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Júlio S. S. Bueno Filho,* Steven G. Gilmour† and Guilherme J. M. Rosa‡,1

*Departamento de Ciências Exatas, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-000, Brazil, †School of Mathematical
Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom and ‡Department of Animal Science and

Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824-1225

Manuscript received February 15, 2006
Accepted for publication July 19, 2006

ABSTRACT

Microarray experiments have been used recently in genetical genomics studies, as an additional tool
to understand the genetic mechanisms governing variation in complex traits, such as for estimating
heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for
inferring regulatory networks controlling gene expression. Several articles on the design of microarray
experiments discuss situations in which treatment effects are assumed fixed and without any structure. In
the case of two-color microarray platforms, several authors have studied reference and circular designs.
Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic
questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured
treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such
as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are
discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within
family structures or complex pedigrees) are presented. In these cases treatments are more appropriately
considered to be random effects, with specific covariance structures, in which the genetic goals relate to
the estimation of genetic variances and the heritability of transcriptional abundances.

MICROARRAY technology allows the monitoring of
messenger RNA (mRNA) abundance in cells for

thousands of genes simultaneously (Schena et al. 1995;
Lockhart et al. 1996). Microarray experiments have
been used extensively to provide a surrogate measure of
gene activity to compare expression levels of treatment
groups (within either experimental or observational
contexts), such as different tissues, cell types (e.g., dis-
ease and normal cell) in a specific tissue, different de-
velopmental stages, or experimental conditions (e.g.,
different drugs or stress conditions).

The application of this technology however, especially
for two-color platforms (either cDNA or long oligonu-
cleotide arrays), poses some experimental design chal-
lenges. As samples are assayed in a pairwise competitive
hybridization fashion on each slide, microarray experi-
ments using two-color systems impose a block structure
with blocks of size two. Whenever more than two groups
are compared, this defines an incomplete block design,
in which estimated treatment effects and differences
between slides are partially confounded. In addition, as
each sample is labeled with a different dye on each slide,
microarray experiments involve an additional blocking
factor to be accounted for, which leads to a row–column,
or two-way blocking, structure (slide–dye combination).

Many articles on design for two-color microarray ex-
periments make some comparison of efficiency or
power (Kerr and Churchill 2001; Yang and Speed

2002; Kerr 2003; Rosa et al. 2005; Steibel and Rosa

2005; Tempelman 2005; Vinciotti et al. 2005) of dif-
ferent designs. Most of them focus on the comparison of
a discrete set of designs, such as reference and circular
structures. Wit et al. (2005) present a more general
approach, searching for optimal designs given specific
experimental conditions and optimality criteria. It is
shown that the optimal microarray design for a spe-
cific optimality criterion may refer to a more complex
experimental layout than simple reference or circular
structures.

The objective of the experiment guides the choice of
the treatment structure, whereas the definition of the
experimental units leads to the blocking structure of
the experiment. As discussed throughout this article,
the treatment choice in microarray experiments is gen-
eral for any platform (e.g., high-density short oligos,
cDNA, or long oligonucleotide technologies), whereas
the blocking structure depends on the microarray tech-
nology, such as two-color arrays (in which slides refer to
a blocking factor) or single-color arrays such as Affymet-
rix (in which each sample is hybridized to a different
slide). The treatment structure (as well as the number of
replications) depends also on the practical/logistical
constraints of the experiment, such as limited biological
samples (limited either by the number of individuals to

1Corresponding author: 456 Animal Sciences Bldg., 1675 Observatory Dr.,
University of Wisconsin, Madison, WI 53706. E-mail: grosa@wisc.edu

Genetics 174: 945–957 (October 2006)



be assayed or by the amount of mRNA from each in-
dividual) or number of slides available. The choice of
the experimental unit, which can be an individual (such
as a plant or animal, hereinafter denoted as a subject) or
a group of subjects (such as a family or mRNA pool),
may impose some spatial or genetic structure among
units, which should be taken into account when assign-
ing treatments to units.

Microarray experiments have been recently used on
genetical genomics studies, as an additional tool to
understand the genetic mechanisms governing varia-
tion in complex traits, such as disease susceptibility in
human medicine or production traits in agriculture.
Microarray experiments using related subjects can be
utilized, for example, to infer heritabilities of mRNA
transcript abundances (Monks et al. 2004). In addition,
gene expression profiling can be combined with marker
genotype information for mapping expression quanti-
tative trait loci (eQTL; Jansen and Nap 2001; Brem

et al. 2002; Darvasi 2003; Schadt et al. 2003) and to
infer regulatory networks controlling gene expression
(Chesler et al. 2004; Bystrykh et al. 2005).

In this article we discuss the optimal design of micro-
array experiments whose goals refer to specific genetic
questions, such as the comparison of expression levels
of different genotypic groups, eQTL studies, or estima-
tion of heritabilities of mRNA transcript abundances.
This goes beyond the scope of earlier work on fixed,
unstructured treatments.

The experimenters’ interest might be in specific
treatment comparisons, e.g., referring to additive and
dominance effects. Treatments may refer to families or
to subjects (within family structures or complex pedi-
grees) in a given experiment. In these cases treatments
are more appropriately considered to be random ef-
fects, with specific covariance structures. These covari-
ance structures should then be taken into account when
planning microarray experiments, so that the efficiency
of broad inferences to the population of interest is
maximized.

The high cost of microarrays greatly limits the sample
sizes of heritability or gene-mapping studies of mRNA
abundance traits ( Jin et al. 2004). Therefore, a careful
design of such experiments is extremely important to
make the most of the limited number of slides that are
generally available in a single experiment.

This article is organized as follows. In the next section
we review some experimental design concepts, such as
treatment choice, treatment-to-unit allocation, design
optimality criteria, and some useful methods and results
on optimal designs. The third section presents genetic
research goals that can motivate microarray studies
with two or more treatments, such as genotypic groups.
Treatments are considered fixed, but the genetic com-
ponent that defines the treatments provides a natural
structure (which is translated into genetic parameters
of interest, such as additive and dominance effects),

which should be explored when designing the experi-
ments. In the fourth section, the design of microarray
experiments with random treatments is discussed. Treat-
ments in this case may refer to related individuals or
families, and the main goal of the experiments relates to
inference on genetic variances and heritabilities. Fi-
nally, some concluding remarks are presented in the last
section.

DESIGN PRINCIPLES AND CRITERIA

The general statistical principles of the design of ex-
periments apply to experiments of any kind, including
microarray studies. The general procedure for choosing
a good design involves the following steps (see also
Bailey 1981, 1997; Mead 1990):

1. The objectives of the experiment lead to the choice
of a set of treatments (groups to compare).

2. The experimental units (here the combination of
slides and dyes) that can be used are identified and
any expected patterns of variability among them lead
to a choice of blocking structure (here a row–column
structure).

3. Consideration of any restrictions on which treat-
ments can be applied to which units might lead to
complex structures such as split-plot designs.

4. Given 1–3, a combinatorial, algorithmic or ad hoc
method is found to construct a design.

The block structure is already clear and we do not dis-
cuss complex structures here, so the two main tasks in
developing a design are treatment choice and treatment-
to-unit allocation.

Treatment choice: When the experimental resources
are limited, a choice of the treatments that will be
represented in the experiment, from a larger set of
candidate treatments, might be needed. In some sit-
uations particular treatments cannot be produced, or
the number of candidate treatments is too big for all of
them to be implemented. For example, suppose we want
to study isolines for transgenic versions of three genes
(A/a, B/b, and C/c) from some parental line. Even
restricting each locus to express just the homozygote
genotypes, it is unlikely that all seven desired isolines
will be obtained by transformation events or any other
currently known gene manipulation techniques. Start-
ing from the nontransgenic genotype (AABBCC), for
instance, a single mutation may give rise to the geno-
types AABBcc, AAbbCC, or aaBBCC; however, two or
three mutations are needed to obtain the genotypes
AAbbcc, aaBBcc, and aabbCC or aabbcc, respectively.
Another and more obvious example is given by partial
diallels, in which some crossings cannot be done. We
discuss later in this article some multilocus analysis
problems. In these cases, we need to define a model for
the treatment effects and an optimality criterion related

946 J. S. S. Bueno Filho, S. G. Gilmour and G. J. M. Rosa



to the variances of the estimated parameters of the
model. Then we must find a method of searching for
a design that optimizes the criterion, e.g., using the
optimal continuous (approximate) design theory de-
veloped from Kiefer and Wolfowitz (1960) or a com-
puter algorithm that searches for the optimal exact
design, such as those developed from Fedorov (1972).
As stated earlier, the treatment choice in microarray
experiments is independent of the array platform, so
the same procedure can be used for single- or two-color
technologies.

Treatment-to-unit allocation: A given set of treatments
(and their respective replication numbers) should be
combined in an optimal way within a given experi-
mental setup. In the context of two-color microarray
experiments, for example, this setup is given by the
number of slides and the two labels (Cy3 and Cy5 dyes).
Again, construction of the design might require optimal
design theory, this time most likely using a computer
search.

The treatment-to-unit allocation applications dis-
cussed in this article are specific to two-color array plat-
forms (cDNA or long oligos), in which samples should
be allocated in pairs to the slides (blocks). With single-
color microarrays (such as Affymetrix), on the other
hand, each sample is hybridized to a different slide,
so this is not an issue and allocation should be done
completely at random.

Linear mixed models for microarray experiments:
The outcomes of a microarray experiment are luminous
intensities of thousands of genes, which are propor-
tional to their mRNA transcriptional abundances. After
suitable normalization, the response intensities from
gene g in a two-color microarray experiment can be
represented by the model

ygijk ¼ mg 1 dgi 1 agj 1 tgk 1 egij ; ð1Þ

(Wolfinger et al. 2001), where ygijk is the normalized
intensity of the gene expression measured by the dye
(label) i of the array j that received treatment k, mg is
a common experimental constant, dgi is the effect of dye
i (green or red), agj is the effect of array (or slide) j, tgk

is the effect of the treatment k, and egij is a residual
term. We consider a single gene at a time for design
purposes, as the same model is generally used to analyze
all genes in a single experiment, and so the subscript g
is dropped. Different experimental layouts may need
extra terms in the model for the appropriate modeling
of the data. With Affymetrix data, for example, there is
no dye effect in the model, but a hierarchical structure
could be used to model intensities at the probe level,
by including the effects of probe sets (clones) and of
probe pairs within clones. Model choice should then be
closely connected to treatment and block structures of
the experiments (Rosa et al. 2005).

As additional assumptions of model (1), residual
terms can be modeled as being normally distributed

with variance s2
e; likewise, as arrays come from a pop-

ulation of possible assembled arrays, their effects can be
modeled as random normal variables centered around
zero, with variance s2

a. The term ‘‘treatment’’ here is
used in a very broad context, representing either experi-
mental groups (such as genotypic classes) or families
(and subjects within families) in quantitative genetics
studies to estimate heritabilities. Therefore, treatment
effects can be modeled as fixed or random, depending
on the objective of the experiment.

The usual matrix notation for linear mixed models
such as model (1) is

y ¼ Xb 1 Zu 1 e; ð2Þ

where y and e are vectors with elements yijk and eij ,
respectively, b is the vector of fixed effects, X is a known
(design) matrix that relates y to b, u is the vector of
random effects, and Z is the matrix that relates y to u. An
extra assumption is that u � N ð0;UÞ, where U is the
covariance matrix of the random effects.

Note that the treatment effects can be taken as being
either fixed or random and so they can be contained in
either b or u, depending on the experimental context.
In the examples discussed in this article, whenever
treatment effects are considered random, they are as-
sumed normally distributed; i.e., t � N ð0;Gs2

t Þ, where
G is a matrix of known constants representing, for ex-
ample, genetic relationships among the elements in t
(such as a numerator relationship matrix A; Henderson

1976), and s2
t is the variance among treatments, such as

an additive genetic variance.
Design criteria: The covariance matrix of the param-

eter estimates for model (2) is the inverse of the in-
formation matrix M, where

M }
X9X Z9X
X9Z Z9Z 1 s2

eU�1

� �
:

Almost any sensible criterion defining design efficiency
is a function of the information matrix M.

Costs are important when comparing alternative ex-
perimental designs. In this article, however, designs
are generally compared for a given number of slides. As
pointed out by Yang and Speed (2002), the number of
slides is generally the most important limiting factor
in microarray experiments. In addition, for two-color
microarray platforms, as the variation between slides is
generally larger than the variation within slides, block-
ing by slides is crucial. Since the ratio of between-slide to
within-slide variation is unknown, it is usual to design
experiments for the worst case, i.e., where this ratio is
very large, in which case the design problem becomes
equivalent to one with fixed blocks. Note, however, that
after the experiment is run, in the mixed-models data
analysis, we will estimate the variance components; if
their ratio turns out to be large, we will estimate the
treatment effects with the precision expected when we
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chose the design; if their ratio turns out to be small, then
the interblock information will give us estimates of
treatment effects better than expected when we chose
the design.

In this context, Kerr and Churchill (2001) used the
so-called A-optimality criterion to compare block de-
signs for microarray studies with simple treatment
structures, and Yang and Speed (2002) discussed the
efficiency of alternative designs for specific contrasts of
interest in factorial and time course experiments. Kerr

(2003) later argued in favor of double reference designs
as being suboptimal but more robust when compared to
loop designs. Glonek and Solomon (2004) studied
some alternative designs for factorial treatment struc-
tures. More general work on two-level factorial designs
in blocks of size two, which has some relevance, has been
done by Draper and Guttman (1997), Yang and
Draper (2003), Wang (2004), and Kerr (2006).

Similar sorts of experiments are now being used for
understanding the genetic basis of mRNA transcript
abundances, with a variety of experimental settings. For
example, fixed treatment effect models arise in genetic
analysis when comparing multilocus genotypic groups,
including interaction (epistasis) terms. In addition,
random treatment effect models may be used in quan-
titative genetics to infer genetic variances and heritabil-
ities. No work, however, has been published on optimal
design for microarray experiments in situations where
the treatments have any of these structures.

In each of the following sections we present different
experiments and discuss possible parameter contrasts
of interest, as well as the variances of their estimates,
sometimes weighted to correct for scale problems. In
each situation, alternative optimality criteria are dis-
cussed. We assume that all power comparisons have a
monotonic (inverse) relation with the variances of the
desired comparisons and describe treatment structures
in microarray experiments for some common goals in
genetic studies. The resulting designs are depicted by
a set of arrows representing the slides, with heads and tails
denoting alternative dye labeling (Cy3 and Cy5). Arrows
(slides) refer always to different biological replications
from each experimental group, unless otherwise stated.

GENETIC STUDIES WITH FIXED TREATMENT
EFFECTS

Two treatment groups in microarray experiments:
Genetic motivation: One of the simplest scenarios that
results in two-treatment experiments arises with a single
candidate gene (with alleles B and b) and a backcross
(BC) or double-haploid (DH) experiment. In these cir-
cumstances, individuals belong to one of two possible
genotypic groups, namely Bb or bb if in a BC experi-
ment and BB or bb if in a DH scenario. In both
situations one is interested in the additive effect ðaÞ of
the candidate gene on the expression of each gene

represented in the microarray slide, i.e., how polymor-
phisms at a specific site of the genome affect transcrip-
tion activity of other genes in the genome. Such effects
are generally referred to as trans-acting factors ( Jansen

and Nap 2001).
The model (1) for such a simple treatment structure

can be written with tk ¼ qka. For the BC situation, qk is a
design index on genotypes assuming values q1 ¼ 0 (for
genotype bb) and q2 ¼ 1 (for genotype Bb). In this sit-
uation, one wants to estimate a ¼ t2 � t1 and the vari-
ance of this contrast is given by Varð̂t1 � t̂2Þ ¼ Varð̂t1Þ1
Varð̂t2Þ � 2 Covð̂t1; t̂2Þ. For the DH situation, q1 ¼ 0 (for
genotype bb) and q2 ¼ 2 (for genotype BB). In this
situation, one wants to estimate a ¼ 1

2ðt2 � t1Þ, and the
variance of this comparison is given by one-quarter of
the right-hand side of the above variance. As these two
variances are proportional, the same optimal design
minimizes both of them.

In a microarray experiment, such a simple two-
treatment group situation can arise within a selective
phenotyping approach based on a single locus (or small
chromosomic region), as proposed by Jin et al. (2004),
or within a candidate gene context in which one is
interested in the effect of a specific locus (e.g., trans-
gene) on the expression of other genes in the genome
(see, for example, Noueiry et al. 2000).

Another example is to define two experimental groups
by taking the extremes of the phenotypic distribution of
a quantitative trait of interest (Lander and Botstein

1989). By comparing the allelic frequencies of molecu-
lar markers between the two groups, candidate regions
containing genes contributing to variation of the phe-
notypic trait can be pinpointed. In the context of mi-
croarrays, candidate genes are generated by searching
for differential transcript abundances between the two
groups. In any situation, the proportions of the selected
individuals should be made small enough so that the
two phenotypic groups are quite distinct (Darvasi and
Soller 1992).

Microarray experiments with two experimental groups
define row–column designs obtained from multiple
copies of a 2 3 2 Latin square (in the case of two-color
systems), for which extensive literature is available.

Three treatment groups in microarray experiments:
Genetic motivation: In some situations there are three
possible genotypes in a segregating population, for ex-
ample, with F2 populations and codominant markers.
The genotypes for each marker can then be described
by an additive–dominance model. Here we discuss the
case of a single locus (such as a candidate gene sit-
uation) and its trans-acting effect on the expression of
other genes. The case of multiple loci is discussed later
in this article, with factorial and fractional factorial
treatment structures.

Treatment choice: An additive–dominance treatment
effect of a candidate gene in an F2 population can be
expressed as tk ¼ qka 1 ð1� jqk jÞd, where qk ¼ �1; 0; 1,
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for genotypes bb, Bb, and BB, respectively. Denote by
rk the proportion of the n observations that represent
each genotypic group (k ¼ 1, 2, 3). The model can be
rewritten as y ¼ m1n31 1 Qða

d
Þ1 e, where 1n31 is a col-

umn vector of ones and Q gives the incidences of
genotypes bb, Bb, and BB as

Q9 ¼
�1 �1 � � � �1 0 0 � � � 0 1 1 � � � 1

0 0 � � � 0 1 1 � � � 1 0 0 � � � 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n3r1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n3r2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n3r3

2
664

3
775:

Both parameters can be optimally estimated using the
same proportion for each homozygous genotype (bb
and BB), in which case r1 ¼ r3 ¼ r and r2 ¼ 1 � 2r. The
information matrix is then given by

M ¼
1 0 1� 2r
0 2r 0

1� 2r 0 1� 2r

2
4

3
5 n

s2
e

and the covariance matrix is

M�1 ¼

1
2r 0 � 1

2r

0 1
2r 0

� 1
2r 0 � 1

2rð2r�1Þ

2
64

3
75s2

e

n
:

Figure 1 plots changes in the variances of the pa-
rameter estimates with the proportion (r) of each
homozygous group. If one is interested solely in the
(trans-acting) additive effects, just homozygotes should
be considered in the design. To estimate (trans-acting)

dominance only, half of the observations should be
taken from the heterozygotes and one-quarter from
each of the homozygotes. To estimate additive and dom-
inance effects simultaneously, it is necessary to define an
optimality criterion. Throughout this article, we use the
A-efficiency on this scale, i.e., the mean of the variances
of the estimates, but in any real experiment careful
thought should be given to whether a weighted mean of
the variances would be a more appropriate criterion.
The A-optimal proportion of each homozygote is the
irrational number ropt ¼ 1�

ffiffiffi
2
p

=2. As no possible num-
ber of arrays satisfies this optimum exactly, an approx-
imation is needed. It is reasonable to use �0.293 of
the observations for each homozygote and the remain-
ing 0.414 of the observations for the heterozygote
group.

Suppose, for example, that we are interested in the
best design that can be made with only 10 slides using a
two-color microarray platform. We proceed as follows.
To estimate just additive effects, each homozygous
genotype (BB or bb) will have 10 replications. The het-
erozygote group, in this case, is not included in the
experiment. To estimate only dominance effects there
will be 5 replications of each homozygous genotype
and 10 replications of the heterozygote group. Finally, for
estimation of both additive and dominance effects, the A-
optimal design has 6 replications for each homozygote
and the remaining 8 replications for the heterozygote.

Treatment-to-unit allocation: After the treatments have
been chosen (i.e., the number of replications for each ge-
notypic group), the next step in planning the microarray

Figure 1.—Average variances of the estimates
of genetic parameters for a single-locus experi-
ment as a function of the proportion of each ho-
mozygous group (r), when the experiment goal is
to estimate the additive effect (A), the domi-
nance effect (B), or both additive and dominance
effects simultaneously (C).
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experiment is the treatment-to-unit allocation, i.e., de-
scribing which treatment should be applied to each
unit, when array and color effects are in the model. The
optimal design for estimating just additive effects with
10 slides is shown in Figure 2A, in which all slides have
the two homozygous genotypes only, with alternating
directions of the Cy3 and Cy5 labeling. If one is con-
cerned with estimating dominant effects, all of the
slides should have one of the homozygous genotypes
cohybridized with the heterozygous genotype, as shown
in Figure 2B. Finally, if both additive and dominance
effects are to be estimated, combinations of the two

types of slide should be used (Figure 2C). It is worth
mentioning that the designs of Figure 2, A–C, are,
respectively, �100, 50, and 9% more efficient than the
classical loop structure. When compared to the refer-
ence design, their relative efficiencies are 6.6, 4.7, and
3.4, respectively.

Generalization of these results for multiple loci:
The effect of multiple candidate genes on the overall
genome transcriptional activity can be investigated at
once in a single microarray study. With simple line-
crossing experiments, each gene (locus) may have ei-
ther two or three levels (possible genotypes), depending
on the mating system used (BC or DH and F2, re-
spectively). Therefore, the treatment structure for L loci
is a factorial of the series 2L or 3L for two or three possible
genotypes in each locus, respectively. A suitable model
for the expression of the treatments in such a system,
including epistasis, is given by

tk1k2 ;...;kL ¼
XL

l¼1

qkl al 1
XL

l¼1

ð1�jqkl jÞdl 1
XL�1

l¼1

XL

l9.l

qkl qkl 9
aall9

1
XL�1

l¼1

XL

l9.l

qkl ð1�jqkl 9
jÞadll9 1

XL�1

l¼1

XL

l 9.l

ð1�jqkl jÞqkl9
dall9

1
XL�1

l¼1

XL

l9.l

ð1�jqkl
jÞð1�jqkl9

jÞddll9:

If necessary, higher-order interloci interactions (ad-
ditional epistatic effects) can also be included in the
model. A parsimonious version of this model can be ob-
tained by reducing the order of the estimable epistatic
effects. For example, in a situation with two loci with
three possible genotypes each, only five parameters
would be needed to model phenotypes (i.e., transcrip-
tional profiling) from the nine possible genotypes if no
epistasis is to be estimated.

A matrix representation of a two-locus version (alleles
A/a and B/b, respectively) without epistasis is given by

y ¼ m1n31 1 Q1
a1

d1

� �
1 Q2

a2

d2

� �
1 e;

where Ql ðl ¼ 1; 2Þ is a representation of the design
matrix for each locus. If total sampling control of the
population of genotypes is possible, equal representa-
tion of each homozygote genotype for each locus could
be considered. Let rjl represent the proportion of geno-
type j for locus l. In this case, assuming equal propor-
tions of homozygotes within each locus, we have r11 ¼
r31 ¼ r:1 and r12 ¼ r32 ¼ r:2. Table 1 presents the num-
ber of observations for each genotype and the expected
phenotypic values.

The information matrix for this model is given by

M ¼ n

s2
e

1 0 1� 2r:1 0 1� 2r:2
0 2r:1 0 0 0

1� 2r:1 0 1� 2r:1 0 ð1� 2r:1Þð1� 2r:2Þ
0 0 0 2r:2 0

1� 2r:2 0 ð1� 2r:1Þð1� 2r:2Þ 0 1� 2r:2

2
666664

3
777775

Figure 2.—Optimal designs for estimating trans-acting ad-
ditive effects (A), dominance effects (B), and both additive
and dominance effects (C) from one gene, with 10 slides in
a two-color microarray experiment.
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and so the covariance matrix of the estimated model
parameters is

M�1¼s2
e

n

r:1 1r:2�2r:1r:2
2r:1r:2 0 � 1

2r:1 0 � 1
2r:2

0 1
2r:1 0 0 0

� 1
2r:1 0 � 1

2r:1ð2r:1�1Þ 0 0

0 0 0 1
2r:2 0

� 1
2r:2 0 0 0 � 1

2r:2ð2r:2�1Þ

2
666666664

3
777777775
:

The optimal designs for this situation are a straight-
forward extension of the optimal proportions for each
genotype: r:l ¼ 1

2, r:l ¼ 1
4, and r:l ¼ 1�

ffiffiffi
2
p

=2, if one is
interested in estimating additive, dominance, or both
effects for each locus l, respectively.

As an example, Table 2 gives the optimal number of
replications of each genotype in a two-locus experiment
with 10 slides. For estimating additive effects only, the
treatments compose a 22 factorial set, equally replicated.
For estimating dominance or both additive and domi-
nance effects, the treatments correspond to 32 factorial
designs with different replications in the two cases. It

can be seen that the design obtained by continuous
techniques can be directly implemented only for ad-
ditive effects; in the other two situations an approxima-
tion is needed. For dominant effects, the continuous
optimal design gives 0.0625 3 20 ¼ 1.25 and 0.0125 3

20 ¼ 2.5, which were approximated by 1 and 3, re-
spectively. This reflects a decrease in the relative im-
portance of homozygote combinations as compared to
values for the optimal large sample design. On the other
hand, the genotype AaBb has only four replicates (in-
stead of 0.25 3 20 ¼ 5). This specific treatment choice
does not allow a straightforward application of the con-
tinuous optimal design theory and the design chosen
might not actually be optimal. The same problem hap-
pens when estimating both additive and dominant
effects: either the approximation of 0.0858 3 20 ¼
1.716 � 2 or the truncation of 0.1213 3 20 ¼ 2.426 � 2
forces the final treatment choice away from the large-
sample optimal genotype proportions.

After the treatment choice is performed, the design
of the experiment is completed with the treatment-to-
unit allocation step. Optimal two-color microarray de-
signs (with 10 slides) for inferring additive, dominance,
or both effects are shown in Figure 3. Similarly to the
situation with a single locus, a clear pattern of allowing
only the important contrasts within each slide arises
from these pictures as well. It can be seen that all the
comparisons for estimating additive effects are done
among homozygotes for each locus. For estimating dom-
inance effects, all slides bring a comparison of a homo-
zygous with the heterozygous genotype, for both loci.
Moreover, for the simultaneous estimation of additive
and dominance effects, the two types of comparison are
needed. The relative efficiencies of the designs of Figure
3, A–C, are, respectively, 1.5, 2.9, and 2.1 when com-
pared with the loop design and�5.1 compared with the
reference design.

Note that these designs are still optimal for estimating
the a- and d-effects for one locus (say for gene A/a) even
if the other locus considered (say B/b) has no effect at

TABLE 1

Expected phenotypic value and number of observations
for each genotype in a two-locus experiment with

an F2 population

Genotype Expected phenotypic value No. of observations

AABB m 1 a1 1 a2 r.1r.2n
AABb m 1 a1 1 d2 r.1(1 � 2r.2)n
AAbb m 1 a1 � a2 r.1r.2n
AaBB m 1 d1 1 a2 (1 � 2r.1)r.2n
AaBb m 1 d1 1 d2 (1 � 2r.1)(1 � 2r.2)n
Aabb m 1 d1 � a2 (1 � 2r.1)r.2n
aaBB m� a1 1 a2 r.1r.2n
aaBb m� a1 1 d2 r.1(1 � 2r.2)n
aabb m� a1 � a2 r.1r.2n

TABLE 2

Optimal number of replications of each genotype in a two-locus experiment with no epistasis,
using 20 experimental units

Parameters of interest

Genotype Optimal proportions a’s d’s (a and d)’s

AABB r.1r.2 0.25n ¼ 5 0.0625n � 1 �0.0858n � 2
AABb r.1(1 � 2r.2) 0n ¼ 0 0.125n � 3 �0.1213n � 2
AAbb r.1r.2 0.25n ¼ 5 0.0625n � 1 �0.0858n � 2
AaBB (1 � 2r.1)r.2 0n ¼ 0 0.125n � 3 �0.1213n � 2
AaBb (1 � 2r.1)(1 � 2r.2) 0n ¼ 0 0.25n � 4 �0.1716n � 4
Aabb (1 � 2r.1)r.2 0n ¼ 0 0.125n � 3 �0.1213n � 2
aaBB r.1r.2 0.25n ¼ 5 0.0625n � 1 �0.0858n � 2
aaBb r.1(1 � 2r.2) 0n ¼ 0 0.125n � 3 �0.1213n � 2
aabb r.1r.2 0.25n ¼ 5 0.0625n � 1 �0.0858n � 2
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all! Similar conclusions can be generalized to situations
with more than two loci and larger numbers of slides.

It is interesting to note how different the designs
of Figure 3, which explore a natural structure on treat-
ment groups, are from the optimal designs for two-color
microarray experiments involving unstructured treat-
ments, which tend toward symmetry whenever possible.
For example, Figure 4 depicts two experiments, one
involving four treatments and 10 slides (Figure 4A) and
the other with nine treatments and 9 slides (Figure 4B).
The experiment with nine treatments is an example of
the so-called loop (or circular) design commonly found

in the literature, whereas the experiment with four
treatments consists of two loops with reverse-dye label-
ing plus two additional interwoven connections.

Multiple loci with epistatic effects: Suppose that in
this situation (two loci with three genotypes each and 10
slides of a two-color microarray system), we would like
also to estimate trans-acting epistasis (i.e., how the joint
effect of two loci changes the expression of other genes
in the genome) with the following model:

tk1k2;...;kL
¼ qk1 a1 1qk2 a2 1ð1� jqk1 jÞd1 1ð1� jqk2 jÞd2

1qk1 qk2 aa12 1qk1ð1� jqk2 jÞad12 1ð1� jqk1 jÞqk2 da12

1ð1� jqk1 jÞð1� jqk2 jÞdd12:

In selecting an optimal design, careful thought must
be given to which classes of designs are considered as
candidates. In this situation, it is reasonable to insist on
choosing a treatment set that is symmetrical with respect
to the two gene loci, i.e., that is genewise balanced. The
best genewise balanced design is given in Figure 5. Note
that in all slides one locus has its genotype repeated
while the other varies. This allows us to infer each
genomic expression and interaction independently but
at the expense of decreasing precision for the main
effects parameters previously of interest (additive and
dominance effects).

Figure 3.—Optimal designs for estimating trans-acting ad-
ditive effects (A), dominance effects (B), and both additive
and dominant effects (C) of two nonepistatic genes, with
10 slides in a two-color microarray experiment. Dashed arrows
connect the homozygous genotypes in the corners.

Figure 4.—Optimal designs for two-color microarray ex-
periments with four (A) and nine (B) unstructured treat-
ments of fixed effects and 10 and 9 slides, respectively.
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GENETIC STUDIES WITH RANDOM TREATMENT
EFFECTS

Multiple-treatment microarray experiments: Apart
from those situations in which 2L or 3L factorials arise
from targeting L genes, there are other genetic objec-
tives that need many treatments. One common goal in
genetic studies is to obtain good estimates of genetic var-
iances and heritabilities. Within a genetical genomics
context this means studying the heritability of the
mRNA abundance of thousands of genes, having only
a sample of n subjects (with a specific relationship struc-
ture among them) to look at.

In genetic models with random treatments, the treat-
ment effects are often the subject effects. This is the
case, for example, with the so-called animal models
(Lynch and Walsh 1998), which have been extensively
used in animal breeding and more recently in plant
breeding (mainly in forestry). For a comprehensive pre-
sentation of modern analytical techniques for such
models refer to Sorensen and Gianola (2002).

For these situations we have the problem of finding
good designs to obtain estimates using the best linear
unbiased predictors of breeding values, given a known
pedigree or family structure. The best designs are very
specific for each pedigree and estimation objective, as
discussed below.

Design criterion: Bueno Filho and Gilmour (2003)
argued that a suitable criterion for selecting among
related treatments can be obtained as a weighted
average of the variances of all pairwise contrasts. This
criterion has a broad relevance and estimating genetic
variance components and heritabilities is one of the
possible goals. In the following examples we apply this
criterion to two small experimental situations to illus-
trate some features of optimal designs. In Table 3, two
situations are presented, involving nine animals com-
ing from either a hierarchical or a factorial mating
system.

These two different pedigrees result in the additive
(numerator) relationship matrices

Ah¼

1 0:25 0:25 0 0 0 0 0 0
0:25 1 0:25 0 0 0 0 0 0
0:25 0:25 1 0 0 0 0 0 0

0 0 0 1 0:25 0:25 0 0 0
0 0 0 0:25 1 0:25 0 0 0
0 0 0 0:25 0:25 1 0 0 0
0 0 0 0 0 0 1 0:25 0:25
0 0 0 0 0 0 0:25 1 0:25
0 0 0 0 0 0 0:25 0:25 1

2
6666666666664

3
7777777777775

and

Af ¼

1 0:25 0:25 0:25 0 0 0:25 0 0
0:25 1 0:25 0 0:25 0 0 0:25 0
0:25 0:25 1 0 0 0:25 0 0 0:25
0:25 0 0 1 0:25 0:25 0:25 0 0

0 0:25 0 0:25 1 0:25 0 0:25 0
0 0 0:25 0:25 0:25 1 0 0 0:25

0:25 0 0 0:25 0 0 1 0:25 0:25
0 0:25 0 0 0:25 0 0:25 1 0:25
0 0 0:25 0 0 0:25 0:25 0:25 1

2
6666666666664

3
7777777777775

(Lynch and Walsh 1998), where the indices h and f
refer to the hierarchical and factorial mating systems,
respectively.

Restricting our discussion to the estimation of addi-
tive variance components, it can be seen that in such
cases we need to find both the best replication for each
treatment and the best treatment-to-unit allocation. It
is worth noting that in this case ‘‘treatments and rep-
lications’’ can refer either to families and sibs within
families or to biological individuals and technical
samples from the same individual.

As an illustration, consider two replications of each
treatment (individual). For this kind of group-divisible
treatment set, it is suggested (Bueno Filho and
Gilmour 2003) that the best designs are in the class of
regular graph designs (e.g., loop designs), but the allo-
cation of treatments to treatment labels is important.
The best design is one that avoids relatives (in this case,
paternal or maternal half-sibs) in the same array, as
much as possible. Therefore, the resulting optimal de-
signs are more restrictive for the factorial than for the

Figure 5.—Optimal design for estimating trans-acting ep-
istatic effects between two genes, with 10 slides in a two-color
microarray experiment.

TABLE 3

Examples of hierarchical and factorial mating systems with
nine progeny

Hierarchical Factorial

Progeny Dam Sire Dam Sire

1 1 1 1 1
2 2 1 2 1
3 3 1 3 1
4 4 2 1 2
5 5 2 2 2
6 6 2 3 2
7 7 3 1 3
8 8 3 2 3
9 9 3 3 3
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hierarchical setup. In Figure 6 optimal designs for these
two situations are depicted.

More complex situations can be found in practice, in
which larger numbers of individuals can be considered
and some other important measures can be taken.
Lynch and Walsh (1998) discuss simple pedigrees in
which analytical results are possible and suggest the best
number of families and individuals within families to
use in the experiment. For more complex pedigrees,
however, a general search algorithm should be utilized,
as sometimes it is the only way to get a useful design. The
algorithm we have used is a simple modification of
the exchange algorithm of Fedorov (1972). This has
the following general form:

1. List the possible candidate treatments.
2. Choose a random set of n treatments, which becomes

the current design.

3. If the current design does not allow the model to be
fitted, return to step 2.

4. Systematically exchange each treatment in the cur-
rent design with each (different) treatment in the
candidate set. Accept any exchanges that improve
the criterion to get a new current design, continuing
until no exchange improves the design.

5. When no improvement is possible, the current
design becomes the final design returned by the
algorithm.

It is common practice to restart the algorithm with
several random starting designs and to choose the best
design found overall.

As an illustration, consider a treatment choice prob-
lem with a microarray experiment with a limited num-
ber of slides, for which a subset of 40 subjects needs to
be chosen among a population of 80 animals with the
pedigree given in Figure 7. An R function was developed
to search for optimal designs when treatment effects
are random, with any covariance structure among them
(i.e., any pedigree setup), such as in this situation. The
treatments (animals) selected in the resulting design
are indicated by solid circles in Figure 7. Such a design
is good only for this very specific situation and it is
not possible to produce deep generalizations. The only
clear message with messy pedigrees is that a search
algorithm may be the only way to reach a good (if not
optimal) design for these experiments.

In another very common situation in animal exper-
imentation, related individuals are subjected to differ-
ent experimental procedures (such as different diets,
drugs, etc.). In these circumstances both random and
fixed treatment effects are present in the experiment.
Such experiments may have multiple objectives and
variance component (or heritability) estimation can
be one of them. One should be aware, however, that

Figure 6.—Optimal design for a microarray experiment
with nine treatments, having random effects, representing
nine progenies from hierarchical (A) and factorial (B) mating
systems (Table 3). (A) Different circle shadings refer to differ-
ent paternal half-sibs. (B) Each shape and shading denote a
different dam and sire, respectively. In both cases, each geo-
metric figure represents a subject (biological replication),
which is assayed in two slides each (technical replication).

Figure 7.—Three-generation pedigree with 80 individuals
in two genetically disconnected groups, from which 40 indi-
viduals (solid circles) were selected for a microarray experi-
ment to infer mRNA abundance heritabilities.
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designs that are optimal for some of these objectives
might not be so for others. An example of such a sit-
uation is given in Table 4. The experiment consists of 20
pigs from five full-sib families of size four, to be arrayed
on a limited set of 10 two-color system slides. The four
individuals in each family (litter) refer to two male and
two female sibs that were selected at random. One ani-
mal from each sex was submitted to one of two experi-
mental treatments (placebo and drug). Two different
objectives of the study were considered: (a) estimation
of heritability and (b) estimation of the fixed effects of
drug and sex, as well as the interaction between them.
Optimal designs for each of these situations for a spe-
cific configuration of variance components are pre-
sented in Figure 8.

It can be seen that in the first situation (estimation of
heritability) the search algorithm converged to a design
in which all slides connected individuals from different
sibs. Also, all slides have individuals of the same sex
and/or same experimental group (placebo or drug).
Conversely, if the experiment goal is to infer the ef-
fects of sex, drug, and their interaction, the genetic
covariance among sibs becomes another blocking fac-
tor, which the search algorithm tended to confound or
combine with the blocking effect of arrays. In this case,
the slides now tend to assay genetically related individ-
uals. As expected, to infer the main effects of drug and
sex, some of the slides compare individuals of the same
sex, but different experimental groups (such as those of
family 5), while others compare individuals of the same

group, but different sex (such as those of family 3). In
addition, a third set of slides compares individuals of
different sex and experimental groups (e.g., family 1) to
infer the interaction between sex and drug effects.

CONCLUDING REMARKS

This article discusses the design of microarray experi-
ments whose goals refer to a variety of genetic questions,
such as the comparison of expression levels of different
genotypic groups, eQTL studies, or estimation of heri-
tabilities of mRNA transcript abundances.

The general approach adopted for choosing a good
design consists of a first step of treatment choice, in which
subjects (as well as their experimental group labels) are
selected to be included in the experiment. This first step
is general and common to any microarray experiment,
regardless of platform. In the case of two-color micro-
array systems, however, the design choice is followed by
treatment-to-unit allocation, in which mRNA samples are
assigned in an optimal way to slides and dye labeling.

Figure 8.—Optimal designs for the estimation of heritabil-
ity (A) and fixed effects of drug and sex and their interaction
(B), in a two-color microarray experiment with five full-sib
swine families of two males (squares) and two females (cir-
cles), submitted either to a placebo (open squares and cir-
cles) or to a drug treatment (shaded squares and circles).

TABLE 4

Litter, treatment (drug), and sex of 20 piglets available
for microarray experiments for inferring the effects

of sex, drug, and the interaction between sex
and drug, as well as the heritability

Progeny Litter Drug Sex

1 1 Yes F
2 1 Yes M
3 1 No F
4 1 No M
5 2 Yes F
6 2 Yes M
7 2 No F
8 2 No M
9 3 Yes F
10 3 Yes M
11 3 No F
12 3 No M
13 4 Yes F
14 4 Yes M
15 4 No F
16 4 No M
17 5 Yes F
18 5 Yes M
19 5 No F
20 5 No M
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It has been shown how the design choice should be
intimately related to the goal of the experiment, such as
the contrast between fixed effects (e.g., the comparison
of alternative drugs or the expected phenotypic value of
different genotypes), or inference regarding variance
components (such as genetic variances), or heritability
of transcriptional levels.

Sometimes it is possible to have an analytical solution
for the optimality problem, but in many situations a
numerical solution is needed. Whenever a numerical
solution is implemented, a complete search (comparing
all possible designs) guarantees the optimal finding.
A complete search, however, is often unattainable due
to the size of the search problem involved. In these si-
tuations algorithms are needed that can find optimal or
near-optimal designs. R functions were developed for
searching and comparing the different designs discussed
in this article; they can be obtained directly from the
authors.

As a final remark, it is important to note that this
article considers a single gene at a time for design pur-
poses, as the same model is generally used to analyze all
genes in a single experiment. This is not an issue for
fixed-effects models (such as for the examples compar-
ing genotypic groups) as the optimal design criteria for
fixed-effects models depend only on the design matrix.
This is not true in mixed- or random-effects models, as
in these cases optimal designs depend on both the
design matrix and the variance components parame-
ters. Since the variance parameters vary among genes,
the optimal design for one gene may be different from
that for another gene. As a consequence, caution is
needed before we simplify the optimal design for the
microarray to an optimal design for a single gene if
random- or mixed-effects models are considered.

This is a very interesting topic, which deserves further
research. A possible approach to this issue would be to
use an empirical distribution for the genetic variances
or heritabilities to weight the decision function that
yields the design criterion. Alternatively, ‘‘robust’’ de-
signs could be sought by focusing on the high herita-
bility genes. This could be achieved by putting more
weight on the higher heritabilities than suggested by an
empirical distribution or by even ignoring the region of
low heritability when searching for good designs. An
extreme version of this approach would be by taking
genetic effects as fixed, but in general this would be an
inefficient strategy. Moreover, while modeling genetic
effects as fixed may be simple with experiments in-
volving family structures such as half- or full-sibs, it is
not clear how this approach could be easily extended
for complex pedigrees.
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