Abstract
Plasma membrane vesicles isolated from spinach leaves incubated with the fungal toxin fusicoccin showed a twofold increase in ATP hydrolytic activity and a threefold increase in H+ pumping compared to controls. This increase in H+-ATPase activity was largely completed within 4 min of incubation and was not due to de novo synthesis of H+-ATPase as demonstrated by immunoblotting. Incubation with fusicoccin also resulted in a decrease in the apparent Km for ATP of the H+-ATPase from 0.22 to 0.10 mM. The fusicoccin-mediated activation of H+-ATPase activity and the accompanying decrease in the Km for ATP are changes very similar to those observed upon trypsin activation of the H+-ATPase, where an autoinhibitory domain in the C-terminal region of the H+-ATPase is removed. Thus, trypsin treatment of plasma membrane vesicles from control leaves gave a twofold increase in ATP hydrolytic activity and a threefold increase in H+ pumping, as well as a decrease in the apparent Km for ATP of the H+-ATPase from 0.22 to 0.10 mM. Trypsin treatment of plasma membranes from fusicoccin-incubated leaves did not further enhance the H+-ATPase activity, however, and neither was the Km for ATP further decreased. That trypsin really removed a small segment from the fusicoccin-activated H+-ATPase was confirmed by immunoblotting, which showed the appearance of a 90-kD band in addition to the native 100-kD H+-ATPase band upon trypsin treatment. Taken together, our data suggest that in vivo activation of the H+-ATPase by fusicoccin proceeds by a mechanism involving a displacement of the C-terminal inhibitory domain.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bearden J. C., Jr Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta. 1978 Apr 26;533(2):525–529. doi: 10.1016/0005-2795(78)90398-7. [DOI] [PubMed] [Google Scholar]
- De Michelis M. I., Pugliarello M. C., Rasi-Caldogno F. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H-ATPase: I. Characteristics and Intracellular Localization of the Fusicoccin Receptor in Microsomes from Radish Seedlings. Plant Physiol. 1989 May;90(1):133–139. doi: 10.1104/pp.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Palmgren M. G. An H-ATPase Assay: Proton Pumping and ATPase Activity Determined Simultaneously in the Same Sample. Plant Physiol. 1990 Nov;94(3):882–886. doi: 10.1104/pp.94.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmgren M. G., Askerlund P., Fredrikson K., Widell S., Sommarin M., Larsson C. Sealed inside-out and right-side-out plasma membrane vesicles : optimal conditions for formation and separation. Plant Physiol. 1990 Apr;92(4):871–880. doi: 10.1104/pp.92.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmgren M. G., Larsson C., Sommarin M. Proteolytic activation of the plant plasma membrane H(+)-ATPase by removal of a terminal segment. J Biol Chem. 1990 Aug 15;265(23):13423–13426. [PubMed] [Google Scholar]
- Palmgren M. G., Sommarin M. Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 1989 Jul;90(3):1009–1014. doi: 10.1104/pp.90.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayle D. L., Cleland R. E. The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol. 1992 Aug;99(4):1271–1274. doi: 10.1104/pp.99.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y. S., Wang Y., Takemoto J. Y. Syringomycin-Stimulated Phosphorylation of the Plasma Membrane H-ATPase from Red Beet Storage Tissue. Plant Physiol. 1992 Aug;99(4):1314–1320. doi: 10.1104/pp.99.4.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Boer A. H., Watson B. A., Cleland R. E. Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiol. 1989;89:250–259. doi: 10.1104/pp.89.1.250. [DOI] [PMC free article] [PubMed] [Google Scholar]