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Abstract

The transforming growth factorB (TGFB) superfamily

regulates a broad spectrum of biological responses

throughout embryonic development and adult life,

including cell proliferation and differentiation, epithelial-

to-mesenchymal transition, apoptosis, and angio-

genesis. TGFB members initiate signaling by bringing

together a complex of serine/threonine kinase receptors

that transmit signals through intracellular Smad pro-

teins. Genetic alterations in numerous components of

the TGFB signaling pathway have been associated with

several human cancers. In addition, tight regulation of

TGFB signaling is pivotal to the maintenance of homeo-

stasis and the prevention of carcinogenesis. The ubiq-

uitin/proteosome system is one mechanism by which

cells regulate the expression and activity of effectors of

the TGFB signaling cascade. Mounting evidence also

suggests that disruption of the ubiquitin-dependent

degradation of components of the TGFB pathway leads

to the development and progression of cancer. There-

fore, understanding how these two pathways intertwine

will contribute to the advancement of our knowledge of

cancer development.
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Introduction

The transforming growth factor b (TGFb) superfamily is a

large family ofmultifunctional cytokines involved in a number

of biological responses during embryonic development and

adult tissue homeostasis [1,2]. Because it promotes cell

growth inhibition, apoptosis, and differentiation, TGFb has

been described as a potent tumor suppressor [3,4]. Support-

ing this notion, mutations in the components of the TGFb
signaling cascade have been identified in a number of

human cancers, including hereditary nonpolyposis colon

cancer, hepatocellular carcinoma (HCC), and pancreatic

and ovarian cancers [5]. TGFb also functions as a tumor

promoter by stimulating angiogenesis, immunosuppression,

and epithelial-to-mesenchymal transition (EMT) in later

stages of the disease [4,6]. In recent years, ubiquitin-

dependent proteosomal degradation has proven to be an

important mechanism by which cells control TGFb signaling
output. Therefore, it is likely that disruptions in the proteo-

somal degradation of TGFb pathway components may

promote the development and progression of tumors. This

review will focus on how the TGFb signaling cascade is regu-

lated by the ubiquitin/proteosome pathway and how deregula-

tion of this may contribute to cancer.

The TGFB Signaling Pathway

TGFb is the prototypic member of the TGFb superfamily, which

also includes activins, nodals, bone morphogenetic proteins

(BMPs), and anti-Müllerian factor. The cytokines signal through

a heteromeric complex of type I and type II serine/threonine

kinase receptors. Activation of the receptor complex through

ligand binding results in the phosphorylation of the type I

receptor by the type II receptor kinase [1–3,7,8]. Subsequently,

active type I receptors transiently interact with and phosphory-

late receptor-regulated Smads (R-Smads), which are intra-

cellular transducers of TGFb signals. The specificity of TGFb
or BMP responses is dictated by the ability of BMP type I

receptors to phosphorylate and activate the R-Smads, Smad1,

Smad5, and Smad8, whereas TGFb or activin type I receptors

phosphorylate the R-Smads, Smad2 and Smad3. Phosphory-

lated R-Smads then associate with Smad4, the common Smad

(co-Smad), and shuttle to the nucleus [1,2,7–9]. By interacting

with a large repertoire of transcription factors such as FoxH1,

Mixer, LEF-1/TCF, OAZ, GATA-4, or Runx-related proteins, and

cofactors such as CBP/p300, c-ski, SnoN, and histone deacet-

ylases (HDACs), Smads either positively or negatively regulate

specific transcriptional responses to TGFb and BMP signaling

[1,2,7–9]. A third class of Smads—the inhibitory Smads

(I-Smads), which include Smad6 and Smad7—has been iden-

tified as negative regulators of TGFb and BMP signaling. By

interacting with type I receptors, I-Smads block the access of

R-Smads to their specific receptors and inhibit signaling. In

addition, I-Smads can downregulate signaling by targeting cell

surface receptors for ubiquitin-dependent proteosomal degra-

dation [1,2,7–9].

Smads contain two well-conserved globular domains known

asMH1andMH2domains, which are coupled to each other by a
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divergent proline-rich linker region [1,2,7–9]. Although the C-

terminal MH2 domain is highly conserved across all Smads,

the amino-terminal domain of I-Smads shows only a weak

sequence similarity to the N-terminal MH1 domain of other

Smads. Both the MH1 and MH2 domains interact with tran-

scription factors, but only the MH1 domain is able to directly

interact with DNA [1,2,7–9]. Furthermore, the MH1 domain

contains nuclear localization signals and plays a pivotal role

in the nuclear shuttling of Smads [10]. In addition tomediating

association with DNA-binding partners, the MH2 is crucial

for Smad oligomerization and receptor interaction. It has

also been shown to mediate the interaction between Smad2

and Smad3 with the Smad anchor for receptor activation

(SARA). This FYVE domain-containing protein, which is

mainly localized into early endosomes, enhances the recruit-

ment of R-Smads to TGFb receptors and facilitates TGFb
signaling [11]. Although the linker region is less conserved

among Smads, this region comprises a PY motif that medi-

ates the recruitment of E3 ubiquitin ligases and a number of

phosphorylation sites that are important for crosstalk with

other signaling pathways, such as receptor tyrosine kinase–

mediated pathways [8,12].

Smads are the classic intracellular effectors of TGFb
signaling; however, mounting evidence shows that biological

responses can also be elicited through Smad-independent

pathways [12]. Furthermore, there is evidence demonstrat-

ing that TGFbs and BMPs can signal through MAP kinases

(such as ERK, JNK, and p38), PKB/Akt, and LIM kinase 1

[12]. More recently, TGFb signaling has been shown to

regulate EMTand cell migration through PAR6, an important

component of the epithelial polarity complex and a regulator

of tight junction assembly [13].

Ubiquitin-Dependent Regulation of R-Smads

R-Smads play a pivotal role in the transmission of TGFb/
BMP signaling, and their degradation through the ubiquitin-

dependent proteosomal pathway is an important mechanism

by which cells tightly control Smad steady-state levels and

activity. [14]. Ubiquitination occurs through a three-step pro-

cess involving ubiquitin-activating (E1), ubiquitin-conjugating

(E2), and ubiquitin ligase (E3) enzymes [15]. E3 ubiquitin

ligases are generally divided into three classes: HECT

(homologous to the E6-associated protein C-terminus) type,

RING (really interesting gene) type, and U-box type [15].

Although HECT domain–containing E3 ligases directly cat-

alyze the transfer of ubiquitin to the substrate, RING and

U-box domain E3 ligases act as molecular scaffolds that

facilitate the ubiquitination of target proteins [15]. Although

structurally related, the U-box domain differs from the RING

finger domain, as it uses hydrogen bonds, instead of zinc

binding, to stabilize its structure [16].

Smad ubiquitination–related factor 1 (Smurf1) was the

first E3 ubiquitin ligase of the C2/WW/HECT domain class to

be identified as a regulator of TGFb/BMP signaling (Figure 1,

Table 1) [17]. It was shown to target noninducedBMP-specific

Smad1 and Smad5 for degradation through a specific inter-

action between the Smurf1 WW domain and the PY motif

Figure 1. E3 ubiquitin ligases regulating the TGF� signaling pathway. HECT domain, RING type, and U-box E3 ubiquitin ligases regulate both basal levels and

activated components of the TGF� signaling pathway. Black arrows illustrate TGF� signal transduction. Positive (green arrows) and negative (red arrows)

regulation of TGF� signaling components by the ubiquitin/proteosome pathway are also indicated.
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Table 1. E3 Ubiquitin Ligases Targeting Components of the TGFb Signaling Pathway.

E3 Ub Ligase Target Signaling

Dependence

Adaptor Modulator Effect Reference

HECT domain

Smurf1 TbRII/I A Smad6/7 [49]

BMPRII/I A Smad6/7 Inhibition of BMP signaling in Xenopus and mammalian

cells

[52]

Smad1, Smad5 B Downregulation of Smad1 target genes and secondary

axis formation

[17]

B LMP-1 Interference with Smurf/Smad interaction; enhancement

of BMP responsiveness

[78]

Smad4 A (TGFb) R/I-Smad [32]

Smad7 B p300 Acetylation decreases ubiquitination and enhances

the stability of Smad7

[75]

B HDAC1 Deacetylation enhances ubiquitination and decreases

the stability of Smad7

[43,76]

Enhancement of Smad7 Ub and promotion of renal

fibrosis by Smurf1/2

[91]

RhoA B Cdc42/PAR6/aPKC Cell migration, neurite outgrowth [106,107]

A (TGFb) PAR6/aPKC EMT [104]

B Synaptodin Interference with Smurf1/RhoA interaction; inhibition

of podocyte cell migration

[108]

MEKK2 A (BMP2) Regulation of osteoblast activity [87]

Runx2 B Smad6 Inhibition of BMP-dependent Runx2-induced transcription [83]

A (BMP2) p300 and HDAC4/5 Regulation of Runx2 ubiquitin-dependent degradation

and bone formation by dynamic acetylation

[85]

TNF Induction of Smurf1/Smurf2 expression (which mediates

Runx2 degradation) by TNF

[86]

Runx3 A (TGFb) p300 and HDAC5 Regulation of Smurf1/2–mediated Runx3 degradation

by dynamic acetylation

[84]

Smurf2 TbRII/I A Smad7 Downregulation of TGFb transcriptional activity [39]

Alk4 (ActRIB) A Smad7 FKBP12 Regulation of the duration of activin signaling [53]

Smad1, Smad2 B Robust decrease of Smad1 levels but modest decrease

of Smad2 levels; specific inhibition of Smad1 function

[18,19]

Smad2 A Downregulation of Smad2 levels; inhibition of TGFb
transcriptional activity

[18,19]

Smad4 B I-Smad [32]

Smad4 A (TGFb) R-Smad [32]

SnoN A (TGFb) Smad2 [23]

RNF11 B Blocks Smurf2-dependent inhibibion of TGFb signaling [99]

DSmurf Mad A Morphologic defects in larvae cuticle [88]

Nedd4-2 TbRII/I A Smad6/7 Downregulation of TGFb-dependent transcriptional activity [24]

Smad2 A Downregulation of TGFb-dependent transcriptional activity [24]

Smad4 B [32]

WWP1/Tiul1 TbRII/I A Smad7 Downregulation of TGFbR complex and Smad signaling;

inhibition of TGFb growth arrest

[25,26]

Smad2 A TGIF Enhancement of Smad2 turnover; inhibition of TGFb
growth arrest

[26]

Smad4 B R/I-Smad [32]

hAIP4/Itch Smad7 B Stabilization of activated TbRI/Smad7 complex; inhibition

of TGBb signaling in a Ub-independent manner

[54]

HEF1 B Smad3 Induction of HEF1 degradation through Smad3 by TGFb [58,59]

mAIP4/Itch Smad2 A Increase in Smad2 phosphorylation and TGFb growth arrest [112]

RING type

Single subunit

Highwire BMP-like

signaling Medea

A Regulation of synaptic boutons [36]

Ectodermin Smad4 B Restriction of excessive BMP signaling in vegetal

hemisphere of Xenopus blastula; restriction of TGFb/nodal
signaling to animal pole; TGFb growth inhibition in

HepG2 cells

[37]

Cbl-b Smad2 A Increase in Smad2 phosphorylation; in vivo resistance

of Cbl-b�/� T cells to TGFb
[31]

Multisubunit

APC SnoN A (TGFb) Smad3 CDH1 Regulation of cell cycle [56,57]

F-box type

SCFSkp2 Smad4 R100T B Accelerated degradation [65]

Smad4 G65V B Accelerated degradation [65]

ROC-1/SCFbTrCP1 Smad3 A p300 [27]

Smad4 A (TGFb) Jab1 Inhibition of TGFb growth arrest [33,34]

Smad4 R100T B Accelerated degradation [65]

Smad4 G65V B Accelerated degradation [65]

MFB1 DAF-7 pathway Negative regulation of Dauer formation [28]

U-box type

CHIP Smad1, Smad4 B [21]

A, interaction enhanced by signaling; B, interaction observed in basal state.
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of BMP-regulated R-Smads [17]. The cytoplasmic pool of

Smad1 and Smad2 is also regulated by Smurf2 [18,19], a

Smurf1-related E3 HECT-containing ubiquitin ligase shown to

be expressed in response to TGFb signaling [20]. For its part,

the U-box E3 ligase, CHIP (carboxyl terminus of Hsc70-

interacting protein), has also been shown to downregulate

Smad1 andSmad4 steady-state levels (Figure 1, Table 1) [21].

Ubiquitin-mediated proteosomal degradation is important

not only for controlling spurious activation of TGFb/BMP

signaling cascades but also for turning off signaling output

once the biological response has occurred. The growing

number of E3 ubiquitin ligases that are able to downregulate

activated R-Smads and their ubiquitous expression in adult

tissues reflect the importance of the proper regulation of

these signaling molecules for the maintenance of tissue

homeostasis. Degradation of phosphorylated Smad2 was

first observed in human keratinocytes, and although the

E2-conjugating enzymes UbcH5b/c and Ubc3 were impli-

cated in the transfer of ubiquitin moieties onto phospho-

Smad2, a candidate E3 ubiquitin ligase responsible for

substrate specificity had not been identified at the time [22].

In recent years, a number of E3 ubiquitin ligases have been

shown to target activated Smad2 for proteosomal degrada-

tion (Figure 1, Table 1). Although Smurf2 constitutively reg-

ulates R-Smads, the association between Smurf2 and

Smad2/3 is enhanced on TGFb stimulation, suggesting a

role for Smurf2 in the regulation of activated R-Smads

[18,23]. Two othermembers of the E3HECTdomain ubiquitin

ligase class, Nedd4-2 and WWP1/Tiul1, constitutively bind

Smad2, and as with Smurf2/Smad2 interaction, these con-

stitutive interactions are enhanced in response to an acti-

vatedTGFb type I receptor (TbRI) (Figure 1, Table 1) [24–26].
Interestingly, although Nedd4-2 enhanced the polyubiquiti-

nation and degradation of Smad2 in the presence of an

activated TbRI, the ability of WWP1/Tiul1 to target activated

Smad2 for ubiquitin-dependent proteosomal degradation is

not as clear. Although Komuro et al. [25] demonstrated that

the interaction between WWP1/Tiul1 and Smad2 was en-

hanced in the presence of activated TbRI, WWP1/Tiul1 does

not appear to promote the polyubiquitination and degradation

of activated Smad2. However, Seo et al. [26] found that

WWP1/Tiul1 was able to induce the ubiquitin-dependent

degradation of Smad2 in the presence of the transcriptional

corepressor, TGIF. Therefore, it is possible that the ability of

WWP1/Tiul1 to mediate ubiquitin-dependent proteosomal

degradation of Smad2 relies on the presence of additional

protein partners such as TGIF. Interestingly, Smurfs, Nedd4-

2, and WWP1/Tiul1 show a distinct pattern of expression in

human tissues and human carcinoma cell lines [24,25].

Although WWP1/Tiul1 protein expression levels were found

to be moderate to high in the heart, liver, skeletal muscles,

and kidneys, only low levels of Smurf1 expression were

observed in these tissues [25]. Similarly, Nedd4-2 and

Smurf2 also have distinct distribution patterns in certain

tissues such the kidneys, prostate, and testes [24].

The regulation of activated R-Smads is not exclusive to

HECT domain–containing E3 ubiquiting ligases, but may also

occur through the multisubunit RING E3 ligase, Skp-1/Cul/F-

Box (SCF) complex (Figure 1, Table 1). Roc-1, a component of

SCFFbw1a/bTrcP1, interacts with Smad3 and promotes the

SCFFbw1a/bTrcP1–dependent ubiquitination and degradation

of phosphorylated Smad3 in the cytoplasm [27]. As the inter-

action between Roc1 and Smad3 is enhanced in the presence

of the transcriptional coactivator p300, it is thought that SCF/

Roc1–mediated proteosomal degradation is necessary to

terminate Smad3 transcriptional activity [27]. Although molec-

ular targets have not been identified, MFB-1, a novel F-box–

type ubiquitin ligase, negatively regulates Dauer formation in

Caenorhabditis elegans by modulating the DAF-7/TGFb–like
signaling pathway [28]. Proteosomal degradation of activated

Smad1 has also been reported to occur through a complex

comprising the ornithine decarboxylase antizyme (Az) and

the 20S proteosome b subunit, HsN3 [29]. The targeting of

R-Smads for degradation by all three classes of E3 ubiquitin

ligases (Figure 1, Table 1) suggests that ubiquitin-dependent

proteosomal degradation is an important mechanism bywhich

a cell controls its ability to respond to both TGFb and BMP

signaling and that this occurs only when appropriate, thereby

preventing aberrant activation of cascades.

Although the polyubiquitination of R-Smads by a variety of

E3 ligases appears to negatively regulate TGFb/BMP signal-

ing, there is also emerging evidence that suggests a role for

this posttranslational modification in the enhancement of

TGFb signaling (Figure 1, Table 1). Loss of the AIP4/Itch E3

ligase in mouse embryonic fibroblasts results in resistance

to TGFb-induced cell growth inhibition [30]. Although the

turnover rate of TbRIs and Smad2 remained unchanged,

phosphorylation of Smad2 was decreased in AIP4/Itch�/�

cells when compared to AIP4/Itch+/� cells [30]. Biochemical

studies demonstrated that wild-type, but not catalytically

inactive, AIP4/Itch mediated the TGFb-dependent ubiqui-

tination of Smad2, as well as enhanced the interaction be-

tween Smad2 and activated TbRI [30]. Recently, the E3

ubiquitin ligase Cbl-b has also been shown to enhance

TGFb-dependent Smad2 phosphorylation in T cells [31].

Therefore, by promoting Smad2 phosphorylation, E3 ubiq-

uitin ligases may also function as positive regulators of

TGFb signaling.

Regulation of Smad4 through the Ubiquitin-Dependent

Proteosomal Pathway

Being a common intracellular effector of both the TGFb and

BMP signaling pathways, Smad4 is a critical point at which

both cascades can be modulated to maintain homeostasis.

Like R-Smads, Smad4 levels are also regulated by HECT

domain E3 ubiquitin ligases such as Smurf1, Smurf2, Nedd4-

2, and WWP1/Tiul1 (Figure 1, Table 1) [32]. However, be-

cause Smad4 lacks a PY motif, it cannot directly associate

with HECT-containing E3 ligases, but rather recruits the

enzymes through adaptors such as I-Smads and R-Smads

[32]. Consequently, mutations disrupting the interaction

between adaptors and Smad4 also interfere with the

ubiquitin-dependent degradation of Smad4 [32]. Overexpres-

sion of the Jun-activating domain binding protein 1 (Jab1), a

subunit of COP9 signalosome, promotes the interaction

680 Ubiquitin-Dependent Regulation of TGFB Izzi and Attisano
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between Smad4 and the Roc1/SCFbTrCP1 complex, resulting

in the ubiquitination and proteosomal degradation of Smad4

[33,34]. Ectopic expression of oncogenic Ras has also been

shown to enhance Smad4 proteosomal degradation. How-

ever, the molecular mechanism regulating this process has

yet to be defined [35]. Drosophila Highwire (Hiw), a RING-

H2–type E3 ligase, was shown to bind the Smad4-like pro-

tein Medea (Med) in yeast-two hybrid and in vitro binding

assays [36]. Although ubiquitination and proteosomal degra-

dation of Med were not directly demonstrated, complete

genetic removal of Med in hiwmutants suppresses excessive

synaptic growth displayed in hiw single mutants. The hiw

phenotype is also suppressed in wit (a BMP type II receptor)

mutants [36]. Although the neuronal overexpression of yeast

UBP2 or Drosophila Fat Facet (Faf) deubiquitinases resulted

in synaptic overgrowth in wild-type larvae, ectopic expression

of UBP2 and Faf did not cause synaptic overexpansion in

med or wit mutants [36]. Taken together, these observations

suggest that Hiw regulates BMP signaling through Med in a

ubiquitin-dependent mechanism [36]. Recently, Ectodermin,

a single-subunit RING-type E3 ligase, was shown to prevent

excessive BMP signaling in the animal pole of Xenopus

blastula, allowing for the proper development of ectodermal

and neuronal tissues, as well as the restriction of TGFb/
nodal–mediated mesodermal induction to the vegetal hemi-

sphere of the embryo [37]. Furthermore, human Ectodermin

was also shown to restrict TGFb-induced growth arrest in

HepG2 cells [37]. Ectodermin appears to mediate these

biological responses by targeting Smad4 for ubiquitination

and proteosomal degradation, which result in the downregu-

lation of both TGFb and BMP signaling cascades [37].

In addition to being an important posttranslational modifi-

cation by which Smad4 protein levels are controlled, ubiquiti-

nation is also a mechanism by which Smad4 activity is

modulated [38]. Monoubiquitination of lysine 507 in the

MH2 domain of Smad4 enhances the association of co-Smad

with R-Smads and promotes Smad4 transcriptional activity

[38]. Therefore, as for Smad2, ubiquitination of Smad4 can

act to both positively and negatively regulate Smad4 function.

Role of Smads as Adaptor for E3 Ligases

Although Smads have clearly been shown to be substrates

for E3 ubiquitin ligases, they can also function as adaptors to

recruit ubiquitin ligases to other target proteins. This novel

role for Smadswas first described by Kavsak et al. [39]. It was

shown that, upon TGFb stimulation, the I-Smad, Smad7

interacts with Smurf2 and promotes the export of the complex

from the nucleus to the cell surface, where Smad7 acts as

a bridge to target Smurf2 to the TGFb receptor complex

(Figure 1, Table 1) [39]. Although the Smad7 MH2 domain

interacts with activated TbRI, its PY motif associates with

the WW domains of Smurf2 [17,39–41]. Furthermore, the

amino-terminal domain (NTD) of Smad7, through a leucine-

rich motif, recruits the E2-conjugating enzyme UbcH7 to the

HECT domain of Smurf2 and stimulates Smurf2 catalytic

activity [42]. Once recruited to the receptor complex, Smurf2

ubiquitinates Smad7 and promotes the degradation of both

Smad7 and the receptors [39], which occurs in the lipid-raft/

caveolar –dependent endocytic pathway [43]. Alterna-

tively, TGFb receptors also internalize through the clathrin-

dependent endocytic route where they associate with

SARA and cPML and promote Smad-dependent signaling

[11,43–47]. Because TGFb ligand does not seem to prefer-

entially target the receptors to one compartment over an-

other, it is not known what causes receptors to partition into

two different internalization compartments [43]. However, it

is likely that proper partitioning is required for the fine-tuning

of TGFb superfamily signaling. In fact, a recent study dem-

onstrated that memory of activin exposure relied on the time

spent by the activin–activin receptor signaling complex in the

clathrin-dependent endocytic pathway and was abolished

by Smad7/Smurf2 [48].

I-Smads can recruit HECT-E3 ligases other thanSmurf2 to

receptor complexes. Smad7 was also shown to associate

with Smurf1 and to recruit it to the TGFb receptor complex

(Table 1) [49]. The nuclear export of the Smad7/Smurf1

complex is mediated by chromosomal region maintenance

1 (CRM1), an importin b-related nuclear transport receptor,

and the nuclear export signal located in the HECT domain of

Smurf1 [50,51]. As with TGFb receptor complexes, Smad6

and Smad7 are capable of targeting Smurf1 to cell surface

activin and BMP receptors, and of promoting their ubiquitina-

tion and turnover [52,53]. Interestingly, the recruitment of

Smad7/Smurf1 to the activin type I receptor, ALK4 (ActRIB),

is enhanced by FKBP12, an intracellular inhibitor of TGFb
signaling [53]. Furthermore, Smad6 and Smad7 also recruit

non-Smurf HECT E3 ligases such as Nedd4-2, WWP1/Tiul1,

and human AIP4/Itch [24–26,54] to TGFb receptor com-

plexes (Figure 1, Table 1). Nedd4-2 and WWP1/Tiul1 pro-

mote the ubiquitin-dependent degradation of TGFb receptor

complexes, which results in the downregulation of TGFb-
dependent transcription and growth arrest [24–26]. Although

the mechanism by which human AIP4/Itch inhibits TGFb
signaling has not been described, it appears to be indepen-

dent of the ubiquitin-dependent proteosomal degradation of

receptors and Smads [54]. Interestingly, although human

AIP4/Itch inhibits TGFb signaling, the mouse homolog pro-

motes the phosphorylation of Smad2 and the induction of

TGFb signaling [30]. This difference may be due to tissue or

cell type–specific effects. Recent evidence also suggests

an important role for deubiquitinases such as UCH37 in

the regulation of TGFb receptor complexes [55]. A balanced

recruitment of both deubiquitinases and E3 ubiquitin li-

gases is most likely required to assure proper TGFb and

BMP responses.

In addition to I-Smads, R-Smads play an important role in

recruiting E3 ubiquitin ligases to specific substrates. Smad2

is known to recruit Smurf2 and to promote the ubiquitination

and proteosomal degradation of the transcriptional corepres-

sor SnoN (Figure 1, Table 1) [23]. Likewise, the anaphase-

promoting complex (APC) requires Smad3 as an adaptor for

the efficient ubiquitination and degradation of SnoN (Table 1)

[56,57]. The TGFb-dependent degradation of SnoN, either

through Smurf2 or APC, is thought to be a mechanism

through which the amplitude of TGFb signals is modulated
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as SnoN is itself a negative regulator of TGFb target genes.

Smad3 has also been shown to bind human AIP4/Itch and

HEF1, and to promote ubiquitin-dependent proteosomal deg-

radation of thisCas familymember (Figure 1, Table 1) [58,59].

Ubiquitination and Degradation of Oncogenic

Smad Mutants

A number of inactivating mutations have been identified in

Smad2 and Smad4 in a wide range of human carcinomas,

including colorectal, pancreatic, and lung carcinomas [3–5].

In most cases, missense and nonsense mutations cluster in

the MH2 domain of Smads and have been shown to interfere

with Smad homo-oligomerization, hetero-oligomerization,

DNA binding, and nuclear translocation [5]. However, several

mutations also affect Smad protein stability. The HCC-

derived mutation glutamine 407 to arginine (Q407R), as well

as the colorectal cancer–associated mutation leucine 369

to arginine (L369R), in the MH2 domain of Smad2 is highly

unstable and, in the case ofQ407R, rapidly targets Smad2 for

ubiquitin-dependent proteosomal degradation [60,61]. A non-

sense mutation of Smad4 identified in pancreatic adenocar-

cinomas, which results in the deletion of the last 38 amino

acids of theMH2 domain, not only inhibits Smad2 recruitment

andDNAbinding but also targets Smad4 for degradation [62].

Although most Smad mutations localize to the MH2 do-

main, several mutations have also been described in theMH1

domain [38,63,64]. An arginine-to-cysteine mutation at resi-

due 133 of the MH1 domain of Smad2 leads to the increased

ubiquitination and degradation of Smad2 [63]. Likewise,

tumor-derived Smad4 L43S, G65V, R100T, and P130S

mutants all exhibit accelerated polyubiquitination and proteo-

somal degradation when compared to wild-type Smad4

[38,63,64]. A recent study shows that the SCF complex,

comprising either bTrCP-1 or Skp2 as the F-box component,

exhibits stronger binding to cancer-derived Smad4 mutants

(R100TandG65V) and catalyzes amore rapid degradation of

these mutants when compared to wild-type Smad4 (Table 1)

[65]. In summary, a number of inactivating mutations in

Smad2 and Smad4 cause accelerated ubiquitin-dependent

proteosomal degradation and likely result in aberrant TGFb
signaling, thereby promoting cancer development.

Regulation of Smads by other Posttranslational

Modifications

Protein stability and function are regulated by not only ubiq-

uitination but also a number of other ubiquitin-like modifica-

tions, such as SUMOylation, NEDDylation, and ISGylation

[66–69]. Of these three posttranslational modifications,

SUMOylation is the only one to date to be implicated in the

regulation of TGFb pathway components. SUMOylation of

target substrates appears to play an important role in the

modulation of subcellular localization, protein–protein, and

protein–DNA interactions, as well as enzyme activity and

ubiquitin-dependent degradation [66–69]. Several studies

have demonstrated that the SUMO E3 ligase PIASg (protein

inhibitor of activated STATg) interacts with Smad4 and pro-

motes its SUMOylation, which results in enhanced nuclear

accumulation, protein stability, and transcriptional activity

[70–72]. However, a recent report also demonstrates that

SUMOylation decreases the ability of Smad4 to transactivate

an artificial GAL4 promoter, suggesting that SUMOylation

may affect Smad4 transcriptional activity either positively or

negatively on different promoters [73]. PIASg has also been

shown to modify Smad3 [74]; therefore, the contradictory

effects resulting from Smad4 SUMOylation may be, in part,

explained by the simultaneous SUMOylation of Smad3.

Smad3 modification may inhibit complex formation with

Smad4 or regulate Smad3 binding to DNA, which could both

result in the downregulation of Smad4 transcriptional activity.

Alternatively, SUMOylation of Smad4 may lead to the recruit-

ment of cofactors, and the specificity of this recruitment may

be cell type–specific, which could also explain the different

effects observed on Smad4 transcriptional activity.

A number of proteins, including transcription factors and

other nuclear proteins, have been found to bemodified by the

addition of an acetyl group on the q amino group of lysine

residues. Like SUMOylation, the functional consequences of

acetylation are as diverse as increasing protein stability,

regulating protein–protein and protein–DNA interactions,

and inhibiting nuclear export. The histone acetyltransferase

p300 was shown to interact and acetylate Smad7 on two

lysine residues located in the amino-terminus of the I-Smad.

Although acetylation neither interfered with Smad7/Smurf1

complex formation nor prevented nuclear export or recruit-

ment of the complex to cell surface receptors, it did appear to

protect Smad7 from polyubiquitination [75]. Furthermore,

deacetylation of Smad7 by HDACs enhances both Smad7

polyubiquitination and turnover [76]. Taken together, these

observations suggest that a balance between acetylation and

deacetylation controls Smad7 protein stability. Acetylation of

Smad7 may protect it from premature Smurf1-mediated

degradation, allowing the recruitment of the Smad7/Smurf1

complex to cell surface receptors. However, once Smad7/

Smurf1 is recruited to the receptors, deacetylation may be

induced to promote the ubiquitination and degradation of the

TGFb receptor/Smad7/Smurf1 complex.

Biological Role of Smurfs

As negative regulators of TGFb and BMP signaling, Smurfs

have been proven to have key functions during both normal

biological responses (such as EMT, cellular migration, and

bone formation) and pathogenic processes (such as fibrosis

and cancer).

Recently, a number of in vitro and in vivo studies have

provided insight on the physiological role of the ubiquitin/

proteosome pathway in the downregulation of BMP signaling

during bone development. Ectopic expression of Smurf1

induces the proteosomal degradation of Smad5 and thereby

blocks BMP-induced osteogenic conversion of pluripotent

C2Cl2 myoblasts [77]. Recent studies have also demon-

strated that LMP-1, a LIM domain protein, inhibits Smad1

and Smad5 recruitment to Smurf1 and subsequent degrada-

tion, resulting in enhanced BMP signaling and bone nodule
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mineralization [78]. Gain-of-function studies in mice have

demonstrated that overexpression of Smurf1, under the

control of the Col1a1 promoter, leads to inhibition of osteo-

blast differentiation and reduced bone formation [79]. In

contrast, a subsequent study showed that mice in which

ectopic expression of Smurf1 was driven by the Col1a2

promoter exhibited no appreciable phenotype [80]. However,

mating Smurf1 and Smad6 transgenic animals produced

double-transgenic pups with a similar but more severe phe-

notype than that of the Smad6 transgenic mice, which in-

cluded delayed chondrocyte hypertrophy and postnatal

dwarfism with osteopenia [80]. This phenotype was due to

an impairment of BMP signaling, as decreased phospho-

Smad1, Smad5, and Smad8 were observed in trabecular

bone sections [80]. Although these studies show different

phenotypes for Smurf1 transgenic mice, likely due to the use

of different promoters to drive the overexpression of the

transgene, both studies show that Smurf1 plays a specific

role in bone formation in vivo, even if only a supportive role to

Smad6. Interestingly, Smurf1 has also been shown to regu-

late BMP-induced embryonic lung growth by downregulating

Smad1 and Smad5, suggesting that the requirement of

Smurf1 for proper BMP signaling is important for homeosta-

sis in a number of tissues [81].

The Runx family of transcription factors plays critical

functions during development and disease, and all three

Runx proteins have been shown to interact with R-Smads

and to regulate several TGFb/BMP target genes [82]. In ad-

dition, Runx proteins are themselves regulated by com-

ponents of the TGFb/BMP pathway [82]. Overexpression of

Smurf1 in 2T3 osteoblasts downregulates both Smad1 and

Runx2 protein levels and inhibits terminal osteoblast dif-

ferentiation [79]. Moreover, Smad6 recruits Smurf1, Smurf2,

and WWP1/Tiul1 to downregulate Runx2 protein levels

(Table 1) [83]. Recent evidence also suggests that, although

TGFb/BMP–dependent acetylation of Runx2 and Runx3 by

p300 counteracts Smurf1-dependent ubiquitination and deg-

radation, HDAC4- and HDAC5-mediated deacetylation of

Runx proteins appears to promote their turnover [84,85]. In-

terestingly, tumor necrosis factor promotes Runx2 ubiquitin-

dependent proteosomal degradation by upregulating Smurf1

and Smurf2 protein expression in osteoblasts [86]. There-

fore, regulation of Runx2 by Smurfs may also occur indepen-

dently of BMP signaling (Table 1).

Although overexpression studies in cell culture or gain-of-

function studies in mice have confirmed the importance of

Smurfs in Smad-dependent TGFb/BMP signaling, loss-of-

function studies have demonstrated that disruption of the

mouse Smurf1 gene does not alter Smad-dependent sig-

naling but rather affects BMP-induced osteoblast activity by

promoting the ubiquitination and destruction of MEKK2, an

activator of JNK signaling (Table 1) [87]. In Drosophila,

disruption of DSmurf activity leads to both spatial and tem-

poral expansions of phosphorylated MAD, an R-Smad–like

protein [88]. Morphologically, expansion of phospho-MAD re-

sults in the appearance of a posterior hole in the cuticle, as

well as hindgut defects, in mutant embryos (Figure 1, Table 1)

[88]. Overlapping the expression and activity of numerous E3

ubiquitin ligasesmay explain why loss of Smurf1 activity does

not significantly affect TGFb or BMP signaling in mice. How-

ever, in Drosophila, where only two E3 ubiquitin ligases

(DSmurf andHiw) have been described to negatively regulate

BMP-like signaling, disruption of DSmurf activity has more

severe effects on Smad-dependent signaling, thereby high-

lighting their pivotal role in regulating Smad function in vivo.

Although TGFbs have been shown to inhibit the prolifera-

tion of most cell types, their principal effect on mesenchymal

cells is to stimulate the proliferation and production of the

extracellular matrix, and tomediate fibrogenesis [89]. Fibrotic

diseases such as scleroderma, pulmonary fibrosis, liver cir-

rhosis, and a variety of nephropathies have been linked to

aberrant TGFb signaling [89]. Moreover, evidence suggests

that disruption of the ubiquitin/proteosome–dependent reg-

ulation of TGFb signaling promotes fibrosis. A recent study of

glomeruli isolated from rats with antithymocyte serum ne-

phritis demonstrated downregulation of Smad2 protein levels

that are inversely correlated with increased Smurf2 levels

[90]. Similarly, progressive fibrosis and enhanced TGFb
signaling in kidneys from a mouse model with progressive

tubulointerstitial fibrosis were associated with increased

Smurf1/2 protein levels and a concomitant decreased in

Smad7 protein levels (Table 1) [91]. Interestingly, gene ex-

pression profiling of scleroderma-associated lung fibroblasts

revealed increased Smad7 and Smurf2 expression in re-

sponse to TGFb stimulation [92]. Furthermore, two studies

have shown that deregulated Smad7 expression is asso-

ciated with impaired TGFb signaling in scleroderma (Ssc)

fibroblasts [93,94]. Dong et al. [93] showed that decreased

Smad7 expression in Ssc fibroblasts was associated with

increased phospho-Smad2/3 levels and enhanced TGFb-
dependent PAI-1 gene expression, suggesting that de-

creased Smad7 expression resulted in enhanced TGFb
signaling. In contrast, Asano et al. [94] reported that Ssc

fibroblasts exhibited a marked increase in Smad7 expression

and enhanced phospho-Smad2 andTbRI proteins levels, and
hypothesized that impaired Smad7-dependent degradation

of TbRI could be due to mutations in either Smad7 or Smurfs.

However, overexpression of wild-type Smad7 or Smurfs in

Ssc fibroblasts did not affect TbRI levels, suggesting that

other components of the ubiquitin/proteosome pathway may

be disrupted in Ssc fibroblasts [94]. UbcH7, which is recruited

by Smad7 to Smurf2 [42], may be mutated in Ssc fibroblasts,

and this may affect TbRI turnover. Alternatively, Caveolin-1,
which was shown to regulate Smad7/Smurf2–mediated re-

ceptor degradation [43], is downregulated in lung fibroblasts

of scleroderma patients [95], and this may be responsible for

impaired receptor degradation.

Disruption of TGFb signaling is commonly observed in

human cancers, and genetic alterations of different compo-

nents of the TGFb signaling cascade, such as the receptors

Smad2, Smad4, and Smad7, have been described in a

number of pancreatic, lung, breast, gastrointestinal, and

gynecologic cancers [2,3,5]. Being important regulators of

various components of the TGFb signaling cascade,

misregulated expression or aberrant function of E3 ubiquitin

ligases, such as Smurfs, Nedd4-2, WWP1/Tiul1, AIP4/Itch,
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Ectodermin, and the SCF complex, would gravely affect

TGFb signal transmission and potentially result in human

cancer development and progression. cDNA microarray-

based comparative genomic hybridization analysis of a set

of pancreatic carcinoma cell lines has identified Smurf1 in

DNA amplifications [96]. Likewise, reverse transcription–

polymerase chain reaction studies have shown that human

carcinoma cell lines such as colon HT-29, breast MDA-MB-

231, gastric MKN-1, and ovarian OVCAR-5 all display high

levels of one or more E3 ligases, including Smurf2, Ectoder-

min, Nedd4-2, and WWP1/Tiul1 [24,25,37]. In addition,

PRAJA, a RING-H2 E3 ubiquitin ligase that targets ELF (a

positive regulator of Smad4) for degradation is overex-

pressed in two gastric cancer cell lines (NCI-187 and SNU-

1) and likely blocks TGFb signaling by downregulating Smad4

activity through ELF [97]. Because HT-29 and MKN-1 cells

have also been described as being resistant to TGFb growth
inhibition [24], overexpression of E3 ubiquitin ligases in pro-

liferating cells likely results in downregulation of TGFb sig-

naling, and, consequently, allows these cells to escape

TGFb-induced growth inhibition and to participate in tumor

development.

Although evidence of aberrant TGFb signaling resulting

from altered E3 ubiquitin ligase activity is still scarce in human

cancers, high expression levels of Smurf2, associated with

low levels of Smad2 phosphorylation, have been detected in

esophageal squamous carcinoma [98]. This suggests that

downregulation of TGFb signaling by Smurf2 is not limited to

cell lines maintained in culture indefinitely but actually pro-

motes tumor development in humans. In contrast, upregula-

tion of TGFb signaling through downregulation of E3 ubiquitin

ligase activity is also likely to enhance the tumor promoter

activity of TGFb in later stages of the disease. RNF11, a

RING-H2 finger protein highly expressed in prostate and

invasive breast cancers, has been shown to block Smurf2-

dependent activity and to promote TGFb signaling in human

tumors [99,100]. RNF11 has also been shown to interact with

Smurf1, AIP4/Itch, and WWP1/Tiul1; thus, it may be a novel

common adaptor for E3 ubiquitin ligases that regulate TGFb
signaling [99,100]. Interestingly, recent studies have also

shown that Smurf2, upregulated by telomere attrition, uses

the p53 and Rb pathways to induce replicative senescence

through E3 ubiquitin ligase– independent activity [101].

These data also suggest a novel function for Smurf2 in tumor

development, which is independent of its role in the TGFb
signaling cascade.

The importance of TGFb signaling in cancer is not limited

to its capacity to promote growth inhibition and apoptosis in

early cancer development, but also includes its ability to

induce angiogenesis, immunosuppression, and epithelial-

to-mesenchymal (EMT) transition (Fig. 2) in later stages of

the disease [2]. EMT is a multistep process involving disso-

lution of epithelial tight junctions; disruption of adherens

junctions; cytoskeletal reorganization; loss of cell polarity;

repression of epithelial markers such as E-cadherin, ZO-1,

and b4 integrin; and upregulation of mesenchymal proteins

such as vimentin [102]. Regulation of EMT by TGFb is com-

monly thought to occur through the induction of a mesenchy-

mal gene expression profile in either a Smad-dependent or

a Smad-independent mechanism [103]. However, recent

evidence reveals a newmechanism bywhich TGFb regulates
EMT in a Smad-independent and transcription-independent

Figure 2. Smurf1-regulated RhoA degradation mediates EMT. (A) T�RI is restricted to tight junctions by occludin. In tight junctions, T�RI interacts with PAR6. (B)

In response to TGF�, T�RII is recruited to tight junctions and forms a complex with T�RI and PAR6. T�RII phosphorylates PAR6, thereby stimulating the

recruitment of Smurf1 to tight junctions. (C) Smurf1 promotes the ubiquitination and degradation of RhoA, resulting in tight junction dissolution and EMT.
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manner (Figure 2) [104]. In polarized epithelial cells, TbRIs
and TGFb type II receptors (TbRII) have distinct localization

patterns [104]. Although TbRII is localized to puncta distrib-

uted over the cell surface, occludin restricts TbRI to tight

junctions where it recruits PAR6 (Figure 2A) [104,105]. In

response to TGFb stimulation, TGFbRII is recruited to tight

junctions where it interacts with TbRI and directly phosphor-

ylates PAR6 (Figure 2B) [104]. TGFb-dependent phosphor-
ylation of PAR6 allows the recruitment of Smurf1, which in

turn mediates the localized ubiquitination and degradation

of RhoA, resulting in tight junction dissolution and EMT

(Figure 2C) [104]. Smurf1, through the Cdc42/PAR6/PKC~
complex, also regulates dynamic actin cytoskeletal re-

modeling by mediating localized RhoA degradation in filo-

podia and lamellipodia (Figure 3) [106]. Altogether, the

Smurf1-mediated degradation of RhoA appears to be in-

volved in multiple steps during the progression of cancer.

By contributing to the dissolution of tight junctions, Smurf1

supports the transdifferentiation of epithelial cells to a

fibroblastoid phenotype and, subsequently, by regulating

cytoskeletal remodeling, promotes cell migration. Smurf1-

dependent downregulation of RhoA has also been reported

to regulate neurite outgrowth in Neuro2A neuroblastoma

cells, as well as cell migration in kidney podocytes [107,108].

Synaptopodin, a proline-rich actin-associated protein, regu-

lates podocyte cell migration through RhoA ubiquitin–

dependent degradation by competing with Smurf1 for RhoA

binding [108]. Taken together, these data suggest that both

normal and transformed cells regulate dynamic actin cyto-

skeletal remodeling through localized Smurf1-mediated ubiq-

uitination and degradation of RhoA (Figure 3).

Conclusions

Like many other signaling cascades, the TGFb and BMP

pathways are tightly regulated at different levels by ubiquitin-

dependent proteosomal degradation. The complexity by

which the ubiquitin/proteosome pathway regulates what

appears, at first, to be a simple linear TGFb signaling path-

way is astounding. By regulating unactivated cytoplasmic

pools of R-Smads, the ubiquitin/proteosome pathway pre-

vents spurious activation of the TGFb/BMP cascade and

assures that cells remain competent to receive incoming sig-

naling cues. In addition, the targeted ubiquitination and

degradation of receptors, Smads, and transcription factors,

in response to TGFb or BMP stimulation, are a means by

which signaling is turned off. A growing list of HECT domain,

RING type, and U-box E3 ubiquitin ligases, both directly or

through adaptors, targets components of the signaling path-

way for degradation and thus assures proper signaling over a

wide variety of tissues and organs. Exciting new evidence

shows that E3 ubiquitin ligases not only act as negative

regulators but also enhance TGFb signaling by promoting

R-Smad phosphorylation. By controlling the turnover of

many tumor suppressors and oncoproteins, the ubiquitin/

proteosome pathway plays a pivotal role in the develop-

ment and progression of cancer [15,109–111]. Alteration of

ubiquitin-dependent proteosomal degradation of TGFb sig-

naling pathway components is also associated with cancer

development. Overexpression of E3 ubiquitin ligases, as de-

scribed in a number of human carcinomas and cancer cell

lines, likely contributes to cancer development by downregu-

lating TGFb pathway components, resulting in decreased

TGFb-dependent expression of genes involved in growth

Figure 3. Smurf1-dependent RhoA degradation mediates cell migration. The Cdc42/PAR6/aPKC complex recruits Smurf1 to filopodia and lamellipodia where it

locally degrades RhoA and promotes cell migration.
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inhibition and apoptosis. Adventitious expression of Smurf1

may promote cancer invasion and metastasis by potentiating

EMTand cell migration [104]. Undeniably, the pivotal role held

by E3 ubiquitin ligases in the regulation of TGFb-dependent
biological responses makes it a worthy target for the devel-

opment of small-molecule or peptide-based inhibitors for use

in future therapeutic treatments.
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