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Abstract

Protein ubiquitylation has been demonstrated to play a

vital role not only in mediating protein turnover but also

in modulating protein activity. The stability and activity

of the tumor suppressor p53 and of the oncoprotein

c-Myc are no exception. Both are regulated through

independent ubiquitylation by several E3 ubiquitin

ligases. Interestingly, p53 and c-Myc are functionally

connected by some of these E3 enzymes and their

regulator ARF, although these proteins play opposite

roles in controlling cell growth and proliferation. The

balance of this complex ubiquitylation network and its

disruption during oncogenesis will be the topics of

this review.
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Introduction: The Need for Cellular Balance

Thousands of years ago, ancient Chinese and Greek physi-

cians saw disease as a result of imbalance in the body. This

imbalance was defined as a struggle between the ‘‘yin’’

(negative) and ‘‘yang’’ (positive) forces in traditional Chinese

medicine. Amazingly, this ancient theory on how illness

might occur can now be demonstrated at the molecular

level. In this regard, tumorigenesis is one of the best

examples. Now, it is generally believed that cancer evolves

from the gradual imbalance of tumor suppressors (yin) and

oncoproteins (yang) due to sequential genetic and/or epige-

netic alterations often initiated by physical, chemical, or

biologic carcinogens in a cell, or from inherited genetic

errors. It has been proposed that these alterations occur

sequentially in at least three or more genes, leading to the

development of human cancers (reviewed in Hahn and

Weinberg [1]). A number of such yin and yang protein reg-

ulators have been identified over the past 30 years. Two

intensively studied representatives are the tumor suppres-

sor p53 and the oncoprotein c-Myc. Because they play

opposing roles in controlling cell growth and proliferation,

the balanced regulation of these two proteins becomes

critical for the cell to grow without undergoing transforma-

tion. Over the last decade, biochemical, cellular, and genetic

studies have revealed strikingly complex regulation net-

works for both p53 and c-Myc within the cell. One such

regulation is ubiquitylation. This review will focus on the ubiq-

uitylation of these two proteins and will summarize the most

recent progress toward understanding how the cell may regu-

late p53 and c-Myc by employingmultiple ubiquitin ligases while

also discussing the relevance of their imbalance to oncogenesis

(see Table 1 for summary).

Regulation of the Tumor Suppressor p53 (Yin) by Multiple

Ubiquitin Ligases: the Tumor Suppressor p53

and Its Turnover

The tumor-suppressor protein p53 can be regarded as a yin

factor because of its inhibitory role in cell growth, proliferation,

and migration. This role is crucial in preventing neoplasia and

tumorigenesis. Inactivation of p53 by gene-targeting depletion

in mice or by an inherited heterozygous point mutation in

Li-Fraumeni syndrome leads to tumor formation in various

tissues [2–5]. In addition, somatic alterations of p53 that

lead to its inactivation are associated with more than 50%

of all types of human cancers, most of which are malignant

[6–8]. Conversely, activation of p53 in response to various

external (chemotherapeutics or carcinogens) and internal

stresses prevents tumor formation and progression [8–10].

The tumor-suppressive function of p53 is attributed to its multi-

potent capability of inducing apoptosis, cell cycle arrest, senes-

cence, and DNA repair, as well as its ability to suppress

angiogenesis and metastasis [8–10]. Most of these cellular

effects are mediated by effector proteins whose expression

at the RNA level is stimulated by p53 [8,11], although p53 can

also directly induce mitochondria-mediated apoptosis [12–14]

and probably participate in DNA repair directly [15]. Hence,
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p53 acts as the principal ‘‘guardian’’ of the genome to protect

an organism from oncogenesis [8].

However, an overabundance of yin is detrimental to overall

balance. This statement is very true for p53. Due to its nega-

tive effect on cell growth, overactive or excess p53 is detri-

mental to normal cells. Thus, the p53 protein needs to be

maintained at a low and inert level with a half-life off30 min-

utes in order for cells to grow under normal physiological

conditions. To keep this balance of p53 maintained, cells

have developed an elegant proteolytic mechanism.

Proteolysis is executed by a complicated ubiquitylation-

dependent 26S proteasome system with multiple proteins

[16]. In principal, protein ubiquitylation is catalyzed through a

cascade of enzymatic reactions. Ubiquitin (a 76–amino acid

polypeptide) is activated through the ATP-dependent for-

mation of a thiol ester bond with a cystine residue of the

ubiquitin-activating enzyme E1. Then, activated ubiquitin is

transferred to a cystine residue of the ubiquitin-conjugating

enzyme E2 and conjugated to a lysine residue(s) of a protein

substrate by the ubiquitin protein ligase E3. The polyubiqui-

tylated protein, with a minimum chain of four ubiquitins, has a

final destination at the 26S proteasome for degradation [17].

E3 plays a pivotal role in identifying a specific protein

substrate for ubiquitylation. At least four classes of E3 have

been reported to recognize p53 as a target for ubiqui-

tylation, including RING, U-box, HECT (homology to E6AP

C-terminal domain), and cullin/ROC1–containing ubiquitin

ligase complexes (Figure 1). Therefore, p53 is under tight

control by these E3 proteins, although it remains to be ver-

ified if some newly discovered E3s, as described below, are

authentic to p53 in vivo and if they act in a concerted fashion

to regulate p53 stability under certain physiological or

pathological conditions. Elucidating the mechanisms of this

control is vital for understanding how cells activate p53 to

prevent transformation.

Ubiquitylation of p53 by the Oncoprotein MDM2

The oncoprotein MDM2 is encoded by the mdm2 gene,

which was originally identified on a mouse double-minute

chromosome in the 3T3DM cell line [18]. It is the most in-

tensively studied E3 ubiquitin ligase that negates p53 func-

tion [19]. MDM2 possesses several key functional domains.

The N-terminal domain of MDM2 mediates its binding to

p53 [20,21]. The central acidic domain of MDM2 recently

has been shown to be essential for MDM2-mediated p53

degradation, but not ubiquitylation [22–25]. In the C-terminal

side of the acidic domain are a zinc finger domain with

unknown function and a RING domain with intrinsic E3 ligase

activity [26]. The MDM2 protein also contains a nuclear

localization signal (NLS) and a nuclear export signal that

are responsible for shuttling MDM2 between the cytoplasm

and the nucleus, and possibly for regulating p53 activity

[27,28]. Within the RING domain, a small region of amino

acids (464–471) contains a nucleolar localization signal

sequence [29]. Almost all of these functional domains are

critical for the MDM2 suppression of p53 function.

MDM2 can inhibit p53’s function through several of the

following mechanisms. MDM2 can specifically bind to the

N-terminal transcription activation domain of p53 [20,21] and

directly block its transcriptional activity [21,30,31]. In addition,

this binding initiates p53 ubiquitylation by MDM2, leading to

proteasome-mediated p53 degradation [26,32]. MDM2 can

also relocalize p53 to the cytoplasm where p53 is unable to

function as a transcriptional regulator [33–36]. Finally, it has

been shown that MDM2 associates with p53, and possibly

with histones, promoting monoubiquitylation of histone H2B

[37] on the promoters of target genes, therefore inhibiting

p53’s transcriptional activity [37,38]. Interestingly, the ex-

pression of MDM2 is activated by p53 [39,40]. Thus, MDM2

acts as a negative feedback regulator of p53 [41,42]. This

feedback regulation is validated by two gene-targeting

studies, which show that depleting the p53 gene rescues

the lethality of mdm2 knockout mice [43,44].

Although the general concept of the MDM2–p53 loop is

well accepted, it remains obscure how MDM2 precisely

degrades p53 in cells. Currently, it is debatable where

MDM2 mediates the degradation of p53 and whether

MDM2 works alone to mediate this degradation in cells. As

to the first question, several studies propose that MDM2

Figure 1. A diagram showing that multiple ubiquitin E3 ligases target p53 for

ubiquitylation. Bars indicate ubiquitylation and the functional suppression of

p53, whereas arrows indicate the transcriptional activation of the ubiquitin E3

ligase by p53.

Table 1. Summary of E3 Ubiquitin Ligases for p53 and c-Myc.

Ubiquitin Ligase Type Subunits Cell

Growth

Cancer

Status

p53 (yin) MDM2 RING 1 + Oncogene

PirH2 RING 1 ? ?

COP1 RING 1 ? ?

CHIP U-box 1 ? ?

E6AP HECT 2 ? ?

ARF-BP1/HectH9 HECT 1 + ?

Cullin 7 Cul 2–4? ? ?

Cul5–Roc1–

E1B55K

Cul 4 ? ?

c-Myc

(yang)

Skp2 RING 4 + Oncogene

Fbw7 RING 4 � Tumor

suppressor

ARF-BP1/HectH9 HECT 1 + Oncogene?

(+) Promotes cell growth; (�) suppresses cell growth; (?) unsure or untested.
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mediates p53 degradation in both the nucleus and the

cytoplasm [45–47]. However, a later study suggests that

MDM2 only monoubiquitylates p53, possibly at multiple

lysines on its C-terminus [48] in the nucleus, and then trans-

fers this form of p53 to the cytoplasm for polyubiquitylation

and degradation [35]. A new question derived from this model

is whether MDM2 acts by itself to mediate p53 polyubiquity-

lation in the cytoplasm. If not, two candidate proteins may fill

this gap. One is p300 [49,50]. p300 was shown to act as a

potential E4 enzyme and to mediate subsequent polyubiqui-

tylation and degradation by cooperating with MDM2 [49].

However, this protein has never been shown to exist in the

cytoplasm; therefore, it is a less likely contender, although it

remains possible that p300 may assist MDM2 in polyubiqui-

tylating p53 in the nucleus.

Another likely candidate is MDMX, a protein that typically

resides in the cytoplasm. MDMX is a homolog of MDM2 [51].

Albeit MDMX lacks demonstrable E3 ubiquitin ligase activity

[22], it works as a partner of MDM2, possibly to enhance

p53’s ubiquitylation and degradation [52]. The essential role

of MDMX in the MDM2–p53 loop is also established by

double knockout studies, showing that deleting the p53 gene

rescues the lethal phenotype ofmdmx knockoutmice [53,54].

Again, it remains uncertain whether MDMX accelerates

MDM2-dependent p53 polyubiquitylation in the cytoplasm.

This speculation is seemingly contradicted by the fact that

MDMX is imported to and degraded in the nucleus by MDM2

in response to ionizing irradiation [55,56]. Although there are

some important pieces that are still missing in the puzzle that

would provide a unified model of MDM2-mediated p53 ubiq-

uitylation, it is likely that MDM2may ubiquitylate p53 primarily

in the nucleus and perhaps in the cytoplasm as well, with

p53’s monoubiquitylation or polyubiquitylation depending on

the stoichiometry of these proteins and/or the existence of

other helpers, such as MDMX.

Amyriad of questions involving the ubiquitination of p53 by

MDM2 remain. Another area that requires more examination

is the precise enzymatic mechanism of this ubiquitylation.

Furthermore, direct evidence demonstrating that ubiquity-

lated p53 molecules are destined for proteasome-mediated

degradation in cells is missing [57]. Regardless of unsolved

problems, it is reasonable to say that the oncoprotein MDM2,

as a physiological antagonist of p53, is a positive regulator of

cell growth (Figure 1). However, MDM2 is not the only

negative regulator of p53, as several other associated E3

ubiquitin ligases have been identified recently.

Ubiquitylation of p53 by Other E3 Ligases

Ring domain ligases Using differential display and affinity

purification approaches, two more members of the RING

finger E3 ligase family, PirH2 [58] and COP1 (constitutive

photomorphogenic 1), have been identified, respectively, to

monitor p53 stability [59]. PirH2 and COP1 both associate

with and ubiquitylate p53 independently, also without re-

quiring the aid of MDM2. Notably different from MDM2, the

PirH2 central region binds to the central sequence-specific

DNA-binding domain of p53. Although deleting the RING

finger abolishes PirH2 E3 ligase activity toward p53, this

mutant is still able to repress p53’s transactivation activity

[58]. This observation suggests that PirH2 may interfere with

the interaction of p53 with its DNA elements by competing for

the DNA-binding domain of p53. However, an intact RING

finger domain is necessary for COP1 to suppress p53 activity

by ubiquitylating this protein, as the RING finger–truncated

COP1 was no longer able to ubiquitylate p53 and to sup-

press p53’s activity [59]. Like MDM2, pirh2 and cop1 genes

are also transcriptional targets of p53 (Figure 1). Thus, both

proteins appear to be feedback regulators of p53, although

the biologic meaning of these regulatory processes requires

further investigation. It will also be important to learn whether

PirH2 and COP1 are oncoproteins, as well as negative

regulators of p53, in vivo.

HECT domain ligases E6AP is the first known ubiquitin E3

ligase for p53 and was originally identified as a human

papilloma virus protein E6–associated protein in cervical

carcinoma (HeLa) cells [60]. Human papilloma viruses 16

and 18 are highly related to the pathogenesis of cervical

carcinoma (90%). These viruses encode two transforming

oncoproteins E6 and E7, which directly bind to the tumor

suppressors p53 and pRb, respectively, and suppress their

functions [61,62]. After papilloma virus infection, the E6

protein associates with and recruits the HECT domain protein

E6AP to p53 in host cells to accelerate its ubiquitylation and

degradation. Unlike MDM2, which only serves as a platform

for the E2 to transfer activated ubiquitin to p53, E6AP

possesses a special C-terminal domain that is capable of

catalyzing the transfer of ubiquitin from the E2 to a substrate

[63]. E6AP does not recognize p53 directly. In normal cells

without virus infection, E6AP does not ubiquitylate and de-

grade p53. Therefore, E6AP is a negative regulator of p53

only after cellular infection with papilloma virus.

Most recently, a new HECT member, ARF-BP1/HectH9,

has been reported to target p53 as well [64] and will be

discussed in Convergence of p53 and c-Myc by ARF and

the ARF-BP1/HectH9 E3 Ligase section.

U-box ligases Another E3 ligase, CHIP (carboxyl terminus

of Hsc70-interacting protein), has been reported to induce

p53 degradation [65]. CHIP ubiquitylates p53 in vitro in the

presence of Hsc70 andE2 (UbcH5b). Although bothwild-type

p53 and R175H mutant p53 are targeted by CHIP, CHIP

appears to be more efficient in decreasing the level of mutant

p53 than that of wild-type p53 because this p53 mutant is

unfolded and Hsc70 often chaperones unfolded peptides

[66–70]. Therefore, Hsc70 may serve as a bridge for this

mutant and CHIP, facilitating CHIP-mediated R175H–p53

ubiquitylation. As to wild-type p53, Hsc70 may use the same

mechanism to facilitate the CHIP ubiquitylation of unfolded

p53s, which are a small fraction of the highly expressed

protein. This study suggests that CHIP-mediated p53 ubiq-

uitylation may be coupled to protein synthesis, as nascent

peptides are often unfolded. Although this model is provoc-

ative, additional studies are necessary to demonstrate the

physiological meaning of p53 regulation by CHIP, particularly

its relationship with cancer.
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Cullin-containing ligases Two cullin-containing ubiquitin

ligase complexes have been reported to ubiquitylate p53.

This type of complex usually consists of four components,

including cullin, ROC (the RING E3 ligase), and two other

proteins, forming a functional complex [71]. Interestingly, two

adenoviral proteins, E4orf6 and E1B55K, cooperate in tar-

geting p53 for ubiquitylation and degradation [72]. Purifica-

tion of E4orf6-associated proteins has revealed a novel p53

ligase complex containing cullin 5, elongins B and C, E4orf6,

E1B55K, and ROC1. This complex is remarkably similar to

the von Hippel-Lindau tumor suppressor and SCF E3 com-

plexes [72,73]. Thus, in addition to the papilloma virus, the

adenovirus also encodes viral oncoproteins, such as EIB55K,

that suppress p53 activity [74] by degrading it through the

ubiquitin-dependent proteasome pathway. By doing so,

viruses would keep host cells alive for the sake of their own

replication and life cycle during infection.

Besides adenovirus, human cells also use a cullin-

containing complex to target p53. This complex contains

cullin 7 [75] and appears tomonoubiquitylate or diubiquitylate

p53 in vitro and in cells. However, this ubiquitylation sup-

presses p53 activity without affecting p53 stability. Although

it remains unclear exactly how this complex regulates the

activity of p53, it is possible that the monoubiquitylation or the

diubiquitylation of p53 by this complex may inhibit p53

transcriptional activity by interfering with the interaction of

p53 with DNA. Surprisingly, cullin 7 resides in the cytoplasm

but does not recruit p53 into this cellular compartment,

leaving the puzzle of where p53 ubiquitylation actually

occurs. This study, although interesting, addsmore questions

to the waiting list for future investigations.

Regulation of p53 Ubiquitin Ligases

As described above, half a dozen E3 ligases or ligase

complexes have been identified to ubiquitylate p53. Although

many of the mechanisms underlying these ubiquitylations

remain largely unaddressed, the overall outcome is the same:

suppression of p53 function. The cell could overcome this

suppression and activate p53 to mediate cell cycle arrest and

apoptosis inmanyways. The easiest waywould be to reverse

this ubiquitylation. Indeed, a deubiquitylase called HAUSP

(herpesvirus-associated ubiquitin-specific protease) has

been identified to deubiquitylate p53, leading to p53 sta-

bilization and activation [76]. However, because HAUSP also

deubiquitylates MDM2 and its partner MDMX, knocking

down this ubiquitin hydrolase stabilizes and activates p53

as well [77,78]. HAUSP seems to reverse MDM2-mediated

ubiquitylation specifically, as it has no effect on p53 ubiquity-

lation by E6AP [79]. Whether it has an effect on p53 ubiq-

uitylation by other RING finger E3 ligases, as mentioned

above, is still an open question. In addition to this reverse

reaction, other posttranslational modifications (such as phos-

phorylation, methylation, acetylation, sumoylation, or neddy-

lation), in response to various stresses and protein–protein

interactions, are also believed to play various roles in stabi-

lizing and activating p53 by blocking theMDM2–p53 loop (for

details, see later sections and Refs. [9,11,80,81]). Recently, it

has been shown that 14-3-3g can bind to MDMX, which is

phosphorylated at serine 367 by Chk1 in response to UV

irradiation, and this binding results in the suppression of

MDMX-enhanced p53 ubiquitylation by MDM2 [82]. In con-

trast, ionizing radiation activates Chk2, which phosphorylates

the same serine and initiates 14-3-3–MDMX binding, result-

ing in the MDM2-mediated degradation of MDMX in the

nucleus [83]. Even though the mechanisms in both cases

are unclear and await further investigation, their outcomes

are the same: p53 activation [82–84]. It would be interesting

and important to learn whether stress signals can also

activate p53 by inhibiting other E3 ligases. These multiple

levels of the ubiquitin-mediated regulation of p53 not only

reflect the complexity of this network but also provide a

remarkable molecular paradigm for the yin–yang balance in

the cell. A second system that serves as an apt example of

fine-tuned regulation and is an appropriate balance to the

discussion of p53 as amajor tumor suppressor is the pathway

regulating a major oncoprotein, c-Myc.

Regulation of the c-Myc Oncoprotein (Yang) by Multiple

Ubiquitin Ligases

The c-Myc Oncoprotein and Its Turnover

The c-Myc oncoprotein can be considered the yang factor

due to its positive role in promoting cell growth and prolifer-

ation and its subsequent opposition to p53. It is a basic helix–

loop–helix leucine zipper (bHLH/LZ) transcription factor that

is responsible for regulating a variety of genes whose protein

products are involved in cell growth, proliferation, differenti-

ation, apoptosis, and neoplastic transformation [85,86]. The

N-terminal transcriptional activation domain (TAD) of c-Myc

contains two conserved segments, Myc box (MB) I and II,

which are crucial for all biologic activities [87]. The C-terminal

bHLH/LZ domain of c-Myc mediates sequence-specific DNA

recognition of E-box elements (CACGTG) (Figure 2). How-

ever, c-Myc does not work alone and forms a heterodimer

with its partner protein Max [88–90]. The c-Myc/Max hetero-

dimer activates the transcription of many target genes. Max

also acts as a transcriptional repressor when forming a

heterodimer with one of the Mad family members that binds

to the same E box sequence elements. In such a way, the

Max–Mad complex antagonizes the function of the c-Myc–

Max complex [91].Max is ubiquitously expressed and present

in stoichiometric excess to c-Myc, whereas the level of Myc

and Mad is highly regulated during cell growth. Thus, the

Myc–Mad ratio determines whether Max heterodimerizes

with c-Myc to promote cell growth or with Mad to inhibit cell

growth [92]. More complex than these regulations, the

c-Myc–Max complex also counteracts the transactivation

activity of another zinc finger transcription factor called

Miz-1, repressing a specific set of Miz-1 target genes

[89,93]. This repressive activity of c-Myc also requires Max

[94–97]. Hence, c-Myc possesses transcriptional activation

and repression activities toward specific target genes.

These activities of c-Myc are highly linked to its positive

role in controlling cell cycle [86] and ribosomal biogenesis

[98–100]. Consistent with this notion, c-Myc levels are

Ubiquitylation of p53 and c-Myc Dai et al. 633
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high during embryogenesis and in rapidly dividing cells, but

considerably low in quiescent and differentiating cells. Homo-

zygous deletion of the c-myc gene is lethal to mice at E9.5–

10.5 days [101]. In addition, c-Myc–deficient cells no longer

proliferate [102,103]. Conversely, overexpression of c-Myc

inhibits cell differentiation independent of its ability to promote

cell proliferation [104,105]. However, c-Myc also induces

apoptosis when cells are under stress or when cultured with

limited survival signals [106,107]. Hence, c-Myc is essential

for cell growth and embryogenesis, although it also plays a

role in apoptosis under stress conditions.

In contrast to the tumor-suppressing function of p53,

c-Myc promotes uncontrolled cell growth and subsequent

tumorigenesis. Abnormal overexpression of c-Myc due to

chromosomal translocations, gene amplification, or viral in-

sertion at the c-myc locus is highly associated with several

types of human cancers [108–110]. Constitutive over-

expression of c-Myc in cells inhibits differentiation and in-

duces neoplastic transformation [111,112]. Moreover, c-myc

transgenic mice develop lymphoid malignancies [113]. In

addition, induced overexpression of c-myc either in the epi-

dermis [114], in hematopoietic lineages [115], or in pancre-

atic islet b cells [116] of inducible c-myc transgenic mice

leads to neoplastic, premalignant, and malignant pheno-

types. In contrast, when c-myc expression is turned off in

these mice, these tumorigenic phenotypes spontaneously

remit [114–116]. These studies demonstrate that deregula-

tion of c-Myc level or activity favors cell transformation and

tumorigenesis. Therefore, tight regulation of the c-Myc level

is essential for preventing cells from undergoing hyper-

plasia and consequent neoplasia. To do so, the cells have

evolvedmultiple mechanisms, including transcriptional, post-

transcriptional (mRNA stability and translation), and post-

translational (protein stability) regulations [110], to regulate

the level and activity of c-Myc. Only ubiquitin-mediated

regulation of c-Myc will be discussed here because this topic

is the concern of this review, and because this particular

c-Myc modification is highly relevant to c-Myc’s response to

growth stimuli and tumorigenesis.

As mentioned above, ubiquitylation is an exceedingly

powerful tool for the cell to master both a potent tumor

suppressor and an influential oncogene to achieve homeo-

stasis. Like p53 [117,118], c-Myc is also an extremely short-

lived protein with a half-life of less than 30 minutes in

cells [119]. Its fast turnover is carried out by the ubiquitin-

dependent proteasome system as well [120–122]. As for

other transcriptional factors whose TADs also serve as

degradation signals (degrons) [123] (reviewed in Muratani

and Tansey [124]), the N-terminal TAD of c-Myc, harboring

two conserved MBI and MBII domains, is also involved in the

regulation of c-Myc stability [121,125,126]. Although it is still

debatable how these two motifs work together, or inde-

pendently, to modulate c-Myc turnover [121,125,126,127],

the consensus seems to be that they are crucial for c-Myc

ubiquitylation and degradation. Over the past 3 years,

three ubiquitin ligases, SCFSkp2 [128,139,130], SCFFbw7

[131–134], and ARF-BP1/HectH9 [135], have been iden-

tified to contact the TAD domain, leading to c-Myc ubiquity-

lation (Figure 2). As detailed below, SCFFbw7 ubiquitylates

and degrades c-Myc in a phosphorylation-dependentmanner

[132,133], whereas SCFSkp2, as well as ARF-BP1/HectH9,

ubiquitylates c-Myc and regulates its transcriptional activity

[128,130,135]. Therefore, both p53 and c-Myc are regulated

through several ubiquitylation-dependent pathways, reflect-

ing the importance of protein stability to cellular harmony.

Ubiquitylation of c-Myc by SCFFbw7 Regulates Its Stability

In contrast to p53’s case, where phosphorylation is gen-

erally believed to prevent its degradation [136–139], phos-

phorylation has been shown to positively and negatively

regulate the stability of c-Myc [140–144]. These regulatory

steps are performed through a sequential phosphorylation at

serine (S) 62 and threonine (T) 58 in the MBI motif of c-Myc in

response to growth signals [143]. Interestingly, c-Myc levels

display a bell-shaped induction curve in response to serum

stimulation [145]. This induction is regulated byRas through a

dual mechanism. First, the serum-activated Ras triggers the

immediate early response of the Raf–MEK–ERK kinase

cascade, which in turn leads to the S62 phosphorylation of

c-Myc [143] and to c-Myc’s consequent stabilization. In

addition, Ras can activate the PI3K/AKT kinase cascade that

leads to c-Myc stabilization by blocking the GSK3b kinase–

activated c-Myc degradation pathway.

This degradation process involves multiple steps. It starts

with the phosphorylation of c-Myc at T58 by GSK3b
[140–144]. This phosphorylation facilitates the recruitment

of a prolyl isomerase, Pin1, to c-Myc. Pin1 then catalyzes

cis– trans isomerization at proline (P) 63 of c-Myc, and

subsequent conformational change allows the PP2A phos-

phatase to dephosphorylate c-Myc at S62 [146]. Finally,

phosphorylated T58 and dephosphorylated S62 serve as

a dock to recruit a T58 phosphorylation–dependent E3

ubiquitin ligase complex, called SCFFbw7 [131–134], to

Figure 2. A schematic diagram showing the functional domains of the c-Myc

protein and its regulation by multiple ubiquitin E3 ligases. c-Myc contains an

N-terminal TAD, as well as C-terminal basic (B), helix – loop–helix (HLH), and

leucine zipper (LZ) domains. The central domain contains a PEST region.

There are two conserved MBI and MBII motifs located in the TAD. Two

phosphorylation residues, T58 and S62, are shown. Fbw7 binds to MBI and

ubiquitylates c-Myc in a T58 phosphorylation–dependent manner. Skp2

targets c-Myc for ubiquitylation through both the MBII and C-terminal

domains. ARF-BP1/HectH9 ubiquitylates one or more of six lysine (K)

residues around the NLS region by binding to TAD. Ubiquitylation by SCFFbw7

results in the degradation of c-Myc, whereas ubiquitylation by SCFSkp2 and

HectH9/ARF-BP1 leads to the activation of c-Myc.
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ubiquitylate c-Myc (Figure 3). The importance of T58 in

regulating c-Myc stability is highlighted by the fact that T58

is frequently mutated in a subset of Burkitt’s lymphomas

[147–149]. Moreover, artificial mutation at T58 prevents c-

Myc ubiquitylation and degradation, as well as enhances

the oncogenic activity of c-Myc in vitro [125,126,144,150].

Strikingly, mice harboring the c-Myc T58A mutant develop

lymphomas at a significantly higher penetrance and re-

duced latency than mice with the wild-type c-myc transgene

[151]. Thus, growth factors in sera can activate Ras, which

turns on two kinase cascades. One of them mediates S62

phosphorylation and the other blocks T58 phosphorylation.

In doing so, Ras can protect c-Myc from being degraded by

the SCFFbw7 complex, consequently leading to c-Myc stabili-

zation (Figure 3).

Therefore, the SCFFbw7 complex is a critical player in the

business of c-Myc turnover. This complex contains an F-box

protein, termed Fbw7, that is a human ortholog of yeast

Cdc4 [131–134]. Although how this complex exactly de-

grades c-Myc remains to be studied, it has been shown that

Fbw7 directly interacts with the c-Myc MBI domain in a T58

phosphorylation–dependent manner. Overexpression of

Fbw7 destabilizes wild-type, but not T58-mutated, c-Myc.

Conversely, knocking down Fbw7 leads to the accumulation

of c-Myc levels and enhances c-Myc transactivational ac-

tivity. Similarly, the Drosophila archipelago (ago) protein, a

fly ortholog of human Fbw7, interacts with dMyc. Mutations

in ago result in elevated dMyc protein levels and massive

growth of tissues with increased cell size and number [131].

These studies indicate that the regulation of c-Myc by the

SCFFbw7 complex is evolutionarily conserved.

c-Myc is a nuclear protein, but recent evidence suggests

that it may be degraded in the nucleolus, a subnuclear

compartment where rRNA biogenesis takes place. A Fbw7

isoform, Fbw7g, was found to colocalize with c-Myc in the

nucleolus [134]. Specific knockdown of the Fbw7g isoform by

siRNA increases the nucleolar level of c-Myc and the size of

targeted cells. It is possible that c-Myc may shuttle between

the nucleoplasm and the nucleolus, and that ubiquitylation,

the proteasome-mediated degradation of c-Myc, or both may

occur in the nucleolus. Consistent with its inhibitory role in

regulating c-Myc turnover, Fbw7 has been shown to be a

potential tumor suppressor [152] (see the text below for

more discussion). Thus, Fbw7 acts as regulatory factor for

maintaining the balance of c-Myc.

Ubiquitylation of c-Myc by SCFSkp2 Regulates

Its Transactivational Activity

Unlike p53, the ubiquitylation of c-Myc does not always

mean its physical destruction or functional repression. In-

stead, this modification by another SCF complex, SCFSkp2,

increases the activity of c-Myc [128–130]. This effect is

executed through the interaction of the Skp2 subunit of the

SCFSkp2 complex with the MBII and bHLH-LZ domains of

c-Myc [128,130]. In contrast to the association of the SCFFbw7

complex with the MBI domain of c-Myc (see above), this

interaction is phosphorylation-independent [128–130]. Al-

though SCFSkp2 has been shown to mediate c-Myc degrada-

tion, this complex can also function as a coactivator of c-Myc

by ubiquitylating it and enhancing its transcriptional activity.

This dual, yet seemingly contradictory, role of SCFSkp2 in

regulating c-Myc stability and activity has been postulated to

be important for coupling the proteasome system with tran-

scription. Consistent with this idea are the data showing that

c-Myc also interacts with a proteasome subunit called Sug1,

and this interaction positively affects c-Myc activity [129].

Furthermore, chromatin immunoprecipitation analyses re-

veal that c-Myc may recruit Skp2, ubiquitylated proteins,

and AAA ATPase (APIS) components from the 19S regula-

tory subunit of the proteasome to the endogenous cyclin D2

promoter, which is a c-Myc target [128]. Therefore, the MBII

domain of c-Myc is not only involved in controlling its stability

but also important for regulating its activity. Indeed, several

coactivators, such as TRRAP-associated hGCN5 or TIP60-

containing histone acetyltransferase complexes, have been

Figure 3. A diagram showing growth signal –mediated c-Myc phosphoryla-

tion and ubiquitylation pathways. Growth signals such as serum stimulation

activate RAS. The RAS/Raf/MEK/ERK kinase cascade phosphorylates c-Myc

at S62. The RAS-PI3K/Akt cascade inhibits GSK3� activity. GSK3� mediates

the phosphorylation of c-Myc at T58. Phosphorylation of T58 recruits the Pin1

prolyl isomerase, which may catalyze cis – trans isomerization at the P63

bond. This conformational change facilitates the targeting of c-Myc by PP2A

phosphatase, which dephosphorylates c-Myc at S62. Phosphorylation of T58

and dephosphorylation of S62 serve as signals that trigger subsequent

ubiquitylation and degradation of c-Myc by the SCFFbw7 complex.
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shown to bind to MBII and to mediate the histone H4 acet-

ylation of c-Myc target genes, leading to their expression

[153–156]. Moreover, the TIP48/TIP49 ATPases in chroma-

tin remodeling complexes also interact with the MBII domain

of c-Myc [157]. However, it remains unknown how these

coactivators interplay with SCFSkp2 in regulating c-Myc ac-

tivity and how c-Myc acetylation affects its ubiquitylation

during transcription under normal physiological conditions.

These are important issues for future exploration.

It is intriguing that Skp2 mediates both the proteasomal

degradation and the transactivational activity of c-Myc. How

Skp2 is able to perform both functions is still a mystery.

Although no definite answers are available thus far, a few

more pieces of evidence further indirectly support this

transcription-coupled proteasomal degradation mechanism.

Surprisingly, inhibition of c-Myc turnover by the proteasome

inhibitor MG132 leads to suppression of c-Myc’s transactiva-

tional activity, even though c-Myc levels increase [100]. In

addition, the 19S base ATPases and the lid Rpn7 subunit, as

well as the 20S (a2 subunit) particles, are recruited to the

cyclin D2 promoter by c-Myc [128,129]. These studies sug-

gest that the 26S proteasomemay degrade c-Myc at its target

promoters once this transcriptional factor fulfills its duty to

activate transcription of its target genes. Alternatively, once

recruiting the proteasome to its promoters, c-Myc may need

to be destroyed to allow the proteasome-mediated transcrip-

tional activation of its target genes. SCFSkp2 participates in

both degradation and transcription. This type of regulation

has also been shown for other transcriptional factors, such

as GCN4, Vp16, and Gal1-10, in yeast [158–161]. Hence,

ubiquitylation of c-Myc by the SCFSkp2 complex mediates not

only its degradation but also its transcriptional activity.

Although this model is very attractive and interesting, it

also raises a number of new questions, in addition to the

questionsmentioned above. For instance, is this regulation of

c-Myc by SCFSkp2 responsive to growth signals? Do SCFSkp2

and SCFFbw7 interplay with each other in regulating c-Myc

stability and activity? Do they target the same lysine residues

in c-Myc for ubiquitylation? In addition, is it possible that

c-Myc stability may be regulated through a postubiquitylation

or a ubiquitylation-independent mechanism [126]? A more

radical question is whether p53 activity or stability is also

regulated through the transcription-coupled proteasome

pathway. It would not be surprising if this speculation will

turn out to be true, as MDM2 has been shown to associate

with p53 at the target promoter [37,38]. Addressing these

questions would certainly advance our understanding of the

molecular details underlying c-Myc or p53 regulation by these

E3 ubiquitin ligases.

Convergence of p53 and c-Myc by ARF and the

ARF-BP1/HectH9 E3 Ligase

Although p53 and c-Myc play opposite roles in cell growth

control and are regulated by independent E3 ubiquitin

ligases, as described above, these two proteins are func-

tionally linked through a tumor suppressor called ARF (alter-

native reading frame of p16INK, also called p14arf in humans

and p19arf in mice). ARF is a nucleolar protein andmay play a

role in rRNA processing by inhibiting B23 function [162,163].

It has been shown that c-Myc induces the expression of ARF

at the level of mRNA and that ARF, in turn, activates p53

[164–167]. In addition, it has been shown that ARF induces

p53 by blocking the MDM2–MDMx–p53 feedback loop

[168–170]. ARF’s activation of p53 contributes to its role in

suppressing tumorigenesis. The tumor-suppressive role of

ARF is further verified by at least two forms of genetic

evidence. First, germline mutations in p14arf occur in 20%

to 40% of human familial melanomas [171,172]. Second,

arf-null mice are highly prone to cancer development

[173,174]. These studies have two implications: 1) that ARF

functions as a sensor of oncogenic stress, such as deregu-

lated c-Myc activation or expression, to activate p53 against

c-Myc–mediated cell transformation, and 2) that c-Myc may

induce apoptosis in an ARF–p53–dependent fashion in

response to nutrient deprivation. This c-Myc–ARF–p53

pathway presents a graceful molecular model of the yin–

yang relationship. However, the relationship between p53

and c-Myc is far more complex than this relatively simplified

version. Another E3 ligase is also involved.

Recently, three studies unveiled a member of the HECT

E3 ligase family, named ARF-BP1 (ARF-binding protein 1;

also called HectH9) and Mule (Mcl1 ubiquitin ligase E3)

[64,135,175], which ubiquitylates three distinct protein sub-

strates (a combined term ARF-BP1/HectH9 will be used here

for the sake of simplicity). This E3 ligase is a nuclear protein

with a molecular mass of 482 kDa, whose gene was originally

identified and partially cloned as Lasu1/Ureb1 [176]. Two of

three substrates were identified as p53 and c-Myc [64,135].

Interestingly, ARF-BP1/HectH9 directly binds to and ubiquity-

lates p53, as well as c-Myc, in vitro and in cells [64,135]. ARF-

BP1/HectH9 was also demonstrated as an E3 ligase for both

p53 and c-Myc, as ablation of this E3 protein by siRNA pre-

vents ubiquitylation of p53 and c-Myc in cells. However, the

outcomes of their respective ubiquitylations are completely

divergent. Ubiquitylation of p53 by ARF-BP1/HectH9, likely

through lysine 48 of ubiquitin, commits p53 to proteasome-

mediated degradation [64], whereas ubiquitylation of c-Myc

by ARF-BP1/HectH9, through lysine 63 of ubiquitin, enhances

the transcriptional activity of c-Myc without degrading it [135].

Thus, ARFBP1/HectH9 serves as a novel linker between p53

and c-Myc. The overall outcome of this diverse regulation of

these yin and yang factors by ARFBP1/HectH9 is to promote

cell growth and proliferation [64,135].

Again, ARF also joins this new tangle because ARF was

used as a bait to fish out ARF-BP1 and because it inhibited

p53 ubiquitylation by this E3 ligase [64]. Although ARF

suppresses MDM2-mediated p53 ubiquitylation, as men-

tioned above, both p53 ubiquitylation by ARF-BP1/HectH9

and suppression of this ubiquitylation by ARF have nothing to

do with MDM2. Therefore, ARF can activate p53 by sup-

pressing either MDM2-mediated or ARF-BP1/HectH9–

mediated p53 ubiquitylation [64,170]. Because depleting

ARF-BP1/HectH9 induces p53 at a much greater level than

does knocking down MDM2 or Pirh2 in cells [64], it has been

proposed that ARF-BP1 may play a more important role in
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monitoring the physiological level of p53without any apparent

stress [177]. This speculation is stimulating and requires

further examination, particularly in animals. However, it may

be considerably challenging to test this model in vivo, as

ARFBP1/HectH9 also targets two other substrates, c-Myc

and Mcl-1, and probably more unidentified ones.

It remains untested whether ARF also suppresses c-Myc

activity by interfering with ARF-BP1/HectH9–mediated

c-Myc ubiquitylation. However, it would not be astonishing if

it does so, as ARFhas been shown to directly suppress c-Myc

activity [178,179]. Regardless of this remaining issue,

another c-Myc suppressor, Miz-1, does inhibit ARF-BP1/

HectH9–mediated c-Myc ubiquitylation, possibly by compet-

ing with the binding of c-Myc for this E3 ligase. Miz-1 is not

the substrate for ARF-BP1/HectH9 [135]. Interestingly,

ARF-BP1/HectH9–mediated c-Myc ubiquitylation is required

for the transcriptional coactivator p300 to bind to c-Myc at

c-Myc target promoters, as the c-MycK6R mutant, which is

not ubiquitylated by this E3 ligase, is unable to recruit p300 to

the same promoters. In this aspect, it appears that ARF-BP1/

HectH9 may facilitate c-Myc–dependent transcription by

ubiquitylating this transcriptional factor. Taken together, these

studies [64,135] demonstrate that ARF-BP1/HectH9 serves

as another node of convergence of p53 and c-Myc and

another example of how the yin–yang forces of the cell

are balanced through ubiquitylation regulation. The fulcrum

supporting this balance is the tight regulation of ARF. Disrup-

tion of this network could lead to uncontrolled cell growth

and consequent tumorigenesis (see Implications of p53

and c-Myc Ubiquitin Ligases in Tumorigenesis section for

further discussion).

Nucleolar Proteins Regulate Ubiquitylation of Both

p53 and c-Myc

In addition to ARF [166,168,170,178,179], there are other

nucleolar proteins that have also been shown to regulate

p53 and c-Myc. These proteins appear to sense a type of

stress called ribosomal stress. Ribosomal stress is often

caused by external and internal signals or chemicals that

interfere with rRNA synthesis, rRNA processing, and ribo-

some assembly. This type of stress has been shown to

activate p53 aswell [180–183]. For example, overexpression

of dominant-negative mutants of Bop1, a nucleolar protein

critical for rRNA processing and ribosome assembly [180],

inhibits 28S and 5.8S rRNA formation and causes a defect in

ribosome assembly in NIH3T3 fibroblast cells. Consistent

with this result, deleting the gene encoding the S6 protein,

a component of the 40S ribosomal subunit, may disrupt

ribosomal assembly in T lymphocytes [184,185], causing

ribosomal stress. Consequently, these cells undergo p53-

dependent G1 cell cycle arrest [181,182,184]. In addition, a

low dose of actinomycin D, which specifically inhibits RNA

polymerase I, can stall rRNA synthesis and ribosome as-

sembly. By doing so, this anticancer drug stimulates p53

activity without triggering N-terminal phosphorylation of p53

[183,186]. Furthermore, ARF directly inhibits rRNA process-

ing, which may also generate ribosomal stress, thus contrib-

uting to p53 activation, in addition to its role in regulating the

MDM2–p53 and ARF-BP1/HectH9–p53 pathways, as dis-

cussed above. These studies support the ribosomal stress–

p53 activation pathway. However, the molecular mechanism

underlying this pathway has been unknown until recent

studies, including ours, revealed several nucleolar proteins

that may participate in this pathway.

These nucleolar proteins include the ribosomal proteins

L11, L23, and L5 [187–191]. Normally, these L proteins are

assembled with rRNA and other ribosomal proteins into the

60S large subunit of the ribosome in the nucleolus and are

then exported to the rough endoplasmic reticulum for protein

translation, together with the 40S small subunit. In response

to ribosomal stress, such as serum starvation or inhibition

of RNA polymerase I activity by actinomycin D, L11, L23,

and L5 are released from the nucleolus to associate di-

rectly with MDM2, mostly in the nucleoplasm [187–189,192].

By doing so, these ribosomal proteins can inhibit MDM2-

mediated p53 ubiquitylation, increasing p53 level and activity

in human cells. As a result, the cells undergo p53-dependent

G1 arrest [187–192]. Despite these discoveries, little is

known about the mechanism underlying the regulation of

MDM2 E3 ubiquitin ligase activity by these L proteins. Some

clues suggest that the L proteins may interfere with MDM2’s

ubiquitin ligase activity by interacting with the central acidic

domain of this protein [187–189,191] because it has been

shown that this acidic domain contributes toMDM2-mediated

p53 degradation [22–25]. Surprisingly, not all of these L

proteins appear to use the same mechanism; our recent

studies suggest that only L23 and L5 appear to suppress

MDM2 autoubiquitylation in cells [245]. L11 seems to use a

postubiquitylation mechanism [245] similar to that used by

ARF [193]. Regardless of these remaining issues, it is con-

ceivable that the L proteins also play a role in the ribosomal

stress–p53 signaling pathway, besides their essential func-

tion during protein translation.

In addition, another nucleolar protein, called B23 or nucle-

ophosmin, which is ubiquitously expressed in all cells and

has been implicated in rRNA processing, ribosomal protein

assembly, and transport [194,195], also activates p53

[196,197]. Similar to the L proteins, B23 interacts directly

with MDM2 and inhibits MDM2-mediated p53 ubiquitylation

and degradation in response to UV [196], resulting in p53-

dependent cell growth arrest. Furthermore, it was found that

the normal nucleolar structure was disrupted in cells treated

with 11 of 13 different agents that induced p53 stabiliza-

tion [198]. Because all of these reagents can cause nu-

clear accumulation of B23 through unknown mechanisms

[198,199], it has been proposed that mammalian cells may

have evolved a sensing mechanism that can be activated

when the nucleolus is disrupted (nucleolus stress) [198]. The

tumor suppressor p53 is a downstream responder of this

sensing system, as loss of this p53 response can result in

unrestrained cellular proliferation [200,201]. This nucleolus

stress–p53 pathway remains to be elucidated in parallel to

the DNA-damaging p53 activation mechanism and is impor-

tant for protecting cells from undergoing uncontrolled cell

growth. It is possible that different nucleolar stress reagents
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may activate p53 through different nucleolar proteins. Recent

proteomic analyses of the nucleolus have identified a number

of novel nucleolar proteins that might be rRNA processing

and ribosome assembly factors [202,203]. Thus, we specu-

late that more nucleolar proteins will be probably uncovered

to regulate the MDM2–p53 pathway in the near future.

Furthermore, in the interest of maintaining balance, the nu-

cleolus is also a common territory of c-Myc.

The nucleolus is a workshop for ribosomal biogenesis,

which is a highly controlled process requiring coordinated

transcription by all three RNA polymerases (Pol) to ensure

efficient and accurate production of ribosomes [204,205].

Several studies have acclaimed that c-Myc is a new and

critical player in this process. In addition to regulating RNA

Pol II–catalyzed transcription [206–209], c-Myc also en-

hances polymerase I–catalyzed rRNA synthesis [98–100]

and polymerase III–mediated 5S and tRNA transcription

in the nucleolus [210]. Strikingly, these nucleolar activities

of c-Myc are all regulated by ARF. ARF binds to c-Myc and

inhibits c-Myc transactivation activity [178,179]. Thus, ARF

is thought of as a feedback regulator of c-Myc in response

to oncogenic stress (Figure 4). Not only c-Myc activity but

also c-Myc stability is most likely monitored in the nu-

cleolus. As mentioned in Regulation of the c-Myc Onco-

protein (Yang) by Multiple Ubiquitin Ligases section, the

nucleolar Fbw7g may mediate c-Myc ubiquitylation and deg-

radation in the nucleolus [134].

In summary, both p53 and c-Myc are associated with

ribosomal biogenesis. Under unstressed conditions, c-Myc

activity is required for driving normal ribosomal biogenesis in

order for cells to grow and to proliferate. In response to

ribosomal stress, nucleolar proteins, such as ARF, L11,

L23, L5, or B23, are released from the nucleolus to crosstalk

with MDM2 and to repress its activity. As a result, p53 is

stabilized and activated to prevent cell growth and prolifera-

tion. Therefore, the coupling of ARF to proteasomal degra-

dation and the stability of two major regulators of cellular

homeostasis maintain the delicate balance of the cell.

Implications of p53 and c-Myc Ubiquitin Ligases

in Tumorigenesis

Unbalanced regulation of p53 (yin) and c-Myc (yang) forces

cells toward the path of oncogenesis. This notion is sub-

stantially supported not only by the fact that inactivation of

p53, as well as activation of c-Myc, has been consistently

demonstrated to lead to carcinogenesis [8,10,86,109] but

also by the increasing volume of evidence showing that their

aforementioned regulators are highly relevant to cancer

formation. As discussed above, inactivation of ARF by dele-

tion mutation and knockout also leads to tumor growth in

certain tissues. Although it remains to be clarified if the

ribosomal proteins L11, L5, and L23 may function as tumor

suppressors, mutations of some ribosomal proteins have

been linked to tumorigenesis in zebrafish [211]. The rele-

vance of several E3 ubiquitin ligases in the p53 and c-Myc

pathways to cancer is discussed below.

MDM2 is an Oncoprotein

The oncogenic activity of MDM2 is reflected through its

capability to immortalize and to transform rat embryonic

fibroblasts, in cooperation with Ras [212]. In addition, over-

expression of MDM2 converts NIH 3T3 cells into tumor cells

that can develop into xenografted tumors in mice [213].

Consistently, amplification and overexpression of MDM2

have been found in a variety of human tumors, particularly

in soft tissue sarcomas, carcinomas, leukemias, lymphomas,

and breast and lung cancers [214–219]. The tumorigenic

potential of MDM2 is primarily attributed to its ability to inhibit

the tumor-suppressor function of p53, as discussed above.

Fbw7 Is a Haploinsufficient Tumor Suppressor

Because SCFFbw7 targets multiple oncoproteins, such as

c-Myc [131–134], cyclin E [220–222], c-Jun [223,224], and

Notch [225,226], for ubiquitylation and degradation, it acts

as a tumor suppressor (reviewed in Minella and Clurman

[152]). Indeed, Fbw7 is mutated in 8 of 51 (15.7%) cases of

human endometrial carcinomas [227] and in 22 of 190

(11.6%) cases of colorectal cancers [228], as well as in

several ovarian [221] and breast cancer [222] cell lines.

Interestingly, the majority of mutations occur either at the

F-box (Skp1-binding domain) or at WD40 repeats (substrate

recognition domain) of Fbw7, highlighting the importance of

these domains in tumorigenesis. In addition, the chromo-

some locus 4q32 containing the Fbw7 gene is deleted in over

31% of human cancers [229]. Because homozygous deletion

of this gene results in embryonic lethality, Fbw7 is a haploin-

sufficient tumor suppressor. This conclusion is further sup-

ported by a recent study showing that radiation-induced

lymphomas from p53+/�, but not p53�/�, mice display fre-

quent loss of heterozygosity and a 10% mutation rate in the

Fbw7 gene. Furthermore, Fbw7 heterozygote mice are more

susceptible to radiation-induced tumorigenesis, in compari-

son with either p53+/� or p53�/� mice [230]. Despite the fact

that mutations of Fbw7 often coexist with elevated levels of

total and phosphorylated cyclin E and that overexpression

of cyclin E results in genomic instability [231] that correlates

with cancer presentation and poor prognosis in murine and

human [232–235] systems, it remains to be investigated

whether c-Myc activation may have a direct contribution to

the formation of human cancers due to loss of one copy of the

Fbw7 gene.

Figure 4. Regulation of p53 and c-Myc transcription factors by nucleolar

proteins. Bars indicate inhibition; arrows denote the functional activation of

c-Myc.
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Skp2 is an Oncoprotein

The oncogenic activity of Skp2 is highly associated with its

role in controlling the turnover of another tumor suppressor

p27kip1 [236,237], which inhibits Cdk2/cyclin E activity during

the G1-phase to S-phase transition. Deletion of the p27Kip1

gene almost completely rescued the overreplicative pheno-

type of skp2 knockout mice [238], suggesting that p27Kip1 is a

major target of Skp2. In addition, overexpression of Skp2

induces malignant phenotypes in transgenic mice [239,240].

Although it is still unaddressedwhether c-Myc is also involved

in the oncogenesis induced by Skp2, it is quite possible that

c-Myc may play a part in Skp2-induced tumorigenesis.

The Possibility of ARF-BP1/HectH9 as an Oncoprotein

In light of its role in suppressing p53 activity and in

enhancing c-Myc activity, it can be predicted that ARF-BP1/

HectH9 may act as an oncoprotein. In line with this hypoth-

esis is the fact that this protein is overexpressed in 80% (16

of 20) of breast cancer cell lines [64], as well as in a large

number of primary human tumors, including breast (43%),

lung (46%), colon (52%), liver (18%), pancreatic (20%), and

thyroid (9%) carcinomas [135]. The level of ARF-BP1/HectH9

is closely correlated with tumor progression, as its over-

expression is detected in 33% (9 of 27) of adenomas and

49% (42 of 85) of adenocarcinomas, but not in the normal

epithelium and in polyps [135]. However, more studies are

critical to fully establish its role as an oncoprotein and to

determine whether ARF-BP1/HectH9 can be used as a

marker for cancer progression or whether its gene is am-

plified in human cancers.

Conclusion: The Balance Maintained

Themolecular anatomy of the p53 and c-Myc pathways using

biochemical, cell biologic, and genetic tools over the past

decades has unraveled an overwhelmingly complex network

that functionally bridges the two distinct transcription factors

with opposing roles in controlling cell growth. In this network,

ARF and ARF-BP1/HectH9 appear to play a key role as

the fulcrum providing a sustained balance between the

cell growth promoted by c-Myc and the cell growth suppres-

sion executed by p53. On one hand, ARF-BP1/HectH9 is ac-

tivated to turn on c-Myc activity, but can also turn off p53

through ubiquitylation, although it is still unclear how this E3

ubiquitin ligase is activated (Figure 4). However, when c-Myc

is aberrantly overactive, such as in response toRas activation

(Fig. 3), it induces ARF, which in turn represses c-Myc activity

through crosstalk. Other than reducing c-Myc activity, ARF

also could inactivate the c-Myc helper, ARF-BP1/HectH9.

Additionally, ARF activates p53 by suppressing the E3 ligase

activities of both Mdm2 and ARF-BP1/HectH9. As a result,

the cell growth program is turned off. By doing so, ARF and

p53 act as the yin force to prevent cells from undergoing

uncontrolled growth and to suppress neoplasia provided by

the yang of c-Myc. However, repeated perturbation of yin and

yang through mechanisms such as inactivation of p53 and

ARF, or activation of c-Myc, MDM2, or ARF-BP/HectH9,

would gradually lead to cell transformation and oncogenesis.

For instance, two N-terminal mutation alleles of c-Myc iden-

tified in human Burkitt’s lymphoma fail to bind to the BH3-only

protein Bim and to effectively inhibit Bcl2 and thus lose their

ability to induce apoptosis but still promote cell proliferation

[151]. Because of this failure, these c-Myc mutant alleles are

able to evade the tumor suppression activity of p53, more

efficiently promoting lymphomagenesis, regardless of their

capability of inducing p53 level [151]. Thus, the interdepen-

dence and fluctuating balance between yin and yang are

represented in cellular homeostasis by p53–c-Myc networks

for the control of cell growth.

One ultimate benefit of identifying these positive and

negative growth regulators and of elucidating their interplay

in cell growth control is to divulge a broad spectrum of

molecular targets that are potentially useful for cancer diag-

nosis and antitumor drug development. For example, the

MDM2–p53 feedback loop has been used as a drug target

[241–244]. ARF-BP1/HectH9, as well as others (as de-

scribed in this review), may be a potential candidate for future

pharmacological studies, once its individual role in tumori-

genesis and its connections with specific tumors have been

firmly established. Yet because most of these proteins reside

in the nucleus or the nucleolus, it would be particularly

challenging to deliver effective drugs against them. Never-

theless, continued dissection of how individual molecules act

in maintaining the balance in cell growth control pathways for

the larger purpose of cellular harmony and homeostasis will

definitely lead to better and promising treatments for cancer in

the future.
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