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ABSTRACT

Replicable populations, such as panels of recombinant inbred or doubled haploid lines, are convenient
resources for the mapping of QTL. To increase mapping power, replications are often collected within
each RI line and a common way to analyze such data is to include in the QTL model only a single
measurement from each line that represents the average among the replicates (a line means model). An
obvious, but seldom explored, alternative, is to include every replicate in the model (a full data model).
Here, we use simulations to compare these two approaches. Further, we propose an extension of the
standard permutation procedure that is required to correctly control the type I error in mapping popu-

lations with nested structure.

ANELS of recombinant inbred (RI) lines, generated
by either recurrent sib mating or selfing, constitute
a valuable resource for the genetic dissection of quan-
titative traits and particularly for the mapping of quan-
titative trait loci (QTL) (BArmLey 1971; Swank and
BAILEY 1973; WATSON et al. 1977; PLOMIN et al. 1991b).
With RI panels, as with other true-breeding populations
such as panels of doubled haploid (DH) lines, marker
genotypes need be measured only once and the trait
value for a given genotype can be measured in repli-
cated individuals. The same panel can be used by dif-
ferent investigators and at different times, permitting
the dissection of multiple correlated traits even when
such traits are measured under different environmental
conditions (PLoMIN et al. 1991a).

In a limited number of systems (e.g., maize, Drosoph-
ila), replicable mapping populations that contain hun-
dreds of lines exist (JounsoN and Woop 1982; BURr
et al. 1988; REITER et al. 1992; Fry et al. 1998). In other
systems, however, such populations have historically
been much smaller. For instance, typical mouse RI
panels consist of only 15-35 lines.

When using small panels, researchers have generally
replicated lines within a given experiment to maximize
QTL detection power. However, it is not widely appre-
ciated that even though increased replication of in-
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dividual lines does improve detection power, it is not
equivalent to using a greater number of lines. For any
given QTL model, the trait variance can be divided into
three components: (1) the variance explained by the
QTL in the model, (2) the variance explained by QTL
or polygenes not in the model, and (3) nongenetic
variance (KNApp and BrIDGES 1990). Increasing the
number of lines decreases variances 2 and 3 while
increasing the number of individuals per line decreases
only variance 3. An important consequence is that the
more genes there are that contribute to variation in a
trait, the less well replication of individual lines com-
pensates for having a small number of them.

Unlike backcross and Fs intercross populations, where
all subjects have identical genetic relatedness to each
other, subjects in panels with replicates do not have the
same genetic relatedness to one another. For instance,
in an intercross RI panel, the replicates within a line
have identical genotypes but share only half their
genetic composition with other lines. For QTL mapping
of univariate traits, the common solution to the presence
of replicates is to include in the model only a single
measurement from each line representing the average
among the replicates (e.g., ALONSO-BLANCO et al. 1998)
and thus avoid the need of modeling unequal related-
ness among subjects. When the experiment is balanced
(i.e., the number of replicates per line is constant or
nearly so), the use of the line means model should re-
sult in little loss of power. However, if the data are ex-
tremely unbalanced, averaging the measurements within
each line results in unequal variances among the lines
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and potential loss of QTL detection power. An alterna-
tive would be to fit a model that accounts for each indi-
vidual observation, or what we call a full data model. How
the line means model performs compared to the full data
model has not been investigated and careful investiga-
tion would provide us with useful practical guidelines.

An important issue with the QTL mapping is the
choice of an appropriate statistical threshold (i.e., crit-
ical value) for rejection of the null hypothesis Hy and
control of type I error. The most commonly used ap-
proach for the line means model is that of CHURCHILL
and DOERGE (1994), in which trait observations are
reassigned without replacement among the subjects.
The distribution of the maximum test statistic obtained
in alarge number of permutations is used to empirically
estimate the genomewide threshold. However, permu-
tation testing is limited to situations in which there is
complete exchangeability under the null hypothesis.
It is this exchangeability that ensures the validity of
inference based on the permutation distribution. In the
line means model, there is equal relatedness among all
RI lines, which ensures exchangeability. In the full data
model, where replicates of the same line have identical
genotype across the whole genome, applying the stan-
dard permutation procedure would result in replicates
of the same line being assigned different permuted
genotypes, which is clearly not appropriate. As found by
Z0v et al. (2005) and TsAIH et al. (2005) in the context
of QTL mapping in populations derived from crosses
among RI lines, failing to adequately take complex
relationships among individuals into account can result
in astonishingly high rates of type I error.

To address the problem of choosing an appropriate
statistical threshold for the full data model, we propose a
simple modification to the standard permutation pro-
cedure, based on the work of Zou et al. (2005) and TsATH
et al. (2005), in which only the genotypes of the lines
are permuted. That is, all replicates of a given line are
assigned the same permuted genotype. With this nested
permutation procedure, any two subjects will have the
same relatedness before and after the permutation.

To our knowledge, there is no published comparison
of the line means vs. the full data model. Thus, our goals
of this article are twofold. First, we show that the nested
permutation procedure successfully controls type I
error when using the full data model while the standard
permutation procedure does not. We then compare the
power and false discovery rate of the line means model
and the full data model (with the nested permutation
procedure) in some simple, but instructive, univariate
mapping scenarios. We use simulations to vary the num-
ber of lines, the variation in replication among lines, the
density of markers, and the genetic architecture of the
trait (including the presence or absence of background
polygenic variation). We conclude that the two models
have nearly equivalent power for the experimental de-
signs considered here. Further studies will need to be

done to determine if there exist more complex situa-
tions in which one model is preferable to the other.

METHODS

Notations and models: We first introduce some no-
tation and the alternative models. Suppose a total of L
lines are used for mapping and that, within each line,
there are n;individuals, i =1, 2,..., L.

Let the individual trait values be yi1, Y2, --. , Yin;
Vo1, Y92, « -+« Yomys -« 5 YL1s VL2, - - - 5 Yin, and the average
traits  be  §,%,, ...y, where y = (1/n)3 v
i=1,2,...,L.

Two different models are used for QTL analysis. For
simplicity, only single-marker analysis is considered. At
the kth marker, we have the full data model, y; = p +
apxy, + e 1=1,2,...,L,j=1,2,..., n;, which reduces to
the line means model, j, = w + apx + 6,1 = 1,2, ..., L
if the average trait is used. In the above, p is the grand
mean; a, is the additive effect of the putative QTL
(located at the kth marker); x; is an indicator of the
genotype of line i at the kth marker; and ¢, ¢; are ran-
dom errors. All ¢; and therefore ¢; are assumed to be
independentand identically distributed (i.i.d.) with nor-
mal distribution. We then test Ho: a;, = 0 vs. Hy: a5, # 0
using an f“test at each marker.

Analysis: We used simulations to empirically estimate
significance thresholds under the null hypothesis. For
each set of parameter values, the 95th percentile of the
empirical distribution of maximum Fstatistics from a
large number (typically 1000) of simulations under the
null hypothesis that no QTL (with or without back-
ground polygenes) was segregating was taken to be the
empirical threshold, which can be regarded as the true
threshold and provides a benchmark for evaluating the
performance of the permutation-based threshold. Fur-
ther, type I error rates under the standard and nested
permutation procedures were calculated and compared
to the targeted type I error.

To calculate true positive and false positive QTL de-
tection rates, we adopted the conventions of Xu e al.
(2005). A peak was defined as a point where the test
statistic exceeded both the critical value and the test sta-
tistic of adjacent points (or point, if at the end of a linkage
group). The range of the peak was taken to be the interval
on either side of the peak bounded by the end of the
linkage group or by that point closest to the peak with a
test statistic below the critical value, whichever came first.
The position of the highest peak within the range was
taken to be the QTL position. If the range bracketed a true
QTL position, then the peak was counted as a true positive
(TP); otherwise, it was counted as a false positive (FP).

SIMULATIONS AND RESULTS

Simulations: RI panels were simulated by recurrent
selfing from an Fs population (i.e., “single-seed descent”)
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until all markers were homozygous. For each set of
parameters, 1000 simulations were obtained. Within
each simulation, 1000 permutations were conducted.

Under the null hypothesis that no QTL was present,
errors were sampled from a standard normal distri-
bution. The number of replicates per line was either
held constant (balanced) at n= 2, 5, or 10 or allowed to
vary (unbalanced). In the latter case, the number of
replicates was randomly assigned to each line as 2, 5, or
10 with probabilities of 0.4, 0.5, and 0.1, respectively.
One linkage group of 1000 cM with markers spaced
evenly at either 5- or 10-cM intervals was simulated. Zero
(null hypothesis), one, or five QTL were simulated. The
positions of the QTL were assigned randomly from
uniform distribution along the linkage group, with the
exception that, in the case of five QTL, the positions
were constrained to be at least 100 cM apart from each
other. QTL effects were sampled from a gamma (1, 2)
distribution (ZENG 1992).

In the absence of polygenic background variation, er-
rors were sampled from a normal distribution with mean
0 and variance o2, determined by the sampled QTL effect
such that the total heritability was constrained to 0.1
for the one-QTL case and 0.5 for the five-QTL case. To
simulate polygenic background variation, random errors
were sampled from a normal distribution with mean 0
and variance %03, where (ri is the variance of the random
error calculated above under no polygenic background
variation. In addition, a normally distributed polygenic
effect was added on top of the random error, if no QTL

was simulated, or on top of both the simulated QTL
effects and random errors, if one or more QTL were
simulated. Specifically, a random number sampled from
a normal distribution with mean 0 and variance o2 was
added to each line. The same polygenic effect was added
to all the observations within the same line.

Results: When using line means, the permuted
thresholds were very close to the empirical thresholds
regardless of whether or not polygenic background
variation was present (Figure 1A, supplemental Tables
S1 and S2 at http:/www.genetics.org/supplemental/).
For the full data model, the thresholds from the two
permutation procedures were again similar to the empir-
ical thresholds when no polygenic background variation
was present. However, in the presence of polygenic
background variation, the permuted thresholds based
on the standard procedure were dramatically smaller
than both the permuted thresholds based on the nested
procedure and the empirical thresholds (Figure 1B,
supplemental Tables S1 and S2).

In the absence of polygenic background variation, all
three analysis methods (the line means model, the full
data model with the standard permutation, and the full
data model with the nested permutation) effectively con-
trolled the type I error (Figure 2A, supplemental Tables
S3 and S4 at http:/www.genetics.org/supplemental/).
However, in the presence of polygenic background vari-
ation, the type I error of the full data model with the
standard permutation was grossly inflated, in some cases
approaching 100%.
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The false positive rate of the full data model with the
standard permutation was grossly inflated when either
or both QTL and polygenic background variation are
present (Figure 2, A and B, supplemental Tables S5 and
S6 at http:/www.genetics.org/supplemental/). Thus,
while the number of true positives was highest when
using the full data model with the standard permutation
(Figure 2C, supplemental Tables S3-S6 at http:/
www.genetics.org/supplemental/), the false discovery
rate (FDR), defined as FDR = FP/ (TP + FP), was also
very high, typically >70% and as high as 90%. These
false discovery rates were severalfold higher than those

obtained using the line means model and the full data
model with the nested permutation.

The full data model with nested permutations be-
haved very differently. The false positive rate was nearly
constant whether or not polygenic background varia-
tion was present, while the true positive rate was depressed
in the presence of polygenic background variation.

The effects of balance were surprisingly subtle. In
comparing the full data model with nested permutation
procedure to the line means model, the true and false
positive rates were roughly similar in the balanced and
unbalanced designs. Comparing the two permutation
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methods for the full data model, imbalance led to a
modest increase in the number of false positives with
standard permutations and a slight decrease with nested
permutations. There was aslight decrease in the number
of true positives for all three approaches when the
design was unbalanced (Figure 2, supplemental Tables
S3-S6 at http:/www.genetics.org/supplemental/).

As expected, QTL tests are affected by aspects of
experimental design such as the number of lines used
and the spacing of markers on the linkage map. We
explored whether these features of experimental design
had differential effects on the three analysis methods
(Figure 3, supplemental Tables S1-S6 at http:/www.
genetics.org/supplemental/). We found that a larger
number of lines (100 vs. 50) led to a slight increase in
the number of false positives with the line means model
and the full data model using nested permutations
but not, interestingly, with the full data model using
standard permutations. The number of true positives
was increased by using a greater number of lines for
all three analysis methods. In general, the false dis-
covery rates remain nearly constant or decrease slightly
when the number of lines increases. A denser map
resulted in an increase in the number of false positives
and an increase or constant in the number of true
positives depending on whether one or five QTL are
simulated.

DISCUSSION

The full data model with the standard permutation
procedure fails to control the type I error at nominal
levels when there is polygenic background variation and
leads to false positive rates that are substantially elevated
relative to the other two models. Even with the greater
power, the false discovery rates under the full data
model using standard permutations can be as high as
90%. We interpret this as due to the failure of the
standard permutation procedure in adequately model-
ing the genetic structure of the full data model.
Although the importance of controlling type I error in
a QTL analysis is generally appreciated, it is not well
known that a high type I error can result when using an
inappropriate resampling procedure to obtain critical
thresholds in a replicated mapping population. These
results clearly show that when the full data model is
used, the nested permutation procedure is necessary
to control the type I error and the false positives. The
nested permutation has been implemented in R for
marker-based regression analysis and can be down-
loaded from http://www.bios.unc.edu/~fzou/Rlcode.

The nested permutation procedure is also to be im-
plemented in QTL CARTOGRAPHER (WANG et al. 2003;
Z.-B. ZENG, personal communication).

Further, our results demonstrate that the line means
model (with the standard permutation procedure) and
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the full data model (with the nested permutation
procedure) lead to similar results when analyzing a
single normally distributed trait in a replicated map-
ping population. Using either of these two methods,
the type I error is controlled close to the nominal level in
the absence of any QTL, and the power and false dis-
covery rates are nearly equivalent in the presence of
QTL. This conclusion does not appear to be materially
affected by the degree to which the experimental design
is balanced. The simulations in this article support
the widely used line means model for univariate QTL
mapping. However, it would be worthwhile in the future
to explore whether there are more complex situations
in which one model may be strongly preferred over the
other, such as QTL mapping of nonnormal or multivar-
iate traits.

Here, we have ignored the covariance structure due
to the polygenic effects and instead used simple analysis
of variance (ANOVA) models. Alternatively, one could
specifically model the correlation between any pairs of
subjects within the same line or across different lines
using mixed-effects models. Our preliminary results
suggest that the simple ANOVA models examined here
result in power and false positive rates very similar to
those of the more complicated mixed models when
analyzing RI data with replicates. Therefore, we have
decided to use, and also recommend, the simpler
ANOVA models for replicated RI data.
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