
Abstract Ipsilateral motor evoked potentials (MEPs)

in spinal cord surgery intraoperative monitoring is not

well studied. We show that ipsilateral MEPs have sig-

nificantly larger amplitudes and were elicited with

lower stimulation intensities than contralateral MEPs.

The possible underlying mechanisms are discussed

based on current knowledge of corticospinal pathways.

Ipsilateral MEPs may provide additional information

on the integrity of descending motor tracts during

spinal surgery monitoring.
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Introduction

Intraoperative monitoring (IOM) of the motor path-

ways is a routine procedure for ensuring integrity of

corticospinal tracts during scoliosis surgery. In combi-

nation with somatosensory evoked potentials, motor

evoked potential (MEP) monitoring is widely utilized

in operations with significant risks of spinal cord

damage [2, 14].

MEPs are most effectively obtained with multi-pulse

cortical electrical stimulation during IOM [3]. How-

ever, anesthetic agents, which cause suppression of

cortical and spinal motor neuron excitability, affect

them [4, 5]. While most IOM protocols involving MEPs

utilize total intravenous anesthesia (TIVA), we have

previously reported success with desflurane as a halo-

genated inhalational anesthetic agent [15].

In IOM, MEPs are elicited mostly with contralateral

cortical electrical stimulation. Ipsilateral MEP re-

sponses have not been adequately studied in this con-

text. Our paper describes observations of ipsilateral

and contralateral MEPs with bilateral recordings, in

conjunction with TIVA or desflurane during IOM of

scoliosis surgery.

Methods

We studied nine patients (mean age 16.2 years; range

14–17 years; 1 male) over a 6-month period in a pro-

spective manner. The local ethical committee has ap-

proved the study protocol. All patients did not have

medical conditions contraindicating transcranial elec-

trical stimulation. Apart from scoliosis, they were

healthy and had normal neurological examinations.
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Multi-pulse transcranial electrical stimulation was

performed using two constant-current stimulators

connected in parallel configuration from a Dantec

Keypoint EMG machine (Dantec, Skovlunde, Den-

mark). A train of five square wave stimuli 0.5 ms in

duration was delivered at 4 ms (250 Hz) interstimulus

intervals. Stimulating electrodes consisted of 9 mm

gold-plated disc electrodes at C3C4 (International 10–

20 system) affixed with collodion. Stimulation output

was increased from 50 mA in steps of 5 mA until a

reproducible MEP was elicited. The intensity was then

increased and fixed at 10% above this threshold

intensity to obtain a supramaximal MEP response.

Each stimulator was capable of delivering a maximum

output of 100 mA (200 mA in total). MEP recordings

were obtained with 13 mm disposable subdermal nee-

dles (Technomed Europe, Beek, Netherlands) in the

tibialis anterior (TA) bilaterally. Filter settings were

set at 10 Hz and 2 kHz. Input impedance of stimulat-

ing and recording electrodes were maintained below

5 kW.

For induction of anesthesia, sodium thiopentone at

4 mg/kg and fentanyl at 2 mcg/kg was administered;

0.8 mg/kg of intravenous atracurium was used to

facilitate endotracheal intubation. No further doses of

neuromuscular blocking agents were used subse-

quently. In the desflurane group, anesthesia was

maintained using 60% nitrous oxide in oxygen. Des-

flurane was introduced through a calibrated vaporizer

up to an end-tidal concentration of 2.1–4.3 %, with a

mean concentration of 3.4% (approximately 0.5 max-

imum alveolar concentration). This was measured

using an Ohmeda respiratory gas monitor 5250 (BOC

Group, Louisville, USA). Closed circuit mechanical

ventilation was adjusted to maintain end-tidal carbon

dioxide levels between 32 and 35 mmHg.

In the TIVA group, anesthesia was maintained using

the regime of 10 mg/kg of propofol for the first 10 min,

8 mg/kg for the next 10 min and 5 mg/kg for the sub-

sequent length of operation; 50% air in oxygen was

administered. In both groups, morphine was titrated as

required for pain relief.

Monitoring included electrocardiography, pulse

oximetry, capnography and direct radial artery pres-

sures. All patients were kept nornothermic with a

warming blanket. Normotensive anesthesia was main-

tained throughout the operation.

After approximately 45 min post-induction, a train

of four-twitch assessment was performed using a nerve

stimulator (Fischer Paykel NS242, UK). Cortical

stimulation was commenced only when the amplitude

of the fourth was visibly similar to the first. An interval

of 3–5 min was allowed between two trains of cortical

stimulation. This alternated with monitoring of

somatosensory evoked potentials from posterior tibial

nerve stimulation.

We measured two parameters: MEP amplitude,

onset latency and initial stimulation intensity. Peak to

peak amplitudes (between two largest peaks opposite

in polarity) and onset latency was utilized for all MEP

responses recorded bilaterally. Hence, ipsilateral

MEPs refer to MEPs recorded from the TA on the

same side as cortical stimulation. Within each patient,

ten consecutive supramaximal MEPs obtained before

insertion of pedicle screws used as a baseline were

averaged to obtain the first two parameters. The ini-

tial stimulation intensity was defined as the minimal

intensity required to obtain five consistent visible

MEP responses at a vertical gain of 20 lV per

division.

During insertion of pedicle screws and instrumen-

tation, a 50% reduction of MEP amplitude or 10%

prolongation of latency was brought to the surgeon’s

attention.

Statistical analyses using Student’s t-tests were ob-

tained with Microsoft SPSS for Windows Version

10.1. Statistical significance was considered at

P < 0.05.

Results

There were no complaints of headache, seizures or skin

burns postoperatively; all patients had normal neuro-

logical examination.

MEPs were successfully obtained from all patients

with TA recordings bilaterally. There were four pa-

tients in the TIVA group and five in the desflurane

group. Mean ages for desflurane (16.2) and TIVA

(15.7) groups were not significantly different (P = 0.6).

None of the patients had MEP amplitude or latency

changes exceeding our set limits so as to require

immediate surgical attention during and after pedicel

screw insertion and spinal instrumentation.

The ipsilateral MEP amplitudes (standard devia-

tion) were significantly larger than contralateral MEP

amplitudes [68.9 (27.1) vs. 52.5 (15.7) lV, P < 0.01,

paired t-test]. The initial stimulation intensity to obtain

ipsilateral MEPs was significantly lower than for con-

tralateral MEPs [66.9 (12.3) vs. 74.4 (10.1) mA,

P < 0.05, paired t-test]. However, there were no sig-

nificant latency differences for ipsilateral and contra-

lateral MEPs [32.0 (2.1) vs. 31.5 (2.0) ms, P = 0.3,

paired t-test).

There was no significant difference between use of

TIVA or desflurane anesthesia for MEP amplitudes
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obtained, with ipsilateral (P = 0.06, unpaired t-test)

and contralateral (P = 0.09, unpaired t-test) stimula-

tion. Additionally, there was also no significant dif-

ference between right and left sided MEP

amplitudes, either with ipsilateral (P = 0.9, paired

t-test) or contralateral (P = 0.7, paired t-test) stimu-

lation.

We consecutively studied an additional 17 subjects

monitored for scoliosis surgery using an identical

protocol (1 men, mean age 16.1 years, range 14–22).

All had the TIVA anesthetic regimen. With right

cortex stimulation, mean initial stimulation intensity

to obtain ipsilateral MEPs [39.7 (9.9) mA] was sig-

nificantly lower than to obtain contralateral MEPs

[47.1 (11.3) mA, paired t-test, P < 0.0005]. With left

cortex stimulation, similar findings were obtained

[40.6 (10.7) vs. 50.3 (11.8) mA, paired t-test,

P < 0.0005]. With right cortex stimulation, mean

ipsilateral MEP amplitudes [107.1 (35.7) lV] were

significantly larger than mean contralateral MEP

amplitudes [90 (37.1) lV, paired t-test, P = 0.01].

With left cortex stimulation, similar findings were

again observed [112.1 (37) vs. 82.3 (30.9) lV, paired

t-test, P = 0.0004]. With right cortex stimulation,

mean ipsilateral MEP latencies [30.2 (2.4) ms] were

not significantly different from mean contralateral

MEP latencies [30 (2.3) ms, paired t-test, P = 0.3).

With left cortex stimulation, similar findings were

again observed [30 (2.1) vs. 30.4 (2.3) ms, paired

t-test, P = 0.2].

Examples of MEPs obtained with both ipsilateral

and contralateral stimulation are shown in schemati-

cally in Fig. 1 and 2.

Discussion

The present study showed that ipsilateral MEPs have

significantly larger amplitudes and were elicited with

significantly lower stimulation intensities than contra-

lateral MEPs. However, onset MEP latencies were not

significantly different.

The origin of ipsilateral MEPs in humans is not well

understood. In animal studies, cat corticospinal neu-

rons have been shown to evoke ipsilateral actions via

ipsilaterally descending reticulospinal tracts, as well as

via contralaterally descending reticulospinal neurons,

both by synapsing spinal interneurons [9]. Tracer

studies in rhesus monkeys have quantified ipsilateral

corticospinal fibers as approximately 9–12% of the

total descending corticospinal projections [14]. Thus,

current evidence points to contralateral corticospinal

fibers as the predominant pathway for spinal motor-

neuron activation.

The presence of ipsilateral MEPs has mostly been

described in pathological conditions. Patients with

congenital mirror movements [11], schizencephaly [12],

and Kallmann’s syndrome [13] show ipsilateral MEPs,

which likely result from abnormal structure and func-

tion of ipsilateral corticospinal fibers. However,

Transcallosal
conduction of
stimulation

Right cortical
stimulation

Uncrossed
motor
pathways

Right
ipsilateral
MEP

Crossed
corticospinal
pathway

Spinal cord

Spinal motor
neuron

Left
contralateral
MEP

Motor cortex 

Fig. 1 Schematic diagram
showing right cortical
stimulation, resulting in
ipsilaterally and
transcallosally conducted
corticospinal impulses
activating the spinal cord
anterior horn cell. The right
ipsilateral MEP recording is
from the TA. Summation of
ipsilaterally conducted and
transcallosally generated
descending impulses may thus
result in larger ipsilateral
MEPs from right cortical
stimulation
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functional reorganization and unmasking of ipsilateral

corticospinal pathways may contribute to the genera-

tion of ipsilateral MEPs after adult stroke [6] and

congenital hemiparesis [18]. One study involving 50

normal children suggested that presence of ipsilateral

MEPs might be a normal state of ontogeny. Their

disappearance after 10 years old is likely due to

increasing transcallosal inhibitory influences [16]. In

our study, all patients were above 10 years of age, and

did not have clinical features to suggest presence of

underlying conditions mentioned above. Another study

comparing healthy adults with stroke patients has

suggested ipsilateral MEPs may be conducted via

corticoreticulospinal or corticopropriospinal pathways

in normal subjects [1].

What are the possible underlying mechanisms,

which explain our findings? Firstly, it is possible that

ipsilateral MEPs may be solely due to transcallosal

stimulation of the contralateral motor cortex. Addi-

tionally, the effects of anesthesia on corticospinal

excitability may facilitate this, hence resulting in sig-

nificantly lower initial stimulation intensity to obtain

ipsilateral MEPs. While evidence to suggest this is

scarce, rat brain studies have demonstrated widespread

action of anesthesia at multiple binding sites [8].

Magnetic resonance brain imaging has also demon-

strated increased callosal T2 changes with anesthesia,

suggesting structural alterations at a molecular level

[19]. It is also possible that longstanding scoliosis has

led to spinal cord plasticity changes. Motor pathway

reorganization and spinal cord plasticity have been

well documented in response to cord injury [7] in an

activity-dependent manner [10]. Thus, structural and

postural changes of longstanding scoliosis may have

resulted in reorganization of cortical or subcortical

motor pathways, including ipsilateral corticoreticular

fibres leading to our observations [17]. However, lack

of lateralization of MEP amplitudes with ipsilateral or

contralateral stimulation was not supportive of this

hypothesis.

Additionally, lack of significant ipsilateral and con-

tralateral latency differences suggest bilateral motor

cortex stimulation has resulted in ipsilateral MEPs,

which may have comprised early ipsilaterally con-

ducted components and late transcallosally stimulated

components (Fig. 1). This might also explain the larger

amplitudes of ipsilateral MEPs obtained than MEPs

derived from contralateral motor cortex stimulation.

Further studies clarifying the predominant mechanisms

responsible would be interesting.

Are ipsilateral MEP responses useful and relevant in

clinical settings? Ipsilateral MEPs are readily elicited,

as shown in this study. While the relative contributions

of ipsilaterally and transcallosal conducted MEPs re-

main uncertain, bilateral MEP recordings during spinal

surgery IOM may provide additional information

regarding the integrity of descending motor tracts.

Together with the electrophysiological findings pre-

sented here, future studies clarifying these aspects

would be justified. It thus may be feasible to routinely

monitor MEPs bilaterally in future IOM protocols for

spinal surgery.
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