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The introduction of gene expression profiling has
resulted in the production of rich human data sets
with potential for deciphering tumor diagnosis, prog-
nosis, and therapy. Here we demonstrate how artifi-
cial neural networks (ANNs) can be applied to two
completely different microarray platforms (cDNA and
oligonucleotide), or a combination of both, to build
tumor classifiers capable of deciphering the identity
of most human cancers. First, 78 tumors representing
eight different types of histologically similar adeno-
carcinoma, were evaluated with a 32k cDNA microar-
ray and correctly classified by a cDNA-based ANN,
using independent training and test sets, with a mean
accuracy of 83%. To expand our approach, oligonu-
cleotide data derived from six independent perfor-
mance sites, representing 463 tumors and 21 tumor
types, were assembled, normalized, and scaled. An
oligonucleotide-based ANN, trained on a random frac-
tion of the tumors (n � 343), was 88% accurate in
predicting known pathological origin of the remain-
ing fraction of tumors (n � 120) not exposed to the
training algorithm. Finally, a mixed-platform classi-
fier using a combination of both cDNA and oligonu-
cleotide microarray data from seven performance
sites , normalized and scaled from a large and di-
verse tumor set (n � 539) , produced similar results
(85% accuracy) on independent test sets. Further
validation of our classifiers was achieved by accu-
rately (84%) predicting the known primary site of
origin for an independent set of metastatic lesions
(n � 50) , resected from brain, lung, and liver , po-
tentially addressing the vexing classification prob-
lems imposed by unknown primary cancers. These
cDNA- and oligonucleotide-based classifiers provide
a first proof of principle that data derived from

multiple platforms and performance sites can be
exploited to build multi-tissue tumor classifiers.
(Am J Pathol 2004, 164:9–16)

Making the correct pathological diagnosis is always pre-
ferred before the initiation of treatment of the cancer
patient because cancer therapy is primarily directed by
tumor origin. Using standard pathological techniques, it
is estimated that up to 5 to 10% of all tumors may actually
be misclassified.1,2 Furthermore, current pathological
techniques still find the differential diagnosis of a number
of cancers problematic. In fact, the diagnosis of “un-
known primary” is applied to nearly 5 to 10% of all tumors
because the origin of the lesion cannot be identified or
predicted.3 Pathologists must often apply their best esti-
mate of the correct tissue of origin for any given meta-
static lesion, based primarily on histological and morpho-
logical features, and secondarily on semiquantitative
immunohistochemical stains. Unfortunately, this ap-
proach is not error-free, particularly in the circumstance
in which no obvious primary tumor source has been
identified. Accurate diagnosis of these and other tumors
may lead to more effective treatment and better outcome.

The recent development of gene expression profiling
technology has permitted the development of prototypi-
cal clinical classifiers that demonstrate the feasibility of
this molecular approach to diagnosis.4–13 Some of these
classifiers have potential clinical application in narrowly
defined diagnostic applications, however, none of these
classifiers are suitable for broad based clinical applica-
tion because of limitations in the numbers and types of
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tumors included in the analyses. Moreover, levels of ac-
curacy in diagnosis on test sets of data are generally too
low for clinical application in which high degrees of ac-
curacy are necessary. The most comprehensive ap-
proach to classification published to date involved 14
common tumor types and was able to achieve a 78%
success rate using support vector machines for classifi-
cation,9 a rate below what is routinely considered clini-
cally acceptable.

The goal of this study was to develop a prototype
classifier with sufficient accuracy and breadth of cover-
age that would demonstrate the feasibility for genome-
wide microarray analysis in clinical application. To ac-
complish this, we realized that large data sets from
multiple sources and types of human microarray data
would have to be exploited. Both cDNA- and oligonucle-
otide-based microarray platforms are currently being
used to produce the majority of human tumor data. It was
our belief that, by using meticulous normalization and
scaling techniques, both cDNA- and oligonucleotide-
based microarray platforms could be assessed indepen-
dently, or even jointly, if a relatively robust analysis tool
was applied. For this purpose, we investigated a number
of analytical tools including hierarchical clustering, prin-
cipal components analysis, and artificial neural networks
(ANNs). Ultimately, we discovered that our ANN-based
classification technique was capable of classifying
cDNA-, oligonucleotide-, or even mixed-platform data,
derived from multiple tumor types and multiple perfor-
mance sites, with high levels of accuracy suitable for
clinical application.

Materials and Methods

Sources of Human Microarray Data

Data used to develop diagnostic classifiers were derived
from both cDNA and oligonucleotide microarray plat-
forms from up to seven different performance sites, in-
cluding the Moffitt Cancer Center, as outlined in Table 1.
Metastatic tumors of mixed origin and primary colon tu-
mors derived from brain, liver, and lung (Moffitt Cancer
Center Tumor Bank) and interrogated by cDNA mi-
croarrays, served as blinded, independent validation
sets to test the classifiers (see Table 3). All tumor
samples derived from the Moffitt Cancer Center Tumor
Bank underwent independent pathological review by a
single pathologist (DC) as well as frozen section
guided microdissection before RNA extraction.

cDNA Microarray Chip Construction and
Analysis

To assess tumor-associated gene expression, we first
used a spotted cDNA microarray containing 32,448 ele-
ments (ten exogenous controls printed 36 times, four
negative controls printed 36 to 72 times, 31,872 human
cDNAs representing 30,849 distinct transcripts, 23,936
unique Institute for Genomic Research (TIGR) Tentative
Consensus (TCs), and 6913 expressed sequence tags)
to profile multiple tumor types of nearly identical histolog-
ical appearance. A description of this array along

Table 1. Description of Tumors and Their Sources Used in Classifier Construction

Tumor type
Number of
samples Array platform† Website‡ Reference§

Bladder 19 U95, HU68 A, B 9, �
Breast 42 U95, HU68, T32 A, B, F 9, �, �
Central-nervous atypical teratoid/rhabdoid 10 HU68 C 1
Central-nervous glioma 10 HU68 C 1
Central-nervous meduloblastoma 70 HU68 B, C �, 1
Colon 41 U95, HU68, T32 A, B, F 9, �, �
Stomach/EG junction 30 U95, T32* A, F 9, �
Kidney 31 U95, HU68, T32 A, B, F 9, �, �
Leukemia-acute lymphocytic B cell 10 HU68 B �
Leukemia-acute lymphocytic T cell 10 HU68 B �
Leukemia-acute myelogenous 10 HU68 B �
Lung-adenocarcinoma 71 U95, HU68, T32 A, B, D, E, F 9, �, 1, �, �
Lung-squamous cell carcinoma 21 U95 A, D, E 9, 1, �
Lymphoma-follicular 11 HU68 B �
Lymphoma-large B cell 11 HU68 B �
Melanoma 10 HU68 B �
Mesothelioma 10 HU68 B �
Ovary 44 U95, HU68, T32 A, B, F 9, �, �
Pancreas 26 U95, HU68, T32 A, B, F 9, �, �
Prostate 42 U95, HU68 A, B, E 9, �, �
Uterus 10 HU68 B �

†Array legend: U95, affymetrix U95A; HU68, affymetrix HU6800FL; T32, 32K TIGR cDNA array; *EG junction and stomach were distinct tumor types
in the T32 classifier.

‡Data source URL legend: A, http://carrier.gnf.org/welsh/epican/1; B, http://www-genome.wi.mit.edu/mpr/GCM.html2; C, http://www-genome.wi.mit.edu/
mpr/CNS/3; D, http://www.pnas.org/cgi/content/full/191502998/DC14; E, http://www.moffitt.usf.edu/research/classifier Moffitt5; F, http://cancer.tigr.org/
classifier.html TIGR/Moffitt.6

§Publication legend: In addition to the references to published reports, additional data were provided by: �, Jove/Bepler, personal communication;
�, TIGR �http://cancer.tigr.org/data/classifier.html� (from this study).
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with allprimary and filtered data are available at http://
cancer.tigr.org/data/classifier.html. Total RNA was pre-
pared from adenocarcinomas (n � 10) derived from eight
different primary sites of origin (breast, pancreas, lung,
ovary, kidney, colon metastases, stomach, and esopha-
gogastric junction). Tumors were selected such that all
appeared nearly identical on histological inspection, de-
spite originating from different organ sites. Labeled first-
strand cDNA was prepared and co-hybridized with la-
beled samples prepared from a universal reference RNA
consisting of equimolar quantities of total RNA derived
from three cell lines, CaCO2 (colon), KM12L4A (colon),
and U118MG (brain), as described previously14 using
standard protocols (http://cancer.tigr.org/protocols.shtml).15

All hybridizations were replicated with a dye-reversal to
eliminate any fluor-specific effects. Data from each hy-
bridization were normalized using total intensity normal-
ization.14 Dye-reversed hybridizations were subjected to
replicate flip-dye trimming to eliminate inconsistent data,
and the geometric mean was calculated for the remaining
array elements.14 Data were further filtered to select
genes that could suitably distinguish tissues and the
resulting gene expression vectors were subjected to av-
erage linkage hierarchical clustering using a Pearson
correlation coefficient distance measure.

Normalization and Scaling of Data

Our cDNA classifiers use a comparison of expression
measured in a tumor relative to that in a reference RNA
sample. For application to the Affymetrix (Santa Clara,
CA) oligonucleotide-based platform, we first labeled and
hybridized our reference RNA source to the HU6800 and
U95A GeneChips and measured the expression for each
gene. For each tumor sample, the measured expression
level for each gene on the array is scaled so that its
average measured expression is equal to the average
measured for our reference sample. These normalized
expression measures were then used as input to our
classifier. We chose to use rescaled expression values
rather than ratios because neural networks perform best
when the input data have as wide a range as possible.

For cross-platform comparisons (cDNA and oligonu-
cleotide), an additional normalization step was per-
formed. Common genes were identified across platforms
using RESOURCERER16 (http://www.tigr.org/tdb/tgi.shtml).
For each gene in common, expression levels for the refer-
ence RNA sample on the spotted arrays was averaged and
compared to expression measured for the reference RNA
applied to the appropriate Affymetrix GeneChip to calculate
a gene-specific scaling factor. This scaling factor was used
to adjust the remaining data (GeneChip) to make it compa-
rable to the spotted arrays. Whenever multiple representa-
tives of a single gene were represented on array, their
values were averaged. The final scaled values were used
as input for the classifier.

Statistical Analysis

The Kruskal-Wallis H-test is a nonparametric statistical
test that was used to rank the importance of each gene.

The null hypothesis for this test is that the distribution of
gene expressions is identical across tumor types relative
to the alternative hypothesis that expression distribution
differs between types. The Kruskal-Wallis test was used
as a guide in selecting the subsets of genes used to train
each of the neural networks (see below). Specifically, this
test is applied only to the set of training tumors to identify
genes that best distinguished tumor types. The genes
were sorted in ascending order by the P value assigned
in the Kruskal-Wallis test. A subset of genes was then
selected from this list for use in construction of the ANNs.
The entire list of calculated P values, including the aver-
age P value used in gene selection for each random data
split, can be found in the supplemental data (all supple-
mental data are accessible on website http://cancer.
tigr.org/data/classifier.html).

The Artificial Neural Network (ANN)

An ANN is a versatile algebraic construct that can arbi-
trarily closely approximate any nonlinear function. It is an
ideal tool for classification problems associated with
complex microarray data sets because it requires no a
priori assumptions about the relative importance of any
particular gene in the classification. The neural network
package used was a locally modified version of Scott
Fahlman’s QuickProp17 neural network software. We
modified the C implementation to provide a cleaner input/
output interface and to operate within a Beowulf cluster
environment. For these experiments we disabled the
quickprop modifications, making the classifier essentially
a standard feed-forward back-propagation neural net-
work. We used a learning rate of 1.0, a momentum term of
0.2, and trained in incremental mode.

Before the ANN can be used for classification, how-
ever, it must first be trained to perform this function.
Training data consists of input gene expression vectors
that are paired with target vectors representing tumors
with defined histological classifications. The ANN uses
the weighted combination of these input genes for gen-
erating a prediction of a particular tumor type. A single
hidden layer feed-forward, back-propagation neural net-
work was chosen for this study. The standard sigmoid
transfer function was used and the learning rate was set
to 1.0. Classification accuracy was estimated by running
10 random training and test set splits. For each microar-
ray platform (cDNA, oligonucleotide, and mixed), 10 dif-
ferent stratified splits of the data were created. A neural
network was constructed from a training set and vali-
dated on the corresponding test set. This technique more
accurately estimates the true generalization error rate for
classifier and allows the ability to assess the variance in
predicting correct classifications. All data are reported as
mean accuracies of the 10 training and test splits with an
associated 95% confidence interval unless otherwise
specified. An electronic table of the accuracies of the
individual cDNA, oligonucleotide, and mixed platform
classifiers are included in the supplemental data. See the
supplemental data also for a list of those genes selected
in common across all 10 training and test splits.
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Results

Unweighted Approaches Were Unsuccessful in
Accurate Tumor Classification

To assess the feasibility of constructing a multi-class
tumor classifier, we first analyzed data derived from 78
primary adenocarcinomas representing eight different or-
gan sites (n � 10 samples/organ site) of origin, using a

single platform based on 32K cDNA microarrays. Tumors
were selected based on their similar histomorphological
appearance (see supplemental data). Two of 80 tumors
did not produce informative hybridizations. All 78 tumors
were subjected to two flip-dye hybridizations. The results,
shown in Figure 1, illustrate that using a simple, un-
weighted clustering approach, we were initially able to
separate tumor types into distinct groups. Closer inspec-
tion of the cluster dendrogram, however, illustrates that

Figure 1. Hierarchical clustering of eight different types of adenocarcinoma. The Kruskal-Wallis H-test was used to identify those genes most correlated with each
tumor type, selecting �700 genes from 30,849 distinct transcripts on the cDNA chip. Average linkage hierarchical clustering of spotted cDNA array expression data
using a Pearson correlation coefficient distance matrix illustrates the problems with this approach to classification, which typically weights each gene equally. Even
for ovarian cancer samples (yellow boxes), which are generally well classified, there are two outlying samples that are grouped within a set of diverse tumors.
For other tissues of origin such as lung (pink boxes), the situation is worse. Similar results are obtained for samples assayed using Affymetrix GeneChips.
Although hierarchical clustering can be used with weights for each gene, we have no a priori means of determining the appropriate weights. This is the rationale
that underlies the use of the ANN in tumor classification.
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this unweighted, unsupervised approach failed to fully
distinguish all tumor types. Subsequent attempts at clas-
sifying independent, blinded data sets using informative
genes identified by clustering approaches were primarily
unsuccessful, with 30% or more tumors being misclassi-
fied (data not shown). Even when new samples were
added to this data set and the clustering rerun, our ability
to classify samples accurately was limited. Similar results
were obtained with principal components analyses (data
not shown).

Construction of cDNA-Based Tumor Classifier
Using a Gene-Weighted Approach

Examination of the cluster heat map suggested that some
genes were more informative than others in classifying
samples and should be weighted appropriately. How-
ever, we had no rational means of knowing the appropri-
ate weights to assign to each gene in the classification.
To address this problem, we combined a nonparametric
statistical screen to select discriminating genes, with an
ANN18–25 to assign weights to individual genes, that
could then be used for classification. A nonparametric
Kruskal-Wallis H-test was used to identify a set of 700
genes (see supplemental data) most correlated with tu-
mor histological classification from a randomly selected
training set of �75% of informative primary tumor hybrid-
izations. These genes and their expression vectors were
then used to train an ANN to identify specific tumor types.

In constructing our first ANN classifier, we used 700 input
nodes (the number of genes in the training set), 200
hidden nodes, and 8 output nodes (equal to the number
of distinct tumor types). A learning rate of 1.0 was used
and the training and testing tolerances were both 0.1. To
validate our classification technique, we randomly parti-
tioned the entire available data set into truly independent
training and test sets. Independence is crucial, therefore
the test set of data were not exposed to either the Kruskal
Wallis H-test set or the ANN learning algorithm.

After training a series of 10 classifiers using this set of
78 tumors, we achieved a mean accuracy of 83% with a
95% confidence interval of (76.4%, 88.6%) as calculated
from those tumors held out in each of the splits (see
supplemental data).

Construction of Oligonucleotide-Based Tumor
Classifier

Based on our initial success in classification of tumors
arrayed on the cDNA platform, we next sought to extend
this approach to oligonucleotide-based microarray data,
to develop a more general, clinically applicable, and
robust classifier. The approach we used is summarized in
Figure 2. We combined new data (kindly provided by R.
Jove and G. Bepler, H. Lee Moffitt Cancer Center) with
published data to produce a collection of 466 tumors,
which were profiled on both Affymetrix HFL6800 and

Figure 2. Graphical depiction of classifier development separated into the four major stages. Data acquisition involves a literature search for suitable published
microarray data and the collection of this and newly generated data into a microarray database. Normalization and scaling shows the three major steps in data
preparation. Namely, calculation of an average Gene expression value across the reference sample for the two Affymetrix chip types, gene by gene scaling
between Affymetrix chip types and the gene by gene scaling between Affymetrix chip types and the spotted microarray. A nonparametric statistical screening was
then used to find a subset of genes correlative with tumor type. This set of genes was used to train and validate an ANN.
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U95A GeneChips (Table 1) at six different performance
sites, representing 21 tumor types, and accounting for
more than 95% of all human tumors. We chose only those
data sets that included at least 10 independent measure-
ments for each tumor type, as fewer in any single group
greatly reduced the ability to develop an accurate clas-
sifier. By incorporating the 5296 genes in common on
these two chip platforms, we again applied our classifi-
cation strategy. The Kruskal-Wallis H-test was used to
select a subset of 2000 discriminate genes from a train-
ing set of tumors (n � 346) representing �75% of the
entire tumor collection. These genes were used to train a
series of ANNs using intraplatform (Affymetrix HFL6800
and U95A GeneChips) data, appropriately scaled and
normalized. By applying these trained ANNs to the re-
maining 25% (n � 120) of the entire collection of tumor
samples—not included in gene selection via the Kruskal-
Wallis test and not exposed to the training algorithm—we
were able to correctly predict the known pathology of
88% of the test samples with a 95% confidence interval of
(84.3%, 89.5%) (see supplemental data). This high level
of accuracy in predicting the blinded, independent test
sets suggests that these data were not subject to over-
fitting, a potential pitfall of ANNs. Further, by replicating
the experiment using 10 independent, randomly-se-
lected, training tumor sets, we have ensured that the
reported accuracy of predicting the independent test
sets is not dependent on any individual training/test split
of the data. Finally, the error rates achieved are clinically
acceptable when compared with the probable rate of
error in routine pathological diagnosis.1,2 Importantly,
these errors were distributed relatively evenly across mul-
tiple tissue classes (Table 2).

Construction of a Mixed-Platform Multi-Tissue
Tumor Classifier

Because gene expression profiling is currently being pro-
duced on at least two different microarray platforms,
oligonucleotide and cDNA, we sought to develop a
means to exploit both types of data, for the ultimate
purpose of compiling many sources of data to build a
multi-tissue, extensible, tumor classifier. For this purpose,
oligonucleotide-based microarray data were combined
with the cDNA expression data we produced from spot-
ted arrays to develop a mixed-platform classifier based
on seven performance sites. We first selected 2252
genes common to all microarrays under consideration
using RESOURCERER16 (http://www.tigr.org/tdb/tgi.
shtml) and used the approach described previously to
select those genes most highly correlated with particular
histological classifications. To provide ratiometric mea-
sures of gene expression, we used the same GeneChips
to profile the same RNA sample used as a reference in
our spotted array assays (see Normalization and Scaling
in Materials and Methods). We selected 400 tumors rep-
resenting a combination of all available array platforms
and tumor types to train a series of 10 mixed-platform
ANNs. The resulting tumor classifiers were applied to the
remaining 140 tumor samples in their respective test sets.
This approach was able to correctly classify 85% of the
140 tumors from the blinded test sets with a 95% confi-
dence interval of (82.2%, 87.6%) (see supplemental
data). This high level of accuracy agrees with our previ-
ous results for the independent cDNA- or oligonucleoti-
de-based classifiers, suggesting that it is feasible to pro-
duce a multi-tissue classifier capable of incorporating
more than one data format derived from more than one
performance site.

Classification of Metastases to Liver, Lung, and
Brain from Known Primary Sites

It has been previously reported that metastatic lesions
may be difficult to classify because these lesions have
lost some of the expression of their differentiating genes.9

Moreover, these metastatic tumors represent the majority
of tumors that are difficult to diagnose by standard patho-
logical methods, particularly when a primary tumor has
not been identified. We sought to validate our classifica-
tion technique and address this difficult clinical problem
by evaluating a large set of 50 tumors metastatic to brain,
lung, and liver, and derived from multiple known primary
sites. Data were produced on both our cDNA arrays as
well as oligonucleotide arrays. When assessed by our
cDNA- and oligonucleotide tumor classifiers, a classifi-
cation accuracy of 84% was achieved using the entire 50
tumors as a blinded, independent test set (Table 3).
These data support the concept that classification of
tumors, without a known primary site of origin, may now
be feasible.

Table 2. Performance of the Oligonucleotide Classifier across
21 Tumor Types Shown as an Average of the 10
Different Accuracies from the Train/Test Splits

Tumor type

Average
classification

success rate as
%

Bladder 77
Breast 67
Central-nervous AT/RT 98
Central-nervous glioma 95
Central-nervous meduloblastoma 97
Colon 99
Stomach/EG junction 57
Kidney 70
Leukemia acute lymphocytic B cell 88
Leukemia acute lymphocytic T cell 83
Leukemia, acute myelogenous 91
Lung adenocarcinoma 94
Lung squamous cell 87
Lymphoma, follicular 97
Lymphoma large B cell 96
Melanoma 96
Mesothelioma 89
Ovary 85
Pancreas 80
Prostate 94
Uterus 74
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Estimation of Minimal Gene Set for Adequate
Tumor Classification

One potential limitation of our classifiers is their apparent
dependence on a large number of genes to function
effectively, reducing the potential to derive meaningful
biological information from a diverse set of genes. At the
same time, a large number of genes may make the clas-
sifier more robust in a clinical setting, and more forgiving
of data derived from multiple performance sites, while at
the same time permitting separation of a large number of
different tumor types. To investigate the number of genes
required for adequate classification, we performed a fea-
ture reduction experiment using the oligonucleotide clas-
sifier as an example. The Kruskal-Wallis H-test was used
to identify the 2000 genes with the lowest P values, from
a total of 5296 available (common to both Affymetrix
platforms), for use in the classifier algorithm. Ten random
train and test splits were used and the mean accuracy for
the 10 classifiers was calculated. This process was re-
peated for sequentially smaller numbers of genes until
the ANN was no longer able to train. The summary of this
experiment is reported in the supplemental data. As can
be seen from Figure 3 the accuracy of the classifier is
relatively unaffected by the number of genes used in
training the ANN until the number drops to �400. This
demonstrates both that the neural network is very robust
with respect to the number of input genes, and that the
number of genes can be significantly limited, still obtain-
ing useful classification accuracies. When fewer than 25
genes were used, the classifier performed very poorly.
When we tested the classifier using the smallest number
of effective genes (n � 25), we confirmed the importance
of gene selection based on P values. Accuracy using the
25 genes from the Kruskal-Wallis selected set of 2000
with the most significant P values was 76%, but was
reduced to 63% using the genes with the least significant
P values, and further reduced to 55% with a random

selection of 50 genes from the genes excluded by the
initial Kruskal-Wallis test.

Discussion

We have produced the first multi-tissue classifier with
both sufficiently broad scope and classification accuracy
to demonstrate potential for clinical application. Whereas
our first attempt at producing a cDNA classifier produced
accuracy levels less than optimal, we were encouraged
that these levels exceeded those reported by other pub-
lished studies and might be improved by larger sample
sizes. This prediction was validated with the production
of an oligonucleotide classifier and a mixed-platform
classifier, both providing high levels of accuracy. At
present, our classifiers are capable of interrogating 21
different tumor types, representing 95% of all cancers,
with up to a 88% accuracy rate using as few as 400
genes. Moreover, we have demonstrated the ability to
classify metastatic tumors, often representing the most
difficult of diagnostic challenges. Here we demonstrate
an 84% accuracy rate classifying metastatic tumors to
liver, lung, and brain when derived from multiple sites of
origin. Our results are, at present, limited by the number
of available data sets and the relatively small number of
genes assayed on the early Affymetrix HU6800 Gene-
Chips, as well as by the number of genes shared by
multiple platforms. By continuing to add data to our clas-
sifier, which we have shown is possible using data from a
variety of sources and performance sites, we believe that
both the accuracy and scope of these ANN-based clas-
sifiers can be further improved. In addition, it is likely that
this approach can be extended to subtype classification,
making it possible to classify even difficult to diagnose
tumors such as those of unknown primary origin.

Classifiers can be constructed using a variety of learn-
ing algorithms, including support vector machines.9 We
sought to compare our approach directly with support
vector machines to ensure an equivalent result. When we
applied our approach to the same published training
data set using a leave one out cross validation, our clas-
sification technique resulted in an accuracy of 84% ver-

Table 3. Classification of Site of Origin of 50
Adenocarcinomas Metastatic to Brain, Lung, and
Liver

Primary site Met site Classifier used Result

Colon Liver cDNA 9/10
Breast CNS cDNA 2/2
Breast Lung cDNA 1/1
Lung Liver cDNA 0/1
Lung CNS cDNA 1/1
Ovary Lung cDNA 1/2
Pancreas Liver cDNA 1/1
Renal Lung cDNA 9/11
Renal CNS cDNA 2/2
Breast Liver Oligonucleotide 4/5
Colon Ovary Oligonucleotide 1/1
Colon Liver Oligonucleotide 1/1
Gastric NA Oligonucleotide 0/1
Renal Colon Oligonucleotide 0/1
Lung

adenocarcinoma
NA Oligonucleotide 2/2

Lung squamous
carcinoma

NA Oligonucleotide 2/2

Ovary Omentum Oligonucleotide 4/4
Prostate Lymph node Oligonucleotide 2/2

Figure 3. Analysis of the effect of removing genes from the oligonucleotide
classifier on classifier accuracy. Genes were sequentially removed from the
2000 genes selected by the Kruskal-Wallis test, starting with the least signif-
icant to the most significant P values.
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sus the reported accuracy rate of 78% using a support
vector machine (see supplemental data).

To classify a large number of distinct tumor types, we
used a relatively large number of informative genes with
a relatively forgiving analysis tool (ANN) to permit accu-
rate classification. As expected, using gene ontology
analysis, there was no underlying discriminating biologi-
cal function that would permit separation of 21 different
tumor types; however, highly accurate classification was
achievable with hundreds of genes when using our clas-
sification technique. Although these classifiers are in-
complete for actual clinical application, we believe these
models and collected data sets will provide a corner-
stone for the construction of expandable, versatile tumor
classifiers. Although neural networks are only one of
many tools that can be used for classification, the ap-
proach we developed demonstrates that one can accu-
rately partition samples into large numbers of different
classes even though the data are collected at multiple
sites and on multiple platforms. These data demonstrate
that microarray-based tumor classifiers hold promise to
objectively compliment existing histomorphological tech-
niques in the accurate diagnosis of cancer origin, with
significant implications for cancer therapy.
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