PI stain-

ing, doublets and aggregates were excluded by gating, and

Modfit software was used to identify cell populations in dif-

ferent phases of the cell cycle. The percentage of apoptotic

cells was determined after PI or Annexin V labeling by gating

on untreated samples.

Caspase-3–Like Protease Activity

Both adherent and floating cells were collected from

samples and washed in PBS. Caspase-3– like protease

activity in cell lysates was analyzed by colorimetric assay,

according to the manufacturer’s recommendations (Alexis

Corporation). Cleavage of the labeled substrate DEVD-pNA

was monitored at 405 nm using a SPECTRAmax 340 micro-

plate reader (Paul Bucher Analytik und Biotechnologie,

Basel, Switzerland). The caspase-3–like protease activity

in lysates was calculated as fold increase of the absorbance

signal obtained with lysates of untreated (viable) cells kept

under identical conditions.

Transfections

The p14ARF-pcDNA3.1 plasmid was a kind gift from Prof.

Gordon Peters (ICRF, London, UK). p53-specific siRNA and

control siRNA were purchased from Cell Signaling Tech-

nology, Inc., and Dharmacon, Inc. (Chicago, IL), respectively.
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Transfections with plasmids or siRNA were performed with

Lipofectamine 2000 (Invitrogen, Carlsbad, CA), according to

the manufacturer’s recommendations. Cells were plated at a

concentration of 150,000 cells/ml in medium containing 10%

fetal calf serum (FCS) but containing no antibiotics 1 day

before transfection and were transfected for 24 hours using

OptiMEM (Invitrogen). Thereafter, the medium was changed

to a complete medium containing 10% FCS with indicated

concentrations of CDDP for a further 48 hours.

Measurement of Cell Growth

Cell growth was determined using a colorimetric cell

viability assay based on the reduction of the tetrazolium salt

MTT, as described [21]. Cells were plated in quadruplicate

in 96-well plates (7500 cells/well), and absorbance was

measured at 570 nm using a SPECTRAmax 340 microplate

reader. Cell growth was calculated as a percentage of the

absorbance signal obtained with wells of untreated (viable)

cells kept under identical conditions.

Antisense Oligonucleotides

Survivin phosphothioate antisense oligonucleotides with

the sequence 5V-CCCAGCCTTCCAGCTCCTTG-3V targeting

nucleotides 233 to 253 of the survivin mRNA and the control

sequence 5V-CCTAGCCTTCCAGGTCCTAG-3V (mis-

matches underlined) were purchased from Microsynth AG

(Balgoch, Switzerland). Cells were transfectedwithOligofect-

amine (Invitrogen), according to the manufacturer’s protocol.

Cells were plated at a concentration of 150,000 cells/ml 1 day

before transfection and were transfected for 6 hours; the me-

dium was changed, and cells were incubated for a further

48 hours with the indicated concentration of CDDP.

Results

MPM Cells Are Negative for p14ARF Protein Expression

and SV40 L-Tag mRNA

Homozygous deletions in the INK4A locus of MPM occur

at a frequency of at least 70%, resulting in the absence of

p14ARF expression [14]. We investigated p14ARF expression

in five established MPM cell lines and three primary cultures.

Three MPM cell lines (NCI-H28, ZL5, and ZL34) and three

MPM primary cultures (SDM4, SDM5, and SDM6) were

negative for p14ARF mRNA, whereas it could be detected in

SPC212 and ZL55 cells and in an SV40-transformed meso-

thelial cell line, Met5A (Figure 1). However, in contrast to

Met5A cells, no p14ARF protein was detected in any of the

MPM primary cultures and cell lines tested. The presence of

SV40 viral DNA sequences in MPM tumors has given rise

to the suggestion that p53 is inactivated in MPM by the SV40

L-Tag [16]. MPM cell lines and primary cultures were there-

fore tested for SV40 L-Tag mRNA by RT-PCR, but it could

only be detected in the SV40-transformed Met5A cell line.

p53 Can Be Activated in MPM in the Absence of p14ARF

To determine whether p53 is functional in the absence of

p14ARF expression, the status of p53 in MPM cell lines and

primary cultures was investigated in response to CDDP

treatment. The ability of active p53 protein to bind to its target

DNA sequence was measured using an enzyme-linked im-

munosorbent assay (ELISA)–based assay, which demon-

strated that seven of eight MPM cell lines and primary

cultures had increased levels of p53-specific DNA binding

in response CDDP treatment (Figure 2A). In contrast,

SPC212 cells had no detectable p53 activity, and sequencing

of the p53 gene in these cells revealed a missense mutation

in the hotspot codon 175. ZL55 cells had low levels of p53

DNA-binding activity in response to CDDP, regardless of

p14ARF mRNA expression.

CDDP induced an increase in basal levels of p53 protein

in ZL5, ZL34, and NCI-H28 cells, whereas in SPC212 cells,

the levels of p53 remained consistently high (Figure 2B).

Residue ser15 in the transactivation domain of p53 is phos-

phorylated by protein kinases in response to CDDP, resulting

in the disruption of p53–MDM2 interaction and increased

p53 activity [22,23]. Levels of phospho-ser15 were found

to increase in response to CDDP treatment in all MPM cell

lines, including p53mutant SPC212 cells. These results con-

firm those of others, which demonstrate that both wild-type

and mutant p53 can be phosphorylated on ser15 [24].

In ZL34 cells, the expression of p53 transcriptional targets

MDM2, PIG3, p21WAF, Bax, and PUMA was increased

by CDDP treatment, and similar profiles were observed for

the ZL5 and NCI-H28 cell lines (data not shown), whereas

no induction was seen for SPC212 cells (Figure 2C). Survivin

expression is negatively regulated by p53 [25], and immuno-

blotting demonstrated that, in ZL34 cells, survivin levels de-

creased with increasing concentrations of CDDP, whereas

they remained unchanged in the p53 mutant cell line, SPC212

(Figure 2C). No increase in p14ARF expression was detected

after CDDP treatment (data not shown). Together, these

results suggest that p53-mediated transcription regulation

is fully functional in MPM cells in the absence of p14ARF.

Figure 1. Expression levels of p14ARF in MPM cell lines. RNA was isolated

from MPM primary cultures and cell lines and SV40-transformed Met5A cells,

and RT-PCR was performed to detect p14ARF, SV40 L-Tag and GAPDH

mRNA. Lysates of the same cell lines were analyzed by immunoblotting using

anti-p14ARF C-terminal antibodies. Staining of actin was used as equal

loading control.
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p53-Induced Apoptosis Is Activated in p14ARF-Deficient

MPM Cells

MPM cell lines lacking p14ARF were investigated for their

ability to undergo apoptosis and/or cell cycle arrest in re-

sponse to CDDP. Treatment of MPM cells with CDDP leads

to an increase in the percentage of cells in the sub-G1 phase

of the cell cycle for both ZL5 and ZL34 cell lines, but not

for SPC212 cells (Figure 3, A and B). ZL34 and SPC212

cells, but not ZL5, cells accumulated on the S phase on

CDDP treatment (Figure 3A), which has been observed

previously and occurs independently of p53 status [26].

Apoptosis was also detected by the measurement of An-

nexin V staining and caspase-3– like activity in ZL5 and ZL34

cells in response to CDDP treatment, but not in the p53

mutant SPC212 cell line (Figure 3, C and D).

To demonstrate the role of p53 in CDDP-induced death in

MPM, cells were treated with p53-specific siRNA. Incubation

of ZL34 cells with p53 siRNA resulted in a dose-dependent

decrease in p53, p21WAF, and Bax levels and in increased

survivin relative to control siRNA (Figure 4A). Treatment of

cells with p53 siRNA and 5 mM CDDP also resulted in de-

creased p53, p21WAF, and Bax and in increased survivin rel-

ative to control siRNA (Figure 4A). Transfection of ZL34 cells

with p53-specific siRNA resulted in less CDDP-induced

growth inhibition and decreased apoptosis compared to

control siRNA (Figure 4B). A comparable increase in resis-

tance to CDDP was observed when ZL5 cells were treated

with the p53 inhibitor, pifithrin-a (data not shown). These

results demonstrate that p53 contributes to CDDP-induced

apoptosis in MPM.

Figure 2. p53 is activated in p14ARF-deficient MPM cell lines. (A) MPM primary cultures and cell lines were cultured with 5 �M CDDP for 48 hours or were left

untreated. Nuclear extracts were prepared, and binding to the p53 recognition sequence was measured by ELISA, as described in Materials and Methods section.

Data are presented as mean ± SD OD450 nm absorbance values. (B) MPM cell lines were cultured with the indicated concentrations of CDDP for 48 hours. Lysates

were analyzed by immunoblotting using antibodies specific for p53 and phospho-p53 (ser15). Staining of actin was used as loading control. (C) MPM cell lines were

cultured with the indicated concentrations of CDDP for 48 hours. Lysates were analyzed by immunoblotting using antibodies specific for MDM2, PIG3, p21WAF,

Bax, PUMA, and survivin. Staining of actin was used as loading control.
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Inhibition of MDM2 Induces G1 Arrest, But Not Apoptosis

Nutlin-3, a small-molecule inhibitor of MDM2 that binds

the p53-binding pocket and prevents its interaction with p53

[27], was used to investigate the role of MDM2 in the p53

response observed in p14ARF-deficient MPM cells. Incuba-

tion with nutlin-3 resulted in increased levels of p53 and its

transcriptional targets MDM2 and p21WAF in ZL34 cells, sug-

gesting that p53 was activated. However, as reported by

Thompson et al. [28], no increase in phospho-p53 (ser15)

was induced (Figure 5A). The effect of nutlin-3 was p53-

dependent, as expression of p53 target genes was not al-

tered in SPC212 cells. Nutlin-3 treatment induced a G1 cell

cycle arrest in ZL34 cells (Figure 5B), but no caspase-3– like

activity was detected and CDDP-induced apoptosis was

abrogated in the presence of nutlin-3 (Figure 5C). Nutlin-3

had no effect on the sensitivity of SPC212 cells to CDDP,

whereas ZL5 and NCI-H28 behaved similarly to ZL34 (data

not shown). These results suggest that, although inhibition

Figure 3. CDDP induces apoptosis in MPM cell lines. (A) Flow diagrams of untreated cells or of cells treated with 10 �M CDDP, fixed, and stained with PI. Panels

represent the proportion of cells in different phases of the cell cycle. Representative data of three independent experiments are shown. (B, C, and D) Cells were

incubated with the indicated concentrations of CDDP for 48 hours. Standard error bars represent the standard deviation of triplicate samples. (B) Percentage of

apoptotic cells in sub-G1 as measured by PI staining and flow cytometry. (C) Percentage of apoptotic cells as measured by Annexin V–FITC staining and flow

cytometry. (D) The caspase-3– like protease activity in cell lysates was calculated as fold increase of the absorbance signal obtained with lysates of untreated cells.

Figure 4. p53-specific death is induced by CDDP in MPM cells. (A) ZL34 cells were transfected with the indicated concentrations of p53 siRNA or control siRNA for

24 hours, or were treated with 50 nM p53 or control siRNA for 24 hours and incubated with 5 �M CDDP for a further 48 hours. Lysates were analyzed by

immunoblotting using antibodies specific for p53, p21WAF, Bax, and survivin. Staining of actin was used as loading control. (B) ZL34 cells were transfected with

50 nM p53 siRNA or control siRNA for 24 hours and were subsequently incubated for 48 hours with 5 �M CDDP. Cell growth inhibition was calculated as the

percentage relative to untreated controls. Representative data of three independent experiments are shown. Caspase-3– like activity and the percentage of

apoptotic cells were determined by Annexin V staining and flow cytometry, as described in Figure 3. Student’s t test was used to determine the significance

between the p53 siRNA + CDDP group and the control siRNA + CDDP group.
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of MDM2 by nutlin-3 can activate p53-induced cell cycle

arrest in MPM cells, apoptosis is not triggered and CDDP-

induced apoptosis is inhibited.

p53 Activation by Survivin Targeting, But Not p14ARF

Expression, Sensitizes Cells to CDDP-Induced Apoptosis

Others have shown that overexpression of p14ARF using

adenoviruses in MPM cells activates p53 and induces cell

cycle arrest and apoptosis [29]. In contrast, expression of

p14ARF at more physiological levels in several different can-

cer types induced cell cycle arrest but not apoptosis [30].

We introduced p14ARF into p14ARF-deficient cells by transient

transfection and determined their effect on p53 activation

and apoptosis. ZL34 cells expressing p14ARF had increased

levels of p53 compared to the empty vector control; however,

in response to CDDP, p53 levels were only slightly enhanced

by the presence of p14ARF (Figure 6A). In addition, the dif-

ference in caspase-3– like activity between controls and cells

expressing p14ARF treated with CDDP were not significantly

different (Figure 6B). This suggests that expression of p14ARF

does not sensitize cells to CDDP-induced apoptosis.

Survivin is highly expressed in many cancers, including

MPM [31], and is a negative prognostic marker in non–small

cell lung cancer (NSCLC) [32]. Although survivin expression

is negatively regulated by p53 [25], it has also been dem-

onstrated that, in turn, survivin may negatively control p53

function [33,34]. ZL34 cells were incubated with an anti-

sense oligonucleotide 4003 targeting survivin, and a dose-

dependent decrease in survivin protein levels—in addition

to increased levels of p53, phospho-p53 (ser15), p21WAF,

MDM2, and its 60-kDa cleavage product relative to the

mismatch control oligonucleotide 4003mis—was observed

(Figure 6C). A combination of 4003 with CDDP further

increased levels of p53 compared to the mismatch control

(Figure 6D). Treatment with survivin antisense oligonucleo-

tides has been shown by Olie et al. [21] and Xia et al. [35] to

induce apoptosis in NSCLC and MPM cells, respectively.

CDDP-induced caspase-3– like activity was significantly en-

hanced by survivin downregulation in ZL34 cells (Figure 6E ).

Discussion

Previous studies have proposed that p53 is inactive in MPM,

as a result of either p14ARF deletion [15,29,36] or SV40 in-

fection [37]. The aim of the present study was to determine

whether p53 functions in the absence of p14ARF and whether

it contributes to the apoptotic response to CDDP. Studies

using the oncolytic virus ONYX-015, which is thought to

selectively infect those cells expressing nonfunctional p53

[38], showed that MPM cell lines lacking p14ARF were sen-

sitive to viral infection and that expression of exogenous

p14ARF rendered cells more resistant to infection [15]. These

results lead to the conclusion that the p53 pathway is dis-

rupted in MPM cells lacking p14ARF; however, more recent

reports suggest that the ability of ONYX-015 to infect cancer

cells is determined by late viral RNA transport rather than

by p53 status [39,40]. Our study demonstrates that p53

is functional in MPM in the absence of p14ARF, as it can acti-

vate the transcription of target genes and can contribute

to apoptotic response. It is also noteworthy that a recent

large-scale transcriptional analysis of MPM human tumors

revealed that p53 and several of its target genes are upregu-

lated in MPM tumors relative to normal tissues in the ab-

sence of p14ARF [41].

Although studies with mice containing targeted deletions

in p19ARF (the murine equivalent of p14ARF) give evidence for

Figure 5. Nutlin-3 induces p53 activity and cell cycle arrest, but not apoptosis. (A) ZL34 and SPC212 cells were cultured for 24 hours with the indicated

concentrations of nutlin-3. Lysates were analyzed by immunoblotting using antibodies specific for p53, phospho-p53 (ser15), MDM2, and p21WAF. Staining of actin

was used as loading control. (B) ZL34 cells were cultured with 10 �M nutlin-3 for 48 hours. Cells were fixed and stained with PI before FACS staining of nuclei.

Representative data of three independent experiments are shown. (C) ZL34 cells were cultured with 10 �M nutlin-3 or the same volume of DMSO in the presence

of 1.2 �M CDDP for 48 hours. Cells were lysed, and caspase-3– like protease activity was measured as in Figure 3D.
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its role as a tumor suppressor [8,11], it is less clear whether

p19ARF is an essential component of the p53 response to

DNA damage. Khan et al. [10] showed that p53 response to

DNA damage is defective in p19ARF knockout mice, whereas

Schmitt et al. [12] showed that, although loss of p19ARF

completely disabled p53 during lymphomagenesis, p53 was

activated in response to DNA damage in transplanted mu-

rine Em-Myc lymphomas. In the present study, using human

MPM cells deficient in p14ARF expression, we found that,

although transient overexpression of p14ARF activated p53,

it did not sensitize cells to CDDP-induced apoptosis, sug-

gesting that it is not required for the DNA damage response of

p53 in MPM.

The disruption of wild-type p53 has been shown in some

systems to increase resistance to DNA damage–induced

apoptosis [45,46], whereas in other systems, increased sen-

sitivity has been demonstrated [42–44]. It is probable that

the type of response to DNA damage induced in cells where

p53 has been inactivated depends on cell type, genetic

status, and the type of drug used to damage DNA. It is,

however, generally accepted that p53 status contributes to

sensitivity to CDDP [47], and our results are in agreement

with this, as treatment of MPM cells with p53-specific siRNA

increased CDDP resistance to apoptosis.

The small-molecule inhibitor nutlin-3 perturbs p53–MDM2

interaction, resulting in the activation of wild-type p53 and, in

some cases, apoptosis [27]. In MPM cells, nutlin-3 did not

induce apoptosis, and the level of CDDP-induced apoptosis

decreased on combination with nutlin-3. Similarly, a recent

study showed that treatment of cancer cell lines with nutlin-3

induced a strong G1 cell cycle arrest, but only low levels of

apoptosis [48]. One explanation for these findings is that

the cell cycle arrest induced by nutlin-3 has an inhibitory ef-

fect on apoptosis [49,50]. In addition, expression of down-

stream inhibitors could attenuate the apoptotic response

induced by nutlin-3; indeed, recent data have shown that

p53 is directly inhibited by Bcl-xL [6]. Because MPM cells ex-

press high levels of Bcl-xL, these may limit transactivation-

independent apoptosis induction by p53, as well as limit

Bax/Bak oligomerization. We have shown previously that

Figure 6. Survivin antisense oligonucleotides, but not p14ARF expression, activates p53-induced apoptosis. ZL34 cells were transfected with the plasmid pcDNA3

(vector) or pcDNA3-p14ARF (p14ARF) for 6 hours, then the indicated concentrations of CDDP were added for a further 48 hours. Cells were then (A) harvested for

immunoblotting using p14ARF, p53, or actin antibodies, or (B) lysed, and caspase-3– like protease activity was measured using colorimetric assay, as in Figure 3D.

Representative data of three independent experiments are shown. Absorbance values obtained with untreated cells maintained under identical experimental

conditions were taken as 100%. (C) ZL34 cells were transfected with survivin antisense oligonucleotide 4003 or mismatch control 4003mis for 6 hours and were

harvested 20 hours after the start of transfection. Lysates were analyzed by immunoblotting using antibodies specific for survivin, p53, phospho-p53 (ser15),

p21WAF, and MDM2. Staining of actin was used as loading control. (D) ZL34 cells were transfected with transfection reagent alone (OF), survivin antisense

oligonucleotide 4003, or mismatch control 4003mis for 6 hours and then for a further 48 hours with 2.5 �M CDDP. Lysates were analyzed by immunoblotting using

antibodies specific for survivin and p53. Staining of actin was used as loading control. (E) ZL34 cells were transfected with 200 nM survivin antisense

oligonucleotide 4003 or the 4003mis mismatch control for 6 hours, and then 1.2 �M CDDP was added for a further 48 hours. Cells were lysed and caspase-3–

like protease activity was measured as in Figure 3D. Student’s t test was used to determine the significance between the 4003 + CDDP group and the 4003mis +

CDDP group.
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antisense oligonucleotides targetingBcl-xL andBcl-2 sensitize

MPM cells to CDDP-induced apoptosis [51], and we are

currently investigating the interaction between Bcl-xL and p53.

Similar to Bcl-xL, survivin is highly expressed in MPM [31]

and in other cancers, where its expression is associated

with aggressive tumor behavior and poor prognosis [52,53].

Survivin inhibits caspase activation [54] and plays an impor-

tant role in cell division, allowing cells to progress through

mitosis [55]. Survivin expression is negatively regulated by

p53; indeed, p53-specific siRNA treatment leads to increased

survivin expression in MPM cells, whichmay contribute to the

observed increased resistance to CDDP. Conversely, survi-

vin has also been shown to negatively regulate p53, either

by inhibiting caspase-mediated cleavage of MDM2 [34] or by

safeguarding against mitotic catastrophe and the resulting

DNA damage [56]. Targeting of survivin with antisense oligo-

nucleotides in MPM resulted in the appearance of a cleav-

age product of MDM2 after antisense treatment, suggesting

that survivin may indeed stabilize MDM2 [34]. In addition,

survivin downregulation also induced p53 phosphorylation,

which suggests that DNA damage response is also activated.

In conclusion, this study demonstrates that p53 is func-

tional in MPM cells and contributes to the apoptotic response

induced by CDDP. It also demonstrates that removal of

downstream inhibitors such as survivin can enhance this re-

sponse more successfully than the disruption of p53–MDM2

interaction by p14ARF or nutlin-3.
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