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ABSTRACT

Genetic analysis of transcriptional regulation is a rapidly emerging field of investigation that promises
to shed light on the regulatory networks that control gene expression. Although a number of such studies
have been carried out, the nature and extent of the heritability of gene expression traits have not been
well established. We describe the inheritance of transcript levels in liver tissue in the first filial (F1) gener-
ation of mice obtained from reciprocal crosses between the common inbred strains A/J and C57BL/6J.
We obtain estimates of genetic and technical variance components from these data and demonstrate that
shrinkage estimators can increase detectable heritability. Estimates of heritability vary widely from tran-
script to transcript, with one-third of transcripts showing essentially no heritability (,0.01) and one-
quarter showing very high heritability (.0.50). Roughly half of all transcripts are differentially expressed
between the two parental strains. Most transcripts show an additive pattern of inheritance. Dominance
effects were observed for 20% of transcripts and a small number of transcripts were identified as showing
an overdominance mode of inheritance. In addition, we identified 314 transcripts with expression levels
that differ between the reciprocal F1 animals. These genes may be related to maternal effect.

MICROARRAY technology has enabled the mea-
surement of transcript levels for thousands of

genes simultaneously. It has been used to identify gene
expression changes in response to treatments or over
time (Brown and Botstein 1999; Parmigiani et al.
2003; Choudhuri 2004). However, there is growing
interest in the application of microarray technology to
investigate the genetic control of transcript levels. The
expression level of each gene in a genetically segregat-
ing population can be treated as a quantitative trait for
genetic analysis (Darvasi 2003). For example, Schadt

et al. (2003) conducted microarray experiments on 111
mice from an intercross population and mapped 4339
quantitative trait loci (QTL) that are associated with
variation in gene expression. Monks et al. (2004) pro-
filed 167 individuals in 15 human families using mi-
croarray and estimated the heritability of genes that
are differentially expressed in the children. They found
that 31% of these genes are heritable and median her-
itability is 0.34. Additional studies have been carried
out in yeast (Brem et al. 2002), mouse (Hitzemann et al.
2003; Bystrykh et al. 2005; Chesler et al. 2005), rat
(Hubner et al. 2005), and human (Morley et al. 2004)
mapping populations.

Another aspect of the genetic analysis of gene expres-
sion as quantitative traits is the characterization of the
pattern of genetic inheritance in F1 hybrids (Gibson

and Weir 2005). Gibson et al. (2004) compared the
gene expression between inbred parents and hybrid
F1 Drosophila using microarray and found that 33%
of the genes were different between F1’s and parents.
Interestingly, only 25% of transcripts were found differ-
ent between the two inbred parents and only 2% of
these transcripts show additive patterns of inheritance.
Auger et al. (2005) analyzed the expression of 30 maize
genes using Northern blotting and found that 20 genes
exhibited significant dominance effects. These studies
indicate that inheritance patterns of gene expression
show extensive nonadditivity. Vuylsteke et al. (2005)
studied three Arabidopsis accessions and two pairs of
reciprocal F1 hybrids using cDNA arrays. They found
that�30% of genes analyzed are differentially expressed
between each pair of the three accessions and only
�10% of the genes show significant dominance effects
(Vuylsteke et al. 2005). A shortcoming of these studies
is that pooled biological samples were often used
without biological replication and statistical inferences
are based on technical variance only. In this study, we
compare transcript levels in liver samples from inbred
mouse strains A/J (A) and C57BL/6J (B) and their F1

hybrid progenies from reciprocal crosses (A 3 B and
B 3 A) using three independent biological samples
from each group and two technical replicates of each
biological sample. This design allows us to partition the
total variation in each transcript into genetic, biological
(but nongenetic), and measurement components. These
inferences apply to the populations of inbred mice. We
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applied a shrinkage estimator for each variance com-
ponent and demonstrate that this improves the esti-
mated heritability of gene expression.

MATERIALS AND METHODS

Animals and tissue collection: Mice were obtained from
The Jackson Laboratory and maintained on standard (6% fat)
chow diet in a clean mouse room facility on a 14:10 light:dark
cycle. F1 mice were obtained from reciprocal crosses between
parental strains A and B. Three female mice were sampled
from each strain (A, B, A 3 B, and B 3 A) for microarray
analysis. Mice were fasted starting at 7:00 am on the day of
collection and collections were completed between 10:00 and
11:30 am. All mice were 8 weeks (6 4 days) at the time of tis-
sue collection. Two tissue samples were collected from each
mouse and stored directly in RNAlater (Ambion, Austin, TX)
following dissection and later homogenized in TRIzol (In-
vitrogen, Carlsbad, CA).

Microarray processing: Total RNA was isolated by standard
TRIzol methods according to the manufacturer’s protocols,
and the quality was assessed using a 2100 Bioanalyzer in-
strument and a RNA 6000 Nano LabChip assay (Agilent Tech-
nologies, Palo Alto, CA). Following reverse transcription with
an oligo(dT)-T7 primer, double-stranded cDNA was synthe-
sized with the Superscript double-stranded cDNA synthesis
custom kit (Invitrogen). In an in vitro transcription (IVT)
reaction with T7 RNA polymerase, the cDNA was linearly
amplified and labeled with biotinylated nucleotides (Enzo
Diagnostics, Farmingdale, NY). Fifteen micrograms of biotin-
labeled and fragmented cRNA was then hybridized onto
MOE430v2.0 GeneChip arrays (Affymetrix, Santa Clara, CA)
for 16 hr at 45�. Posthybridization staining and washing were
performed according to manufacturer’s protocols using the
Fluidics Station 450 instrument (Affymetrix). Finally, the
arrays were scanned with a GeneChip Scanner 3000 laser
confocal slide scanner. The images were quantified using
GeneChip Operating Software (GCOS) v1.2 (Affymetrix).

Statistical analysis of microarray data: Data preprocessing:
Probe intensity data from all 24 arrays were read into the
R software environment (http://www.R-project.org) directly
from .CEL files using the R/affy package (Gautier et al.
2004), which was also used to extract and manipulate probe
level data to assess data quality and to create expression
summary measures. Normalization was carried out using the
robust multiarray average (RMA) method (Irizarry et al.
2003) to form one expression measure for each probe set on
each array. RMA processing was performed on all probe
intensity data sets together. Briefly, the RMA method ad-
justed the background of perfect match (PM) probes, applied
a quantile normalization of the corrected PM values, and
calculated final expression measures using the median polish
algorithm.

Statistical analyses of the expression summaries were con-
ducted using the R/maanova package version 2.3.0 (http://
www.jax.org/staff/churchill/labsite/software/Rmaanova) in
the R environment with models and tests specified as below.

Probe set-specific ANOVA models: To identify transcripts that
are differentially expressed across the 12 mice in the experi-
ment, we fitted a fixed-effect ANOVA model to the expression
data from each probe set using the model

yjk ¼ m 1 Sj 1 ejk ; ð1Þ

where m is the overall probe set mean, Sj ( j ¼ 1, . . . , 12) is the
deviation from the overall mean in the jth mouse, and ejk is the
deviation of the kth (k¼ 1, 2) measurement from the mean of

mouse j. This model ignores the strain information and treats
the two samples from each mouse as independent technical
replicates.

To estimate effects of each strain and test for overall genetic
effects, a mixed-ANOVA model was fitted to each gene:

yijk ¼ m 1 Gi 1 MjðiÞ1 ejk : ð2Þ

Here, the Sj effect in Equation 1 is decomposed into a fixed
genetics (strain) effect, Gi (i¼ 1, 2, 3, 4) and a random mouse
effect Mj(i) (j¼ 1, 2, 3) nested within strain Gi. This model was
also used to identify transcripts that show significant variation
among mice within strain by testing the mouse effect Mj(i) in
model (2).

Estimating variance components: We estimated the variance
components for strain (ŝ2

g), mouse (ŝ2
m), and technical rep-

licates (ŝ2
e ) by treating all effects except m as random in

model (2). These variance components were estimated using
the restricted maximum-likelihood (REML) method (Searl

et al. 1992; Witkovsky 2002). The estimated variance esti-
mates were then stabilized using a shrinkage estimator based
on Stein’s method (Cui et al. 2005). For estimating the mouse
variance in each strain, the data were split into four subsets
corresponding to the four strains. The mouse variance for
each strain was estimated using the same model as model (1)
except that the sample effect Sj ( j¼ 1, 2, 3 here) was treated as
random.

Estimating heritability: Heritability was computed using the
estimated strain, mouse, and technical variance components
for each transcript as

h2 ¼
ŝ2

g

ŝ2
g 1 ŝ2

m 1 ŝ2
e

: ð3Þ

Testing for strain effect, mouse effect, and strain contrasts: To
test the overall difference among the 12 mice, the variation
explained by the Sj term in model (1) was compared to the
technical variance using the shrinkage-based Fs-test (Cui

et al. 2005). The empirical distribution of the Fs-statistic was
established through permutation analysis, where the rows of
the design matrix corresponding to the Sj term were shuffled
1000 times randomly while the data were kept unchanged
(Kennedy and Cade 1996; Cui et al. 2005). The Fs-statistics
calculated from the permutations were pooled across genes
that are not significant (Xie et al. 2005) at the nominal 0.1 level
according to a conservative gene-specific F-test to form one
overall empirical distribution. The percentile of the Fs from
observed data in the empirical distribution provides an esti-
mate of the P-value for each gene. To test the natural biological
variation after accounting for strain effect, the Mj(i) term in
model (2) was tested against the technical variance using the
Fs-test. To test the strain effect (Gi) in model (2), the mouse
effect Mj(i) was treated as a random effect and the variance
explained by the strain effect was tested against the combina-
tion of mouse variance and technical variance using the Fs-test.
Differences between parental strains, between reciprocal F1

animals, and between the F1 and parental animals were tested
by contrasting the appropriate components of the strain effect
(Gi) in model (2), using a shrinkage-based t-test (Cui et al.
2005). The permutation for these later tests is carried out with
the constraint that data from technical replicates must remain
paired in the permutated data.

Gene lists were generated using a false discovery rate (FDR)
of 0.05 (Benjamini and Hochberg 2000) unless otherwise
specified. The fraction of differentially expressed transcripts
was estimated using the method mix-o-matic (Allison et al.
2002). Briefly, the distribution of P-values is modeled as a
mixture of a uniformly distributed component representing
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the nondifferential transcripts and a beta-distributed compo-
nent representing the differentially expressed transcripts. The
proportion of nondifferential genes (l0) is estimated using
maximum likelihood. A web implementation of this method
at http://services.ssg.uab.edu/mixomatic/ was used to analyze
the P-values obtained from each test. The l0 is very similar to
the p0 obtained from the qvalue package (Storey 2002, 2003)
at http://www.bioconductor.org/packages/bioc/stable/src/
contrib/html/.

Estimation of the additive and dominance effects: The expres-
sion level of each gene within each strain was estimated using
generalized least squares for the Gi term in model (2) after
estimating the variance components for the residual (ejk) and
mouse [Mj(i)] terms (Searl et al. 1992). The additive effect, a,
is estimated as half of the observed difference between the
parental strains. The dominance effect, d, was estimated as the
difference between the F1 and the midparent values.

Statistical tests for additive, dominance, and overdominance
effects: The additive effect was tested (H0: a ¼ 0) by contrast-
ing the two parental strains. The dominance effect was tested
(H0: d ¼ 0) by contrasting the F1 and the mean of the two
parental strains. Overdominance effect was identified when
the F1 expression value fell outside the range of the two
parental strains and was significantly different from both
parental strains. All tests were based on Fs with permutation-
based critical values and significance level of FDR of 0.05.

Cluster analysis: The hierarchical clustering analysis was
based on the correlation distance (1� r 2) of the gene expres-
sion among samples (Wu et al. 2003). Bootstrapping (100
times) was used to evaluate the cluster stability (Kerr and
Churchill 2001) and a consensus tree was used to summarize
the common features of the bootstrapped trees (Margush

and McMorris 1981). Clades that appeared in .80% of the
bootstrapped trees were shown in the consensus tree.

SNP effect assessment: The allele-specific probe list for the
Affymetrix MOE430v2.0 chip was downloaded from http://
arrayanalysis.mbni.med.umich.edu/MBNIUM.html. This list
contains SNPs for many mouse strains on the basis of in-
formation in the dbSNP database (build 126). SNPs between
strains C57BL/6J and A/J were used to identify the specific
SNP-containing probes and these were removed from the
Affymetrix chip description file (CDF) using the R package
ProbeFilter 1.4.0. Probe sets with fewer than four probes
remaining were discarded from further analysis. The .CEL files
were preprocessed again using the customized CDF file.

Determination of overrepresented biological categories:
Overrepresented categories within lists of differential ex-
pressed genes were identified by testing for association with
gene ontology ‘‘biological process’’ terms in Expression Analy-
sis Systematic Explorer (EASE) (Hosack et al. 2003) or gene
product relationships available in a curated database of bio-
logical networks (Ingenuity Pathways Analysis) (http://www.
ingenuity.com). Enrichment of pathway members among
differentially expressed transcripts was assessed with the one-
tailed Fisher’s exact test for 2 3 2 contingency tables (In-
genuity) or a conservative adjustment to the Fisher’s exact test
result (EASE score) that weights significance according to the
number of transcripts identified in a list. In the EASE analysis,
only transcripts mapping to a unique EntrezGene identifica-
tion were included for analysis. Because biological themes
supported by a single gene in Fisher’s exact test are not stable
(Hosack et al. 2003), only results containing multiple genes
were explored further.

Real-time PCR: Total RNA (1 mg) was reverse transcribed,
employing standard random hexamer priming methods and
Superscript III enzyme (Invitrogen) according to the manu-
facturer’s protocols. Diluted reaction products were then used
in a subsequent PCR reaction containing Taqman Univeral

PCR master mix (Applied Biosystems). Gene-specific primers
and probe sets were obtained from the Applied Biosystems
Assay on Demand service and used according to manufac-
turer’s protocols. Real-time PCR reactions were performed
using the ABI PRISM 7900HT sequence detection system (Ap-
plied Biosystems) with recommended thermal cycling proto-
cols and 40 cycles of amplification. Threshold cycle (Ct) values
were determined using the supplied sequence detection
system (SDS v2.2) software package. Three replicated reac-
tions were conducted for each of the 12 samples used in the
microarray study. The GUS gene was used as the internal
control for all samples.

RESULTS

Overall sample difference and sample clustering: To
provide a picture of the overall relationship of gene
expression among the 12 mice (3 from each of the four
strains: A, B, A 3 B, and B 3 A) profiled in this ex-
periment, we first fit an ANOVA model (Equation 1) to
each transcript, treating the 12 mice as independent
samples without considering their strain identities. A
shrinkage-based Fs-test (Cui et al. 2005) was applied to
each of the 45,000 transcripts present on the array. A
total of 6143 transcripts were identified as significantly
different among these 12 mice at the high-stringency
significance level of FDR 0.001 (Benjamini and Hochberg

2000). On the basis of the estimated expression level
of these transcripts we clustered the 12 mice using
a hierarchical clustering method (Wu et al. 2003). As
expected, the genetically defined groups cluster to-
gether (Figure 1). The two reciprocal F1 hybrids cluster
together and the two inbred parental strains cluster
together, which is similar to what was described in the
Drosophila study (Gibson et al. 2004).

Natural variation among mice within strain: Some of
the differentially expressed transcripts among the 12
samples can be attributed to nonheritable natural vari-
ation among individual mice. To identify these tran-
scripts we tested the mouse effect after accounting for
strain effect in model (2) and found 1754 transcripts

Figure 1.—Hierarchical cluster of the 12 mice samples.
The samples were clustered on the basis of 6148 genes signif-
icantly differently among the 12 samples at FDR 0.001. The
number at each branch represents the percentage of times
the subbranches cluster together in bootstrapping analysis.
Depth is the level of branching.
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(FDR , 0.05) with significant biological variation among
mice within a strain. Gene ontology analysis of these
genes shows that they are enriched for fatty acids me-
tabolism, amino acid metabolism, and hormone related
processes, which indicates that some genes in these
biological processes have high natural variation among
individual mice with same genotype.

F1 hybrids are often more uniform in phenotype than
inbred individuals (Crow 1998), possibly due to the
buffering effects of heterozygosity (Hartman et al.
2001; Hartwell 2004). To test whether the gene ex-
pression of hybrids has this characteristic, we estimated
and compared the variation of gene expression in F1

mice to variation within the parental strains. Cumulative
plots of within-strain variance confirm that the B 3 A
hybrid mice show less individual variation in gene ex-
pression than either of the two parental strains (Figure
2). However, the F1 hybrid mice from the A 3 B cross
show more variation than the parental strain B. Thus
gene expression in F1 hybrids does not necessarily re-
semble the heterosis phenomena associated with whole-
organism phenotypes (Birchler et al. 2003). It is curious
that the two reciprocal hybrids differ in this regard.
Further investigation may be required to confirm that
this is a general phenomenon or that it may be particular
to these individuals.

Heritability of gene expression: The variation of gene
expression can be decomposed into heritable and non-
heritable variation. The latter can be decomposed into
the within-strain mouse variation and measurement
error variation. The fraction of the total variation ex-
plained by genotype is known as the broad sense
heritability (Falconer 1986). We calculated the herita-
bility for each transcript on the basis of the estimated
variance for genotype, mouse, and measurement. Due
to the small number of biologically independent sam-
ples variance estimates are not very accurate. We applied
a shrinkage adjustment to improve the estimation (Cui

et al. 2005). The shrinkage adjustment is adaptive to the
distribution of each variance component. After shrink-
age the spread of the measurement variance was re-
duced substantially, reflecting a level of variation that is
consistent with statistical estimation error. The strain
and the mouse variances had minimal shrinkage due to
their markedly heterogeneous variance distributions
(Figure 3, A and B). Both of these variance components
have bimodal distributions with about one-third of genes
having estimates close to 0 (,10�6). However, only 8%
of genes have both strain and mouse variance compo-
nents close to 0. About 60% of the genes show both
strain and mouse variance components .10�6 and the
correlation (on the standard deviation scale) of these two
variance components is 0.47. The high correlation
between strain and mouse variance components indi-
cates that genes that have high within-strain variation
also tend to have high variation across strains.

We computed heritability as the ratio of between-
strain variance to the total variance for both the raw and
the shrinkage estimates of variance. The application of
shrinkage increased the heritability in many genes. For
example, 6503 (14% of the total) transcripts showed
heritability .50% without shrinkage. With shrinkage,
the number increased to 8131 (18% of the total tran-
scripts). The median heritability of all the transcripts
increased to 22% from 16%. Figure 3C shows the his-
tograms of the heritability from transcripts with herita-
bility .1% (�75% of the transcripts present on the
chip). The overall median heritability (22%) obtained
here is larger than the 11% estimated from the mouse
brain expression profile mapping experiment using
recombinant inbred (RI) lines (Chesler et al. 2005).

To identify the heritable transcripts, we tested for the
strain effect on the basis of the combination of biolog-
ical variation and technical variation in a mixed-effect
ANOVA model (2). We identified 8979 transcripts as
significantly heritable (FDR , 0.05) among the four
strains of mice. The median heritability of these genes
is �70%. This gene list has 312 overlaps with the gene
list for natural biological variation, which indicates that
although these genes are naturally variable, the genetic
effect is still significant after the nongenetic variation
is accounted for. The heritable genetic effect was de-
composed into three contrasts among the strains: the
contrast between the two parental strains, the contrast
between the two F1 strains, and the contrast between
the mean of the two parental strains and the mean of
the two F1 strains. These contrasts yield 8950, 357, and
67 significant transcripts, respectively, at FDR of 0.05.
Treating the two reciprocal F1 hybrids as the same in the
third contrast may result in reduced power due to the
large difference between the two hybrids. To avoid this
problem, we also compared the two hybrids with the
midparent value separately. The A 3 B hybrid gave 317
significant genes while the B 3 A hybrid gave only 24
significant genes.

Figure 2.—The cumulative distribution function of the
shrinkage estimator for the mouse variance from each of
the four strains.
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Additive and dominance effects: The inheritance pat-
tern, the difference of gene expression between paren-
tal strains and F1 hybrids, can be decomposed into an
additive effect (a) and a dominance effect (d) as in con-
ventional quantitative genetics (Falconer 1986). For
purely additive effects (d ¼ 0), the phenotype of the F1

will be equal to the midparent values. When a dominance

effect is present (d 6¼ 0), the F1 gene expression differs
from the midparent value by an amount d. Due to the
presence of technical and biological variation, the
estimated a and d effects are never exactly 0. We rely
on statistical tests that contrast the parental and F1 trait
values as described earlier to test for the a and d effects.
Figure 4 shows the inheritance of the significant genes
from some of the tests for the A 3 B hybrid. A large
number of transcripts are significant for the additive
effect and some of them are also significant for the domi-
nance effect. Transcripts that are significant for the over-
dominance effects tend to have small additive effects
and therefore are centered around the a ¼ 0 axis.

The numbers of significant genes from testing for the
additive and dominance effects are also represented by
the excess of small P-values in the P-value histograms
(Figure 4). Under the assumption that the P-values

Figure 3.—Estimated variance components and heritabil-
ity. (A) Naive variance components estimated using data from
each gene only; (B) shrinkage estimators of the variance com-
ponents; (C) histogram of heritability. The heritability was
computed as the ratio between strain variance and the total
variance.

Figure 4.—Estimating and testing for additive and domi-
nance effects. (Top) The estimated additive (a) and domi-
nance (d) effects for the F1 hybrid A 3 B. Genes that show
significant additive effect are represented by solid dots and
genes that show significant dominance effect are represented
by open circles. Genes on the horizontal line show pure addi-
tive effect. Genes on the vertical line show pure dominant ef-
fect (overdominance). The line with slope of 1 represents A
allele dominant and the line with slope of �1 represents B
allele dominant. Shaded diamonds represent genes that show
significant overdominance effect. Significance level is FDR
0.05 for all tests. (Bottom) Histograms of P-values obtained
from testing for additive and dominance effects in the top.
The excess of low P-values indicates the presence of signifi-
cant genes.
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would be uniformly distributed from 0 to 1 if there were
no true difference among transcripts, the presence of
excessively small P-values would indicate the presence of
true differences. The histogram of P-values from testing
the dominance effect shows an excess of small P-values
but much less than those from the tests for additive
effects.

Degree of dominance: To describe the relative size of the
dominance effect compared to that of the additive effect
in gene expression, we computed the ratio of d/a as a
measure of nonadditivity (Gibson et al. 2004). A purely
additive inheritance model will have d=a ¼ 0 and a fully
dominant trait will have d=a ¼ 1. If the absolute value
is .1, the effect is considered to be overdominance.
To illustrate the degree of dominance, we plotted the
histograms of estimated d/a for each F1 hybrid strain
(Figure 5). It appears that many transcripts have a d/a
ratio .1, indicating overdominance. However, this pat-
tern may also be explained by variation in the estimates
of the dominance ratios that have associated errors.
The excess of transcripts with large dominance ratios
may be due to the small additive effect estimates that
occur by chance. This is evident when we plotted the
additive effect against the degree of dominance. Most
transcripts with large d/a ratios have small a estimates
(Figure 5) and these genes are less significant for the
additive effect. Therefore, formal statistical tests are
needed to determine whether the dominance or over-
dominance effects are significant by considering both
the size of the effect and the variation from both bio-
logical and technical sources.

Overdominance: Overdominance is commonly associ-
ated with hybrid vigor but may also have a negative effect

on fitness (Johnson 1980; Pan et al. 2005). To declare
overdominance, we required that a transcript mean ex-
pression in at least one hybrid F1 lies outside of the range
of the parental strains and it should be significantly
different from both parents at a significance level of
FDR 0.05. We found 158 significantly overdominant
transcripts for A 3 B hybrids (Figure 4) and most of
these have a relatively small additive effect. The test for
overdominance among the B 3 A hybrids identified
only 18 transcripts with significant overdominance ef-
fect. The small number of significant genes with over-
dominance effect further indicates that using just the
d/a ratio is not a reliable method to identify overdom-
inant genes.

Estimating the proportion of differentially expressed
transcripts: The length of a significant gene list depends
on the choice of the significance levels, multiple testing
adjustment, the power of the study design, and the size
of the actual effects. To obtain an estimate for the per-
centage of differentially expressed genes independent
of the significance level, we applied the mix-o-matic
analysis to all P-values obtained from testing individual
transcripts. As shown in Figure 4, the number of dif-
ferentially expressed transcripts from each test is repre-
sented by the excess of small P-values as compared to
the uniform distribution expected under the complete
null. The proportion of differentially expressed genes is
estimated as the proportion of the beta component in
the mixture of a beta and a uniform distribution using
maximum likelihood in the mix-o-matic analysis (Allison

et al. 2002). On the basis of this analysis, 73% of tran-
scripts are differentially expressed among the 12 mice
and 68% of transcripts are differentially expressed

Figure 5.—Degree of dominance. The domi-
nance effect, d, is computed as the difference be-
tween the mean of a F1 hybrid and the mean of
the parental strains. The additive effect a is com-
puted as half of the difference between the two
parental strains. (Top) Histograms of the degree
of dominance for the two F1 hybrids. The solid
vertical line indicates no dominant effect. The
two dotted vertical lines represent that F1 is equal
to one of the parental strains (full dominant).
Left dotted line represents AJ and the right dot-
ted line represents B6. The spikes at �10 and 10
represent the frequency of all transcripts with
d=a # � 10 and d=a $ 10, respectively. (Bottom)
The relationship between the additive effect and
the degree of dominance. Small additive effects
cause a large degree of dominance represented
by the tight distribution along the y ¼ 0 line.
Solid points represent the genes that show signif-
icant genetic effect at significance level of FDR
0.01 and the shaded points represent genes with
no significant genetic effect.
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among the four strains after accounting for both bio-
logical and technical variation. About 23% of transcripts
are differentially expressed among individual mice
within strain and about half (56%) of the transcripts
are differentially expressed between the two parental
strains. Dominance effects were estimated to be present
in �20% of transcripts. Compared with the relative
small proportion of transcript with dominance effects,
the large proportion of transcripts with additive effects
suggests that most transcripts show an additive pattern
of inheritance, with F1 levels similar to the midparent
value. The tests for overdominance were not subjected
to the estimation for the proportion of differentially
expressed transcripts because they were selected with a
combination of tests and the assumption of uniform
P-value distribution under the complete null may not
hold. For testing the two F1 hybrids, 31% of transcripts
were estimated to be different between the two recipro-
cal F1’s, indicating that the expression of a large number
of genes may be affected by the maternal environment.

SNP effect: Probe designs for the Affymetrix array are
based on the reference C57BL/6J sequence and it is
plausible that strain polymorphisms could alter their
hybridization properties. Thus there is a potential to
observe differences in hybridization intensity even if
the mRNA levels are the same in the two strains. To
evaluate the effect of SNPs in this study, we identified
individual probes containing known SNP(s) between
A/J and C57BL/6J in the dbSNP database. A total of 3453
probe sets (�10% of the total probe sets on the chip)
were found to contain such SNPs. We reconstructed the
Affymetrix CDF file to exclude the individual probes
that contain any SNP from these probe sets. Eight probe
sets were completely removed from further analysis
because they had #3 probes remaining. We reanalyzed
the data and compared the results with those from our
original analysis (Table 1). The comparison showed

only very minor or no changes in the clustering of sam-
ples, the heritability, and the variance components.
These global characteristics may not be sensitive to
changing a small subset (10%) of probe sets. We also
compared the expression fold change between A/J and
C57BL/6J for the SNP-containing probe sets and found
that �50% of them increased and 50% of them de-
creased. This result suggests that SNPs have not signif-
icantly reduced the expression measurements for the
A/J strain samples.

The number and identity of significant genes from
each test after removing the SNP-containing probes
were largely unchanged, with allowance for some nu-
merical differences in borderline calls that result from
the permutation analysis (Table 1). For almost all tests,
�10% of significant probe sets contain SNPs, which is
consistent with the overall rate of SNPs in probe sets on
the chip. Therefore, there is no enrichment of SNP-
containing probe sets, which might be the case if SNPs
contribute heavily to the expression difference between
the two strains. However, some differences are observed
between the identities of the significant SNP-containing
probe sets. For example, the contrast of the two parental
strains identified 801 and 792 of the 3453 SNP-containing
probe sets as significant before and after removing
the SNP-containing probes. The 648 probes sets iden-
tified in common between these two analyses showed
similar estimated fold change values. The 129 probe sets
identified only in the first analysis show reduced fold
change after removing SNP-containing probes, while
the 120 genes significant only in the second analyses
show increased fold change (Figure 6). Dramatic fold
change differences were observed for only a few probe
sets (the points far away from the identity line). These
results indicate that SNPs in individual probes have a
relatively small impact on the overall comparison of
gene expression changes between strains.

TABLE 1

Comparison of results before and after the removal of SNP-containing probes

snp-free-ps (snp-ps)

Tests Significance level (FDR) Before After Common

F-test for samples 0.001 5601 (542) 5623 (509) 5599 (460)
Mouse effect 0.05 1618 (136) 1526 (128) 1526 (114)
Strain effect 0.05 8186 (793) 7855 (766) 7854 (648)
A vs. B 0.05 8149 (801) 7655 (792) 7655 (672)
F1(A 3 B) vs. F1(B 3 A) 0.05 292 (22) 217 (16) 217 (9)
F1’s vs. parents 0.05 60 (7) 60 (5) 60 (4)
AB dominance 0.05 295 (22) 525 (46) 295 (18)
BA dominance 0.05 19 (4) 19 (2) 19 (2)
AB overdominance 0.05 149 (9) 122 (9) 122 (4)
BA overdominance 0.05 18 (0) 17 (1) 17 (0)

Eight snp-ps probe sets were removed from testing because there were fewer than four probes remaining.
Snp-free-ps, significant probe sets that do not contain any known SNP in any probes; snp-ps, significant probe
sets that contain an SNP in one or more probes.
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Overrepresented biological categories: To identify
biological processes that may be overrepresented in
each comparison, we performed statistical tests for over-
representation of functional categories determined
using the EASE analysis platform and the known func-
tional relationships available in the Ingenuity Path-
ways Knowledge Base (see materials and methods).
Multiple processes, including components of metabo-
lism (including metabolism of proteins, DNA, RNA,
phosphates, cofactors, and pyruvate), transcription and
RNA processing, cell division, and biosynthesis pathways,
were induced in B relative to A. Literature-supported
pathways involving the expression of genes related to
the metabolism of arachidonic acid, fatty acids, trypto-
phan, xenobiotic signaling, and amino groups were
statistically overrepresented in gene lists that had lower
expression in B compared to A. Other processes were
expressed at higher levels in A relative to B, including
probe sets mapping to genes associated with ion trans-
port, protein localization, metabolism of alcohols and
monosaccharides, biogenesis, and signaling. Transcripts
associated with the literature-supported processes of
N-glycan biosynthesis, the phototransduction pathway,
and linoleic acid metabolism were overrepresented in
gene lists, showing greater expression on A compared
to B. These differences are summarized in supple-

mental Tables S1 and S2 at http://www.genetics.org/
supplemental/.

Tests for the presence of significant dominance ef-
fects contrasting the parental strains and F1 hybrids
were conducted separately for each hybrid. For the A 3

B hybrid, genes that showed lower expression in the
hybrid than the midparent value were associated with
macromolecule (protein) biosynthesis. For genes that
showed higher expression in the A 3 B hybrid, cat-
egories related to metabolism (fatty acids, amino acids,
and amino sugars), signaling (IL-10, IL-6, Integrin, and
B cell receptor), and localization were overrepresented.
In the test of dominance for the B 3 A hybrid, probe
sets involved in protein localization were more highly ex-
pressed in the parental strains and probes sets associ-
ated with antigen presentation and the metabolism of
fatty acids were more highly expressed in the B 3 A
hybrids.

Differentially expressed transcripts expressed at a
higher level when the expression of A 3 B was higher
than B 3 A included bile acid biosynthesis, arginine
and proline metabolism, and death receptor signaling.
Ubiquinone biosynthesis and oxidative phosphoryla-
tion were overrepresented when the expression of A 3 B
was lower than B 3 A.

Real-time PCR validation: To validate the results
from the microarray measurements, we chose six tran-
scripts that show differential expression between the
two parental strains and the expression in F1’s is more
similar to that in parental strain A. The same RNA sam-
ples used in the microarray experiment were assayed
via real-time PCR with three technical replicates per
RNA sample. The results showed that the relative ex-
pression among the strains for each transcript was sim-
ilar to microarray results in both the direction of the
difference and the relationship between F1 hybrids
and the parental inbred line (Figure 7). Only the Cap1
transcript did not confirm the microarray results. Its
real-time PCR did not show any difference among the
strains while the microarray results showed large differ-
ences. This inconsistency could be explained by the
fact that the primers used in the real-time PCR experi-
ments are located at the upstream, exon 2/3, of the
transcript while the Affymetrix probe set hybridizes to
the 39-untranslated region.

DISCUSSION

Comparing with similar studies in other organisms:
In this study we compared the gene expression of two
parental strains and their reciprocal F1 hybrids in mouse
liver. We tested the additive, dominance, and overdom-
inance effects and identified lists of genes that are sig-
nificant for each effect. At an FDR of 0.05, 19.9, 0.8,
and 0.4% of all transcripts showed significant addi-
tive, dominance, and overdominance effects, respec-
tively. Compared with other studies on gene expression

Figure 6.—SNP effect on fold change between two paren-
tal strains. The fold changes (base 2 logarithm) between
C57BL/6J (B) and A/J (A) are compared before and after re-
moving the SNP probes (snp-pr) for probe sets that are signif-
icantly different between the two parental strains. The shaded
points represent the 672 common significant probe sets from
the two analyses. The open squares represent the 129 probe
sets significant in the analysis only before removing SNP
probes. The cross signs (1) represent the 120 probe sets sig-
nificant in the analysis only after removing SNP probes. The
vertical and horizontal lines represent no fold change be-
tween the two parental strains before and after removing
SNP-containing probes, respectively. The diagonal line repre-
sents the same fold change.
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inheritance (Gibson et al. 2004; Auger et al. 2005;
Vuylsteke et al. 2005), our significant gene lists ap-
peared to be substantially shorter in general (Table 2).
One obvious reason for the discrepancy is that these
studies examine different organisms and different tis-
sues, which are likely to have a large impact on expression
patterns (Wang et al. 2006). One potential explanation
for the differences between the various studies is the
effect of the design of these experiments. Our mouse
study used three biological replicates per strain and two
technical replicates per sample, while most others used
one pool of many samples with more technical repli-
cates. Because of the large number of technical repli-
cations, the measurements in some of these studies
appear to be very precise and the tests appear to be more
powerful, especially when replicated spots were treated
as independent replicates in the Arabidopsis study

(Vuylsteke et al. 2005). In studies without true bi-
ological replication the tests for differential expression
depend on the technical variation in the microarray
assay and the scope of the inference is limited. With
biological replicates it is possible to construct tests that
account for individual (nongenetic) variation in gene
expression; the resulting tests have lower power but the
conclusions apply to the population of animals from
which the sample was obtained (Churchill 2002). For
many genes, there is a substantial biological variance
component and thus it can be expected that fewer genes
will be detected.

One striking feature of Table 2 we would like to draw
attention to is the dramatically different criteria used to
select differentially expressed genes, which makes any
direct result comparison across experiments impossi-
ble. Some studies even employed different significance

Figure 7.—RT–PCR validation of six genes.
The log2-fold change of each strain (A, A 3 B,
B 3 A, and B) relative to the parental strain B
is plotted for both the microarray (solid lines)
and the RT–PCR (dotted lines) results. The stan-
dard errors are represented by the vertical bars.

TABLE 2

Result comparison among similar studies on gene expression inheritance

Organism

Arabidopsis Maize Drosophila Mouse
Technology: Ara 6k cDNA array Northern blotting Agilent long-oligo array Affymetrix MG430v2.0

Probe no./gene no.: 6008/4876 30/30 21929/12017 45000/39000
Pool or biorep: Pool (%) Pool Pool (%) Biorep (%)

P1 vs. P2 27–37a 11–15 25 19.9
F1 vs. 1/2(P1 1 P2) 6.4–21b 19–20 33 0.8
F1 vs. F19 3.7–6.4c NT 9–20 0.8
Overdominance 9d NT 5e 0.4

Significance level Vary Nominal, 0.05 Bonferroni, 0.05 FDR, 0.05

Biorep, biological replicate; NT, not tested.
a One to two false positives in each gene list.
b FDR , 0.001.
c FDR , 0.01.
d 99.8% per gene confidence interval.
e Based on fold change: F1 is at least 1.25-fold greater or less than both parental lines.
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criteria for different gene lists. One way to avoid in-
consistency of significance criteria is to estimate the
proportion of differentially expressed genes indepen-
dent of significance levels using the P-value distribu-
tions. For example, the mix-o-matic algorithm (Allison

et al. 2002) estimates the proportion of genes that are
differentially expressed on the basis of the distribution
of the P-values from individual gene tests. It provides an
overall estimate of the proportion of genes that are
differentially expressed. In our study, although the
significance gene list for additive effect at an FDR of
0.05 is only 19.8%, the mix-o-matic estimation showed
that .50% of transcripts are differentially expressed
between the two parental strains. However, the identi-
ties of these differentially expressed genes are not known.
It is not possible to conduct a functional analysis of
these 50% transcripts. In addition, this approach re-
quires the assumption of uniformity under the null,
which may not hold in some tests. For example, the null
hypothesis for testing the overdominance effect is that
the expression of F1 hybrids is within the range of the
two parental strains. Under this null hypothesis, the
P-values will probably not follow a uniform distribution.
Therefore, we cannot estimate the proportion of genes
that show overdominance effect using the mix-o-matic
method.

Another striking difference across these studies is in
the degree of nonadditivity, which can be assessed by
comparing the lengths of significant gene lists obtained
from testing the additive and dominance effects within
each study. The fly study (Gibson et al. 2004) showed a
very high degree of nonadditivity, with �40% of genes
showing dominance or overdominance effects vs. only
25% of genes showing additive effects. In contrast, our
mouse study identified 19.9% of genes that were
significant for additive effects but only ,1% of genes
that were significant for dominance or overdominance.
The findings from the Arabidopsis study (Vuylsteke

et al. 2005) fall between these extremes. Liver tissue is
composed largely of tetraploid cells, which may explain
the low levels of nonadditivity observed in this study.
Another potential cause could be the difference in
genetic divergence between the parental inbred strains
used in different studies. It has been suggested that in
crosses between more distantly related strains there
should be greater differences in expression and that the
expression of the F1 hybrid will diverge more from the
midparent values (Enard et al. 2002; Landry et al. 2005;
Lemos et al. 2005). The two inbred mouse strains are
relatively close (Beck et al. 2000) while the two Dro-
sophila inbred strains may be more distant. The larger
number of genes with additive effects compared with
those with dominance effects in our study suggests that
most of the difference of gene expression between the
two parental strains may derive from cis-regulatory
variation. This is consistent with the finding that most
of the expression QTL (eQTL) obtained in expression

mapping studies in mouse are cis-eQTL (Schadt et al.
2003; Bystrykh et al. 2005; Chesler et al. 2005).

After significant gene lists are obtained, it is common
to run some classification or gene category analysis to
examine which biological processes or pathways are over-
represented in the significant gene lists. If we compare
the results from these similar studies, it is easy to iden-
tify some common terms among these studies. For ex-
ample, ‘‘metabolism,’’ ‘‘signaling,’’ and ‘‘transportation’’
appear to be overrepresented in the significant gene
lists for nonadditive inheritance pattern in multiple
studies even though the studies differ in many aspects as
discussed above, which indicates that there are some
common processes or pathways showing dominance
in gene expression inheritance. These results are con-
sistent with the finding that genes involved in the me-
tabolism and stress response are more likely to show
nonadditive inheritance due to their role in responding
to environmental stress (Kristensen et al. 2005). How-
ever, it should be pointed out that these terms are
abundant in the array annotations. The overrepresen-
tation of these terms in different studies may not be the
direct result of underline biology.

Heritability of gene expression: In classical quanti-
tative genetics, phenotypic variation is decomposed into
genetic and environmental variances (Falconer 1986).
For inbred lines, the environmental variance can be
estimated using the within-strain variation among ge-
netically identical individuals. In this study we used bio-
logical replicates of inbred lines and repeated (technical)
measurements to further decompose the environmental
variance of gene expression into a biological component
and a measurement component. Genetic and environ-
mental variation was estimated from the variation be-
tween and within strains, respectively. The broad-sense
heritability was estimated for the expression of each
transcript. About one-quarter of the transcripts have
heritability ,1% but 18% of transcripts show heritability
.50% and the median heritability of all genes is 20%.
This heritability is substantially higher than the 11%
found in the mouse brain gene expression from mouse
RI mapping lines (Chesler et al. 2005). The application
of shrinkage to improve variance component estimation
in our study improved the overall heritability and resulted
in more transcripts with high heritability. The median
heritability increased from 16 to 20% with shrinkage. If
we examine only the genes that have heritability .1%,
the median heritability after shrinkage is 31%, which is
similar to the 0.34 estimated from human family cell lines
(Monks et al. 2004).
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