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When the illumination on a scene changes, so do the visual signals elicited by that scene. In spite of
these changes, the objects within a scene tend to remain constant in their apparent colour. We start
this review by discussing the psychophysical procedures that have been used to quantify colour
constancy. The transformation imposed on the visual signals by a change in illumination dictates
what the visual system must ‘undo’ to achieve constancy. The problem is mathematically
underdetermined, and can be solved only by exploiting regularities of the visual world. The last
decade has seen a substantial increase in our knowledge of such regularities as technical advances
have made it possible to make empirical measurements of large numbers of environmental scenes and
illuminants. This review provides a taxonomy of models of human colour constancy based first on the
assumptions they make about how the inverse transformation might be simplified, and second, on
how the parameters of the inverse transformation might be set by elements of a complex scene.
Candidate algorithms for human colour constancy are represented graphically and pictorially, and
the availability and utility of an accurate estimate of the illuminant is discussed. Throughout this
review, we consider both the information that is, in principle, available and empirical assessments of
what information the visual system actually uses. In the final section we discuss where in our visual
systems these computations might be implemented.

Keywords: colour vision; colour constancy; von Kries transformation; cone-excitation ratios;
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1. INTRODUCTION
(a) What is colour constancy?

Through our senses, we recover the information that

we need in order to interact effectively with the world

around us, but there is not a simple relationship

between the properties of objects in the world, and

the information collected by our sense organs. For

example, the size of the retinal image of an object

depends both on the size of the object and on the

viewing distance; its shape depends both on the shape

of the object and on the viewing angle; and its intensity

depends both on the reflectance of the object and on

the light illuminating it. The term perceptual constancy
describes the extent to which objects appear unchan-

ging despite changes in the conditions of observing.

The level of ‘constancy’ differs according to whether an

observer is asked to make accurate judgements about

how things are in the world, or is asked about his

sensations. This is the distinction between performance
constancy and phenomenal regression to the real object
(Thouless 1931).

Colour constancy describes the extent to which an

observer can stably recognize the spectral reflectance of

an object’s surface (or in perceptual terms, its colour),

despite changes in conditions of observing that change

the spectral properties of the light reaching the eye.
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This paper presents a short review of the sensory,
computational and cognitive aspects of human colour
constancy under a change in the spectral composition
of the illumination.1
(b) The nature of the problem

To understand colour constancy we must consider both
the physical properties of the world, and the biological
and psychological properties of the observer (see
figure 1). The light that reaches a local area of retina
depends both on the spectral reflectance of the object
or surface in view, and on the spectral composition of
the illuminant.2 An illuminant is characterized by its
spectral composition, E(l), i.e. the energy of light at
each wavelength, l; an object or surface is characterized
by its spectral reflectance function, R(l), i.e. the
proportion of light reflected as a function of wave-
length. Physical measurements of spectral reflectance
can be obtained by recording the reflected light with a
spectroradiometer and (on a wavelength by wavelength
basis) dividing by the spectrum of the illuminant.
However, the human visual system, dependent on the
photon catches in just three classes of photoreceptor,
does not have access to full spectral information about
the light that reaches the retina, and in general, cannot
obtain direct information about the illuminant.

The starting point for visual experience is the signal
from the photoreceptors. The photoreceptors are
characterized by their absorption spectra (e.g. for
q 2005 The Royal Society
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Figure 1. The first row shows R(l), the surface reflectance of
an object. Reflectance takes values between 0 (no reflectance)
and 1 (perfect reflectance), and is plotted as a function of
wavelength from 400 to 700 nm. The second row shows
Esun(l) and Esky(l), the energy spectra of two daylight
illuminants (Taylor & Kerr 1941), and the third row shows
the spectrum of light reflected from the surface, i.e. a
wavelength-by-wavelength multiplication of R(l) and E(l).
The fourth row shows the spectral sensitivities of the human
cones, normalized to equal peak sensitivities. The final row
shows the S-, M- and L-cone photon catches for the surface
under sunlight (left) and skylight (right).
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trichromatic humans, s(l), m(l), l(l) for short-,
middle- and long-wave sensitive cones, respectively),
and the resultant cone photon catches are given by:

S Z
Ð
sðlÞRðlÞEðlÞdl; (1.1aÞ

M Z
Ð
mðlÞRðlÞEðlÞdl; (1.1bÞ

L Z
Ð
lðlÞRðlÞEðlÞdl: (1.1cÞ

A change in the spectrum of the illumination causes a
change in the spectra of lights reflected from objects,
and hence a change in the cone signals elicited by those
objects, a process we will refer to as ‘colour conversion’
(Helson 1938). With access only to the cone signals,
how does the visual system disentangle the information
about objects in the world from the information about
the light illuminating them?
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(c) The nature of the solution

In abstract terms, colour constancy is achieved when a
neural process transforms the signals elicited by
surfaces under a test illuminant towards the signals
that would be elicited by the same surfaces under a
reference illuminant. Models of colour constancy must
first specify the form of this neural transformation and
its associated parameters (see §3), and then identify the
information that must be extracted from the retinal
image in order to set these parameters (see §4). Similar
frameworks have been proposed for models of colour
adaptation by Stiles (1961) and for models of colour
constancy by Krantz (1968), Maloney (1999) and
Brainard (2004). In addition, any complete model of
human colour constancy must specify where in our
perceptual apparatus the proposed transformations are
performed (see §5).

(d) Evaluating different ‘solutions’

We know that in general, a human observer cannot be
perfectly colour constant, for the physical constraints
on the problem are insufficient. But regularities of the
natural world provide additional constraints, some of
which are presumably exploited by the visual system.
The computational literature evaluates the plausibility
and utility of particular constraints; empirical studies
with human observers are required to discover what
information human observers actually use. By measur-
ing failures of human colour constancy under situations
that satisfy some constraints but not others, we can
make critical tests of candidate algorithms for human
colour constancy. We start this review by discussing the
non-trivial issue of how to measure the level of
constancy exhibited by human observers.
2. MEASURING HUMAN COLOUR CONSTANCY
(a) The observer’s task

(i) Matching to a standard display
Perhaps the most popular approach is to ask how well
an observer can match the colour of a surface seen
under one illuminant to the colour of a test surface seen
under a second illuminant (asymmetric colour matching).
The scenes may be real or artificial, and usually
comprise multiple surfaces. The two illuminant-con-
ditions may be presented side-by-side (simultaneous
asymmetric matching; e.g. Arend & Reeves 1986; Arend
et al. 1991; Brainard et al. 1997), or one after the
other (successive asymmetric matching; e.g. Brainard &
Wandell 1992), or to different eyes (haploscopic
matching; e.g. McCann et al. 1976). Simultaneous
matching has the drawback that adaptation to the two
scenes will be determined by the pattern of eye
movements across the two halves of the scene.
Successive matching allows experimental control of
adaptation to the two illuminants, but performance will
additionally depend on the observer’s ability to
remember colours. Haploscopic matching allows
separate adaptation states in the two eyes, but removes
binocular cues to scene geometry.

(ii) Matching to an internal standard
An alternative method is to ask an observer to adjust a
test patch within a scene to appear white (achromatic
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setting; e.g. Fairchild & Lennie 1992; Brainard 1998).
Importantly for these studies, Morgan et al. (2000)
have shown that accuracy can be as great with an
implicit as with an explicit standard. Achromatic
setting provides information about transformations of
only a single point in perceptual colour space, and,
therefore, cannot provide a general test of colour
constancy mechanisms. An extension of the method
is to ask observers to make settings of a particular
chromatic locus (for example, colours that appear
neither ‘reddish’ nor ‘greenish’) or to combine
measurements of multiple colour loci to track changes in
the structure of perceptual colour space (Chichilnisky &
Wandell 1999; Smithson & Zaidi 2004).

(iii) Colour naming
A further alternative is to measure whether a surface is
assigned the same colour name under different
illuminants (Troost & de Weert 1991). Our ability to
discriminate surface colours far exceeds the number of
discriminations represented in our vocabulary, so
attempts have been made to improve the precision of
colour naming by adding ratings (Speigle & Brainard
1996).

(b) The question to ask the observer

As mentioned in §1a, it is possible to distinguish
between colour constancy based on the ability to
recognize the invariance of objects in the world, and
colour constancy based on the stability of appearance.
Arend & Reeves (1986) have presented a clear
demonstration of the influence of instructions in a
colour-matching task. When observers were asked to
make a match to ‘look as if it were cut from the same
piece of paper’, they showed relatively good constancy
compared with conditions where they were asked to
match ‘hue and saturation’ (see also Arend et al. 1991;
Cornelissen & Brenner 1995). The appearance-based
constancy obtained in the second case is a demon-
stration of phenomenal regression to the real object
(Thouless 1931). While we can be sure that, whichever
measurement technique is used, less constancy will be
achieved as we progressively reduce the contextual cues
available, our sensations and our judgements of the
outside world can be decoupled.

Perception is an underdetermined problem; mul-
tiple physical arrangements can give rise to the same
sensory inputs. In order to reconstruct the external
world, our perceptual systems use the incoming data in
conjunction with constraints imposed by the regularity
of the world (see §3) and expectations that arise from
recent or concurrent experience (see §4d ). Different
cues, or instructions, may suggest alternative perceptual
organizations, which in turn may influence perceived
colours (Judd 1940; Adelson 1993; Schirillo &
Shevell 2000).

(c) Representation of surfaces and illuminants

An interesting issue is whether an observer can
represent, simultaneously, the colour of a surface and
that of the light illuminating it (Arend 1994; Mausfeld
1998; MacLeod 2003). Rather than discounting the
illuminant, would it not be more desirable to recognize
that surfaces were being viewed under different
Phil. Trans. R. Soc. B (2005)
illuminants, to infer the relative properties of different
illuminants, and the identity of surfaces across illumi-
nant changes (e.g. Zaidi 2001)? Lichtenberg raised just
this issue. In a letter to Goethe (7 October 1793), he
writes, ‘In ordinary life we call white, not what looks
white, but what would look white if it was set out in
pure sunlight. we believe at every moment that we
sense something which we really only conclude’ (Joost
et al. 2002, p. 302).

(i) Discriminating a change in illumination from a change
in surface reflectance
Foster and colleagues have proposed an operational
approach to colour constancy in which observers are
asked to discriminate between a change in illumination
and a change in surface reflectance (Craven & Foster
1992; Nascimento & Foster 1997). Observers are
exceedingly sensitive to such differences, and in
§3b(iv) we discuss the neural signals that might support
such discriminations.

(ii) Identifying surfaces across illuminants
Zaidi (1998, 2001) advocates a forced-choice measure
of performance colour constancy in which the observer
is required to identify like surfaces across illuminants,
despite obvious differences in appearance. In a typical
experiment, four surfaces are presented, two under
each illuminant. Three surfaces have the same reflec-
tance, and one has a different reflectance. The
observer’s task is to identify the ‘odd one out’. To
choose the correct surface requires observers first to
choose the illuminant condition in which the surfaces
differ (a chromatic discrimination task), and then to
identify which of those two surfaces is the same as the
two standard surfaces under the second illuminant (the
constancy task). Khang & Zaidi (2002) found that, in
the majority of cases, identification performance was
limited only by the limen of discrimination.
3. THE TRANSFORMATION IMPOSED BY
A CHANGE IN ILLUMINATION
(a) An over-simplification?

We must now turn to the colour conversion imposed on
the visual signals by a change in illumination, for it is
only through understanding this transformation and its
associated parameters that we can design experiments
which test how the visual system might ‘undo’ the
colour conversion to achieve constancy.

In a world composed of surfaces that reflect all parts
of the spectrum equally, signals representing the level of
light reflected from a set of surfaces would retain their
relative magnitude under a change in illumination. In
such a world, lightness constancy could be achieved by
normalizing each of the signals by the signal obtained
from direct sampling of the illuminant.

Historically, it has been common to suggest that
colour constancy could be achieved by a similar
‘discounting’ of the illuminant (Helmholtz 1866).
However, as shown in equations (1.1a)–(1.1c ), once
light has been absorbed by the cones, the components
of the signal that derive from the illumination, and
those that derive from modification by spectrally
selective reflection from a surface, are confounded.



Box 1 An over-simplification if, SR;EZ
Ð
sðlÞRðlÞEðlÞdl then, SEZ

Ð
sðlÞEðlÞdl; when RðlÞZ1 and, SRZ

Ð
sðlÞRðlÞdl;

when EðlÞZ1 but, SRsSR;E =SE . SR,E is the S-cone signal from a surface, R(l), seen under illuminant E(l). When R(l)Z1
the surface has a spectrally uniform reflectance, and thus faithfully reflects the illuminant spectrum. When E(l)Z1, the
illuminant is a reference light with a constant unit spectral power density. The S-cone signal for the surface, SR cannot
generally be recovered by dividing SR,E by the S-cone signal for the illuminant, SE.

S-coneM-coneL-cone

cone coordinates under sunlight

co
ne

 c
oo

rd
in

at
es

 
un

de
r 

sk
yl

ig
ht

Figure 2. The three panels show L-, M- and S-cone coordinates from each of 280 reflectance spectra (Taylor & Kerr 1941;
Chittka et al. 1994; Vrhel et al. 1994; Hiltunen 1996; Marshall 2000) rendered under two illuminants: zenith skylight on the
ordinate and direct sunlight on the abscissa. In each plot, the red cross represents the photon-catch from a surface of perfect,
uniform spectral reflectance and is equivalent to the photon-catch obtained from direct sampling of the illuminant. The solid
black line is the unit diagonal and represents the case where cone coordinates are the same under the two illuminants. The
change from skylight to sunlight causes an approximately multiplicative change in cone coordinates. A neural process that is able
to ‘undo’ this mapping will result in colour constancy. Metamers are represented in these plots as pairs of points that, for all three
cone types, lie on vertical or horizontal lines (i.e. match under one illuminant, but not under the other illuminant).
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It might seem plausible that in order to recover an
illuminant-independent description of the surface, one
could simply divide the cone signals for the surface seen
under the illuminant by the cone signals for the
illuminant itself. However, if E(l), R(l) and S(l),
M(l) and L(l) are arbitrary functions of wavelength,
there is no mathematical reason why this simplification
should work, even approximately. Maloney (1999,
p. 392) has labelled this false simplification the ‘RGB
heuristic’, and it is summarized by the equations in box
1. Much of the work on algorithms for colour
constancy has been directed towards specifying the
necessary constraints, for illuminants, reflectances and
spectral sensitivity functions, under which equations
(1.1a)–(1.1c) can be simplified. Ultimately, the rel-
evance of such constraints for human colour constancy
can be determined only by thorough sampling of
environmental reflectances and illuminants (Foster &
Nascimento 1994). So, is it reasonable to simplify
equations (1.1a)–(1.1c), and if so, how?
(b) Colour conversion expressed in cone

coordinates

(i) What happens to the cone signals?
One of the most important findings of the last decade
has been the empirical result that for environmental
surfaces and illuminants, the colour conversion
between two illuminant conditions has a simple
form when expressed in terms of cone coordinates
(Dannemiller 1993; Foster & Nascimento 1994; Zaidi
et al. 1997; Nascimento et al. 2002).3 The result is
illustrated in figure 2. Each data point represents one of
a sample of 280 natural objects. The L- (or M- or S-)
cone coordinate for each object under zenith skylight is
plotted versus the L- (or M- or S-) cone coordinate of
the same object under direct sunlight, and the diagonal
Phil. Trans. R. Soc. B (2005)
of unit slope represents the case where signals are equal
under the two illuminants.

We should note four properties of the data in these
plots: (i) to a first approximation, a change in the
spectrum of the illumination produces multiplicative
changes in cone coordinates; (ii) the cone coordinates
of the illuminant plot at the far end of the line of
surfaces; (iii) within each cone class, an illuminant
change does not significantly disturb the rank order of
signals from a set of surfaces; and (iv) to a large extent,
cone coordinates from different surfaces maintain their
relative positions under a change in illumination, a
property that Foster and colleagues describe as the
invariance of cone-excitation ratios. Clearly, if a change in
the spectrum of the illumination produced exactly
multiplicative changes in cone coordinates, the data
points in figure 2 would lie perfectly on straight lines
through the origin, and the invariance of rank order and
ratios of excitation within each cone class would
naturally follow. In §3c we discuss the perceptual
relevance of scatter in plots similar to those in figure 2,
but first, we discuss how each of these properties might
be exploited in colour constancy.

(ii) Multiplicative scaling of cone-signals
Ives (1912) may have been the first to suggest an explicit
mechanism for constancy under an illuminant change
(Brill 1995). Using arbitrary surface–reflectance func-
tions, and Koenig fundamentals to represent receptor
sensitivities, he showed that the multiplicative factors
which transform the coordinates of incandescent carbon
illumination to those of a reference illuminant, also
transform the coordinates of surfaces to approximately
their coordinates under the reference illuminant. Ives’
observations are confirmed for the set of reflectances
and illuminants sampled in figure 2, and indeed, for the
large samples of environmental surfaces and illuminants
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Figure 3. The four panels in (a) describe an illuminant change on a synthetic scene. Each of the small squares in the reference
image (top left) was coloured by calculating the RGB values (i.e. the levels of the RGB phosphors on a computer monitor) that
would produce in the L-, M- and S-cones the same triad of responses as would be produced by one of the reflectance spectra
used in figure 2 which was illuminated by an equal energy illuminant (EEE(l)Z1). Each of the 100 squares corresponds to a
different reflectance spectrum. The small square in the bottom right represents a perfectly reflecting surface and thus produces
the same cone signals as the illuminant. The ‘sunlight’ image (top right) shows the same arrangement of reflectance spectra
illuminated by sunlight, and the ‘skylight’ image (bottom left) shows the same scene illuminated by skylight. The plot (bottom
right) shows the L-cone signals for the same set of reflectance spectra under skylight plotted against the signals obtained under
sunlight. The red cross indicates the surface of perfect spectral reflectance and plots at (Lsun, Lsky). The four panels in
(b) describe the operation of the Ives transform on these signals. The images ‘corrected sunlight’ and ‘corrected skylight’ are
transformed versions of images ‘sunlight’ and ‘skylight’. Multiplicative constants for the three cone types have been chosen such
that the signals for the perfectly reflecting surface are identical in these images and in the reference image. The Ives transform has
successfully generated images that are approximately illuminant-invariant. (NB: There are dangers in performing such
simulations. First, owing to the vagaries of colour reproduction, the images presented in your copy of this article will not produce
the intended triads of L-, M- and S-cone signals. Furthermore, errors that do not appear large under particular viewing
conditions may become significant in other circumstances, and vice versa.) The plot (bottom right) shows quantitative data on
the normalization of the L-cone signal. The signal from each surface has been normalized to the signal from the test illuminant,
and multiplied by the signal from the reference illuminant.
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discussed above. Hence, the ‘over-simplification’

described in §3a, and in box 1, is not so wildly wrong

for human observers in the physical world.

We refer to Ives’ proposal as the Ives transform.4

Mathematically, it consists of multiplying all cone

coordinates by the same diagonal matrix, the elements

of which are set by the illuminant’s cone coordinates.

Under Ives’ account, striking failures of colour

constancy are predicted if the visual system uses the

wrong estimate for the illuminant. In §4, we discuss

proposals for how the illuminant’s cone coordinates

might be estimated from a complex scene. Figure 3

illustrates the operation of the Ives transform on a

synthetic scene, assuming perfect knowledge of the

illuminant’s cone coordinates.

In 1878, von Kries suggested that colour adaptation

might be described by independent, multiplicative gain

controls within each class of receptor (von Kries 1878;

1905). Von Kries’ coefficient rule is incorporated in

many modern theories of adaptation. However, von

Kries’ original suggestion was that, at each retinal

location, the coefficients were set in inverse proportion

to the local stimulation. This operation adjusts cone

signals from different surfaces by different amounts, so

rather than achieving the required colour-constancy

transformation, it shifts cone signals in each class
Phil. Trans. R. Soc. B (2005)
towards a single reference value (Webster 1996). The
effect of normalization to the local stimulation is
illustrated in figure 6, and discussed in §4b(ii).
(iii) Rank ordering
To the extent that the rank order of cone signals is not
disturbed by a change in illumination, reasonable
constancy could be achieved by storing only the
ranked position of each surface. Under this proposal
(see figure 4), signals are mapped to the unit diagonal
at the cost of losing information about the relative
differences between surfaces. Primate photoreceptors
in a steady state of adaptation respond reasonably
linearly to small increases in light, but large step
changes in light level produce saturating nonlinear
responses (Schnapf et al. 1990). A benefit of con-
sidering only the rank order of signals is that this order
remains unchanged under any monotonic transfor-
mation of the photoreceptor photon catches.

The idea that constancy may be based on rank order
is paralleled in a large body of psychological literature
on human judgements. Helson (1938, 1947) proposed
the existence of a centrally stored level of reference that
represents past and present environments, against
which all new stimuli are judged. Rank ordering fails
to achieve constancy if the reflectances sampled under
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Figure 4. The four panels describe the effect of recoding the
L-, M- and S-signals by their rank position, rather than using
actual values. The images ‘corrected sunlight’ and ‘corrected
skylight’ are transformed versions of images ‘sunlight’ and
‘skylight’ from figure 3a. The reference image is replotted for
comparison. The plot (bottom right) shows that rank
ordering achieves reasonable colour constancy since the
transformed signals plot close to the unit diagonal, but
information about the relative differences between surfaces
has been lost.
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the one illuminant are spectrally biased compared with

those sampled under other illuminants (see also

§4b(ii)).
(iv) Coding colour relations by ratios
The invariance of cone-excitation ratios is shown

explicitly by Foster & Nascimento (1994, fig. 3). For

randomly chosen pairs of surfaces, they plot the ratio of

cone excitations for the two surfaces under one

illuminant against the ratio obtained for the same two

surfaces under a second illuminant (and, in fact, a

different two illuminants are drawn at random from the

daylight set for each pair of surfaces). In these plots, all

data points fall very close to the unit diagonal.

If, for each cone class, the visual system encoded the

spatial ratios of signals from different surfaces, this code

could be used by observers to discriminate between

scenes that changed in illumination and scenes that

changed in reflectance: the code would be virtually

unchanged by a change in illumination but would be

disturbed by a change in the surfaces comprising the

scene. It has been suggested that this signal might

support operational colour constancy, i.e. the ability to

distinguish between a change in illumination and a

change in surface reflectance (Craven & Foster 1992;

see §2c(i)). For ideal observers viewing uniformly

illuminated Mondrian worlds, operational colour con-

stancy is formally equivalent to colour constancy based

on invariant colour percepts (see Foster & Nascimento

1994, Appendix 1; Foster et al. 1997). However, as

indicated in §§1a and 2b, the two abilities may be

dissociated in practice (Foster et al. 1997).
Phil. Trans. R. Soc. B (2005)
(v) Post-receptoral combination of cone signals
The preceding analysis of cone signals can be extended
to subsequent stages of processing in the visual
system. The MacLeod–Boynton (1979) chromaticity
axes (L/(LCM), S/(LCM)) provide a good represen-
tation of the post-receptoral colour signals that are
transmitted to the cortex (Derrington et al. 1984).
Zaidi et al. (1997) showed that when the effects of
changes in illuminant spectrum are expressed in
MacLeod–Boynton coordinates, the transformation of
the L/(LCM) chromaticities is approximately an
additive transformation, whereas the transformation
of the S/(LCM) chromaticities is approximately a
multiplicative transformation.

(c) These schemes are not perfect. Are they good

enough?

(i) Statistical measures
Cone excitations for collections of real-world surfaces
under different illuminants are not perfectly described
by any of the simplifications above, and therefore, none
of the suggested constancy transforms will result in
perfect constancy. We are sometimes aware of viola-
tions of the invariance of cone-excitation ratios in the
phenomenon of metamerism: two surfaces may match
under one illuminant but not under another.5 The
analysis by Worthey (1985) suggests that metameric
surfaces are in fact rare, but Foster & Nascimento
(1994) show other violations of the invariance of cone-
excitation ratios (for example, with some Munsell
surfaces of extreme chroma). For two extreme illumi-
nants, Nascimento et al. (2002) found mean relative
deviations of cone-excitation ratios of around 4% for
distributions of reflectances encountered in natural
scenes, and deviations of around 9% for random
sampling of the Munsell set. Dannemiller (1993)
reports average absolute shifts in rank of 3.7, 3.1 and
2.9 for the L-, M- and S-cones, respectively, and a
maximum shift of 26 positions out of the 337 materials
he analysed from the Krinov set. However, the
perceptual relevance of such statistics is unclear. Do
the residual violations set the limits of human colour
constancy? Or can we do better than these analyses
suggest?

(ii) Psychophysical measures
Brainard & Wandell (1992) tested how well different
linear transformations of cone coordinates accounted
for observers’ performance in an asymmetric colour-
matching task. The mapping between the cone-
coordinates of the test and the cone-coordinates of
the match was well described by multiplicative scaling
within cone classes (a diagonal linear transform).
Moreover, the elements of the diagonal transform
were linearly related to the change in simulated illumi-
nant (i.e. the mapping obtained under an illuminant
change that was the sum of two independent illuminant
changes was predicted by the sum of the mappings
measured for each illuminant change alone).

Nascimento & Foster (1997) required their obser-
vers to discriminate between simulations of real
changes in illumination, and simulations of changes
in illumination that were modified such that spatial
cone-excitation ratios were preserved exactly.
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The modified changes were identified as changes in
illumination, even though they corresponded to illu-
minant transformations that are highly unlikely in the
natural world. Furthermore, the greater the violations
of invariance in the real transform, the higher the
likelihood of misidentification. It is not totally clear that
observers in this experiment actually equate the
appearance of a modified illuminant change with the
appearance of a natural illuminant change,6 but what is
clear is that observers are highly sensitive to violations
of the invariance of spatial cone-excitation ratios, at
least when the two images are presented in quick
succession (Linnell & Foster 1996). Indeed, there is
evidence that spatial cone-excitation ratios might be an
elementary feature extracted from the visual scene
(Westland & Ripamonti 2000; Foster et al. 2001;
Hurlbert & Wolf 2004).

Spatially invariant cone-excitation ratios are strong
predictors of the measured perceptual constancy of the
relations between the colours of surfaces under changes
in illumination (Foster et al. 1997). However, to what
extent they support colour constancy in the stronger
sense is still unknown. A difficulty here is that the task
of asymmetric colour-matching requires only relational
judgements. This is clearly the case when the spatial
layout of surfaces is held constant under the two
illuminants, but can be extended to cases in which
the set of surfaces, or their spatial configuration, may
change. Amano & Foster (2004) provide evidence for
the use of cone-excitation ratios when the surfaces are
rearranged, and they suggest that the most likely cue in
this case is the ratio of cone excitations between the test
surfaces and a spatial average over the whole pattern, a
suggestion we will return to in §4b(ii).

If it could be demonstrated that human observers
are more colour constant than predicted from the
residual errors following multiplicative scaling of cone
signals, or if failures of constancy are not consistent
with errors in estimation of the parameters of such a
transform, we must consider alternative simplifications
of equations (1.1a)–(1.1c).
(d) Colour conversion expressed in terms of

linear basis functions

(i) A new transformation matrix
A popular alternative is based on the claim that
environmental illuminants and reflectances can be
characterized as the weighted sum of a small number
of basis functions (Sällström 1973). Measurements of
real illuminants suggest that three basis functions may
be sufficient (e.g. Judd et al. 1964; Wyszecki & Stiles
1982), and likewise for spectral reflectance functions
(e.g. Cohen 1964; Dannemiller 1992). Maloney
(1986) argues, however, that although the first three
functions in Cohen’s analysis accounted for 0.992 of
the variance of the overall goodness of fit, there is
considerable variation in how well individual surfaces
are described, with the worst fits having notable
patterned deviations. Maloney repeats the analysis
for a larger dataset and finds that the number of
parameters required to model the spectral reflectances
is five to seven, not three. However, if the residuals
used in deriving the fits are weighted by the photopic
Phil. Trans. R. Soc. B (2005)
sensitivity curve, three or four parameters are
sufficient.

If a surface reflectance, R(l), can be represented as
½b1r1ðlÞCb2r2ðlÞCb3r3ðlÞ�, where, r1(l), r2(l) and
r3(l) are the three basis functions, and b1, b2 and b3

are relative weights, equation (1.1a)–(1.1c) become:

S Z
Ð
sðlÞEðlÞr1ðlÞdl

� �
b1

C
Ð
sðlÞEðlÞr2ðlÞdl

� �
b2

C
Ð
sðlÞEðlÞr3ðlÞdl

� �
b3;

(3.1a)
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� �
b1

C
Ð
mðlÞEðlÞr2ðlÞdl

� �
b2

C
Ð
mðlÞEðlÞr3ðlÞdl

� �
b3;

(3.1b)
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� �
b1

C
Ð
lðlÞEðlÞr2ðlÞdl

� �
b2

C
Ð
lðlÞEðlÞr3ðlÞdl

� �
b3:

(3.1c)

And this set of equations can be rewritten in matrix
form as:

S

M

L

2
64

3
75Z

3s;1 3s;2 3s;3

3m;1 3m;2 3m;3

3l;1 3l;2 3l;3

2
64

3
75

b1

b2

b3

2
64

3
75: (3.2)

To the extent to which the basis functions capture
the properties of surface reflectances in the world,
colour constancy is thus reduced to recovering b1, b2

and b3, from the cone signals by undoing the
transformation imposed by the illuminant (represented
by matrix 3, whose elements are given by the
expressions in square brackets in equations (3.1a)–
(3.1c). This is certainly a simplification of equations
(1.1a)–(1.1c), although the inverse of matrix 3 can be
recovered only by imposing further constraints.
(ii) Additional constraints
If, for example, the illuminant is a weighted sum of
three known spectral power distributions, an object of
known spectral reflectance present in the scene would
provide all the information necessary to find the three
unknown weights of the illuminant (see equation
(3.1a)–(3.1c). If additionally, the reflectance of each
object could be specified as the weighted sum of three
known spectral reflectances, the three cone signals
provide simultaneous equations that can be solved to
recover the three unknown weights of the reflectance
(Buchsbaum 1980). If one assumes that the average
spectral reflectance over all objects in the scene has a
known distribution (a proposal we will return to in
§4b(ii)), then no single reference standard is required.

Alternative linear basis models of colour constancy
relax one constraint at the expense of others.
For example, the illuminant can be any arbitrary light
(not just a weighted sum of three spectral power
distributions), provided that there are three reference
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standards rather than one (Brill 1978; Brill & West
1986). Maloney & Wandell (1986) have shown that,
with trichromatic vision, the need for a reference
standard can be eliminated if the surface reflectance
of each object in the scene is a weighted sum of two
rather than three basis functions, and if information
can be collected from three or more surfaces. Their
‘sub-space’ model (Maloney & Wandell 1986) obtains
an estimate of the illuminant from the way the set of
sampled surfaces clusters in three-dimensional cone-
excitation space. If surfaces are described by only two
basis functions, they will lie exactly in a plane, whose
location within the space is defined by the illuminant
(see Brainard et al. 1993 for an intuitive description of
why this will work). Second-order statistics of the
cluster, like the best-fitting plane, are more reliable
than the mean as cues to the illuminant, both with
respect to changes in the set of surfaces sampled, and to
surfaces that are not well described by a limited number
of basis functions.

(iii) Sensor sharpening
The matrix equation above could be expressed in terms
of the spectral sensitivities of any arbitrary system of
three sensors. A common goal in computational studies
of colour constancy has been to determine the
conditions under which matrix 3 might be diagonal
(for review, see Hurlbert 1998). This is appealing since
constancy could then be implemented by independent
scaling within each sensor class. Equations (3.1a)–
(3.1c) show that a sufficient condition for such a
constancy mechanism would be that the spectral
sensitivities of the three sensors were perfectly matched
filters for the basis functions of surface reflectance.
However, spectral sensitivity functions of human cones
are not matched to the first three basis functions
required for typical sets of naturally occurring surfaces.

An alternative is that the visual system applies two
transformations (D’Zmura & Lennie 1986; Hurlbert
1986; Finlayson et al. 1994). Finlayson et al. (1994)
generate ‘sharpened’ spectral sensitivities by opponent
combination of the L- and M-cone spectral sensitivities
prior to the operation of a diagonal transformation.
D’Zmura & Lennie (1986) propose a diagonal trans-
formation followed by a linear transformation that
recodes the scaled cone signals into channels that
correspond to the basis functions for surface spectral
reflectance. In their scheme, the output of the
combined transformation provides a description of
surface reflectance and is represented at the colour-
opponent stage of the primate visual system.

(e) What are the constraints on illuminants,

reflectances and spectral sensitivity functions

that predict simple receptor scaling?

From the above discussion, it is clear that the empirical
result of approximate multiplicative scaling of cone
coordinates under an illuminant change (which effec-
tively reduces the colour conversion to a diagonal
matrix, and predicts that the triad of cone signals
provides an adequate description of surface reflec-
tance) is not directly predicted from the assumption
that surfaces and illuminants can be described by a
small number of linear basis functions; to quote
Phil. Trans. R. Soc. B (2005)
D’Zmura & Lennie, ‘the three numbers used in scaling
cone signals cannot undo what it takes nine numbers to
describe’ (D’Zmura & Lennie 1986, p. 1667).

So why does the empirical result hold? Detailed
analyses of the way this result depends on the
relationships between reflectance spectra, illuminant
spectra and receptoral sensitivities are provided by
several authors (e.g. Maloney 1986; Worthey & Brill
1986; Dannemiller 1993; Zaidi 2001). But their
conclusions differ. While we can be certain that the
human visual system makes use of regularities in the
world to simplify equations (1.1a)–(1.1c), we do not
yet know the exact form of the simplification, or the
constraints that make it possible.
4. ESTIMATING THE ILLUMINANT
(a) What is estimated?

The Ives-transform relies on the visual system’s ability
to estimate the cone coordinates of the illuminant.
Similarly, solutions to equation (3.2) require, at some
stage, an estimate of the illuminant, although here it is
specified in terms of basis function coefficients.
However, the illuminant itself is often not in the field
of view so its coordinates must be estimated from cues
within the visual scene (e.g. Maloney & Yang 2003).
Suggestions for how this might be achieved have a very
long history (for review, see Mollon 2003). Their
popularity may at times have derived from the appeal of
the ‘over-simplification’ described in §3a, but the work
described in §§3b–3d provides both a justification for
the role of illuminant estimation in human colour
constancy, and shows its limitations.

In a study of lightness constancy, Rutherford &
Brainard (2002) tested a version of the illuminant
estimation hypothesis in which the illuminant estimate
is associated with the explicitly perceived illuminant,
and found it to be false. This raises the intriguing
possibility that the same physical quantity has multiple
psychological representations (see Bhalla & Proffitt
1999; Gilchrist et al. 1999; Rutherford & Brainard
2002).

The term estimating the illuminant is, in many senses,
misleading. Since the colour conversion between two
conditions of illumination is determined by the proper-
ties of the two illuminants, the inverse transformation
that achieves constancy must be related to them.
However, the illuminant estimate need not be explicitly
available to the observer, or coded explicitly during any
stage of the computation. This distinction is seen most
easily for transformations that rely on multiplicative
scaling of cone signals. To perform the Ives transform,
the multiplicative constants for each cone class should
be set in the ratios LE : LE 0, ME : ME 0, SE : SE 0,
respectively, where E and E 0 are the test and reference
illuminants (see figure 3). These quantities can be
derived from the cone signals from a perfectly reflecting
surface, but approximately the same ratio could be
extracted by using the cone signals from any other
surface that was identified under the two illuminants.
In this case, neither surface would provide an estimate
of the illuminant, but the computation would reveal the
parameter required to undo the illuminant transform.
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(b) Cues to the illuminant

(i) Reference surfaces
The diagonal transformation of cone coordinates
imposed by a change in the illuminant can be identified
by finding the mapping between corresponding sets of
objects sampled under the two illuminants. Zaidi
(1998) presents two template-matching algorithms
to achieve this: one that requires the set of surfaces to
remain the same (and which essentially reduces to
normalization to the global mean) and one that
requires only a subset of surfaces to remain the same.
If the correspondence of just a single reference surface
is known, the correct transformation can be estimated
directly. Similarly, in the computational literature, a
frequent suggestion is that the unknown elements in
matrix 3 might be recovered by using information from
standard reflectances within the scene (Brill 1978;
Buchsbaum 1980; Brill & West 1986).

This is a viable operation for the human visual
system only if observers can identify reference surfaces
within a complex image (see §4d(iii)) and store
and access descriptions of reflectance (Bramwell &
Hurlbert 1993; Fairchild 1993). Jin & Shevell (1996)
have presented empirical evidence that observers tend
to remember the ‘reflectance’ (or at least an illuminant-
invariant description) of surfaces presented under
different illuminants, rather than the chromaticity of
the light that reaches the eye.
(ii) Grey world
A very common suggestion is that the illuminant is
estimated from the mean cone coordinates of the global
scene (Helson 1964; Buchsbaum 1980; Land 1983,
1986). Land’s retinex model (Land & McCann 1971;
Land 1983, 1986) extends von Kries adaptation to
include spatially extended information. For each
element in the cone mosaic, the model computes
‘lightness values’ (adjusted cone signals) from paths
within the image that intersect only cones of the same
class. Both the number and the length of the paths are
parameters in the model. In the limiting case of
arbitrarily many and arbitrarily long paths, the normal-
ization factor approximates the geometric mean of
responses from all cones of the same type (Brainard &
Wandell 1986).

Normalizing the cone signals for all surfaces to the
mean along each axis in figure 2 would rescale the
points to the unit diagonal,7 and other population
statistics, such as the geometric mean, or the standard
deviation could also be used. The ‘grey world
hypothesis’ formally identifies a stable mean reflectance
as spectrally uniform, and thus becomes an algorithm
for extracting an unbiased estimate of the illuminant.
This assumption is unlikely to be true for most scenes
(Brown 1994; Webster & Mollon 1997). However,
constancy requires only that the average reflectance
remains constant, not that it be spectrally uniform.
Furthermore, the average need not include the whole
scene: the ground-plane or other potentially less
variable portion of the scene could serve as the
reference (Maloney 1999). Morgan et al. (2000) have
shown that observers in a discrimination task can
decide on the basis of a symbolic cue, which of several
Phil. Trans. R. Soc. B (2005)
implicit reference standards is the correct one, with
only a moderate loss of precision.

If the average reflectance was not stable and was
different for the two illuminants, normalization to the
mean would not achieve the required result. An
inappropriate normalization of this type is illustrated
in figure 5. Similarly, if the mean is collected over an
area that is small compared with the relevant spatial
variation in the scene, differences between regions will
be lost. The effect of normalizing each region to the
local mean is illustrated in figure 6 (see also the
discussion of the von Kries transform in §3b(ii)).

(iii) Second-order statistics
Golz & MacLeod (2002) have suggested that lumi-
nance–chromaticity correlations within an image may
provide illuminant estimates that are less influenced by
the set of reflectances available. Moreover, they present
data which suggest that human observers do use such a
cue and give it a weighting that is statistically
appropriate for the natural environment. One draw-
back of using the complete range of samples in the
scene is that darker surfaces may contribute more noise
than signal to the estimate. Tominaga et al. (2001)
argue that for this reason it is better to use only the
brightest objects.

(iv) Brightest is white
Early versions of the retinex algorithm (Land 1964)
assumed that the brightest patch in each spectral
channel has 100% reflectance in that channel (although
a different patch might be used for each channel). In
natural scenes, and in many experimental situations,
the space-averaged L-, M- and S-cone signals covary
with the maximum in each cone class, and with the
illumination. In these cases, observers could use either
cue to set the parameters of the colour-constancy
transform.

McCann and colleagues have performed several
experiments to determine empirically which cue
dominates. In general, the experiments have been
performed with a small number of real surfaces
illuminated with narrowband lights. McCann (1997,
1992) describes a series of ‘destroy the match’
experiments. Two sets of five surfaces (colour ‘tautomi’
displays) that had the same relative reflectances but
different absolute values for each waveband were
observed in a restricted field of view and illuminated
such that the two displays produced equivalent cone
signals. At this point, since the displays were the same,
they appeared the same. However, when a new white
surface was introduced in one field, the match was
destroyed. Furthermore, a new maximum was found to
reset the appearance even when an equal area of low
reflectance was introduced to hold the average
constant.

Linnell & Foster (1997, 2002) performed similar
experiments. Observers were asked to make matches of
illumination across patterns (78 of visual angle) in
which the global mean and the brightest patch were
chosen to predict conflicting illuminants. With very
small patches (0.038 of visual angle), illuminant
estimates were set by the global mean, as expected.
The brightest patch had an effect only for the largest
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Figure 5. The three images in the top row show three scenes under an equal energy illuminant. From left to right, the first image
is a chromatically balanced reference (with a mean that is approximately spectrally uniform); the upper portion of the second
image is green biased; and the upper portion of the third image is red biased. The lower portion of all three images is identical.
Images in the second row show the green-biased scene under sunlight, and the red-biased scene under skylight. The plot on the
left shows the L-cone signals for the green-biased set of reflectances (green plus symbols), and for the red-biased set of
reflectances (red crosses). The signals obtained under skylight are plotted against the signals obtained under sunlight. The
horizontal red line marks the mean L-cone signal from the red-biased scene (n reflectances indexed with subscript j) under
skylight (indicated with a double prime symbol), and the vertical green line marks the mean L-cone signal from the green-biased
scene (n reflectances indexed with subscript i) under sunlight (indicated with a signal prime symbol). The bottom row shows
images corrected by the global mean of these scenes compared with the global mean of the reference scene. In each image, the
relative difference between the top and bottom halves is reasonably well preserved, but the previously neutral bottom halves are
too red in the green-biased scene, and too green in the red-biased scene. The plot on the left shows the normalized L-cone
signals. The signal from each surface in the red-biased scene under skylight (L 00

j) has been normalized by the mean from that
scene (SL 00

j/n), multiplied by the mean from the reference scene (SLk/N), and plotted against the corresponding signal from the
reference scene. The signal from each surface in the green-biased scene under sunlight (L 0

i) has been normalized by the mean
from that scene (SL 0

i/n), multiplied by the mean from the reference scene (SLk/N), and plotted against the corresponding signal
from the reference scene. The signals from the red-biased scene are under-corrected. The signals from the green-biased scene
are over-corrected.
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patches (18 of visual angle). Linnell & Foster conclude
that, for flat, richly sampled, Mondrian-type stimuli the
global mean is the dominant cue to the illuminant. Had
the patterns contained cues to three-dimensional
shape, the results may have been different.

(v) Chromaticity convergence
Pure specular highlights are the extreme example of
bright, ‘white’ elements in an image, and as such, they
provide a direct glimpse of the illuminant. However,
specular reflections also give rise to a more subtle cue.
The light reflected from an inhomogeneous material is
the sum of two components: the ‘interface reflection’,
which has the same spectrum as the illuminant, and the
‘body reflection’, which is a wavelength-by-wavelength
Phil. Trans. R. Soc. B (2005)
multiplication of the object and illuminant spectra
(Shafer 1985). The relative contribution of the two
components depends on the viewing geometry, so the
chromaticities of light reflected from different regions
of a glossy surface will fall on a line joining the body
reflection and the illuminant colour. Lines correspond-
ing to several surfaces in the same scene (illuminated by
a single source) will therefore intersect at the illuminant
chromaticity (D’Zmura & Lennie 1986; Lee 1986;
Lehmann & Palm 2001). The suggestion has been
named the chromaticity convergence algorithm by
Hurlbert (1998).

Chromaticity convergence was anticipated by
Monge (1789; Mollon 2003). He presented a seeming
paradox: if a complex scene is viewed through a red
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Figure 6. The four panels describe the effect of normalizing
the cone signals by their local mean (i.e. the original von Kries
transform). The L- (or M- or S-) signals from each group of
four small squares were normalized to the mean L- (or M- or
S-) value of those four small squares. The images ‘corrected
sunlight’ and ‘corrected skylight’ are transformed versions of
images ‘sunlight’ and ‘skylight’ from figure 3a. The reference
image is replotted for comparison. The differences between
the images from the two illuminant conditions have been
substantially reduced, but the variations within each scene
that occur at a larger spatial scale than the normalization (e.g.
the orange, red, blue and green bands in the upper portion of
the reference image) have been lost. The plot (bottom right)
confirms that the normalization achieves approximate con-
stancy. The red symbols (diamonds and squares) in this plot
correspond to the surfaces in the local patches outlined in
white in the two images. In the limiting case where the
normalization is performed over a local area that contains
only a single surface, this transformation maps cone signals
for all surfaces to the point (1,1), and thus achieves constancy
only by eliminating differences between surfaces.
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filter, red objects appear, not a saturated red, but
desaturated or white. In a stunning piece of logical
argument, Monge relates this paradox to specular
reflections. He argues first that all objects send to the
eye a component of light that is determined by their
surface colour, and a component that is determined by
the illuminant. White objects are unique in sending to
the eye the same spectrum of light from every point on
their surface. When viewed through a red filter, red
objects acquire this characteristic, and thus appear
white.
(vi) Mutual reflections
A surface with reflectance R1(l) that is illuminated by
E(l) will re-emit light with a modified spectrumÐ
EðlÞR1ðlÞdl, which may in turn be incident on a

second surface R2(l), and be re-emitted with a
modified spectrum

Ð
EðlÞR1ðlÞR2dl, and so on. Drew &

Funt (1990) have demonstrated, at least for the ‘single-
bounce’ case, how such a complication may be
exploited in estimating the illuminant (see also Funt
et al. 1991; Bloj et al. 1999).
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(vii) Shadows
D’Zmura (1992) presents a generalization of the ‘sub-
space’ model (Maloney & Wandell 1986) in which
multiple views of the scene under different illuminants
are used to provide additional information to solve
generic forms of equation (3.2), in which illuminants
and surfaces are represented by m and n linear-basis
functions, respectively (D’Zmura & Iverson 1993a,b,
1994a). A shadow boundary across a surface will
provide the multiple views the algorithm requires. An
alternative proposal is that observers could exploit the
spatial distribution of macular pigment across the
retina. This spectrally selective pre-receptoral filter
peaks in density around the fovea, falling to very low
levels beyond approximately 88 of visual angle, and will
thus provide multiple views of the scene under
differently filtered illumination (Broackes 1992).

(viii) Colour by correlation
Finlayson et al. (2001) present a correlation framework
within which to consider illuminant estimation algor-
ithms. Like other authors (e.g. Forsyth 1990; D’Zmura
et al. 1995; Brainard & Freeman 1997), they recognize
that the problem of illuminant estimation may not be
sufficiently constrained to provide a unique solution,
and that a pragmatic approach (for the visual system,
and for computational algorithms) is to find a set of
possible solutions and to search for the best one. In
their scheme, the problem of illuminant estimation is
represented as finding the correlation between the
colours in an image and prior knowledge about the
probability with which different colours are observed
under different lights. A thresholding procedure can
return the most likely illuminant or set of illuminants.
The strength of Finlayson et al.’s approach is that it
allows the assumptions of different constancy algor-
ithms to be compared. Different algorithms amount to
different methods of computing the correlation matrix.
The grey-world hypothesis, for example, states that
each colour that is observed in the image is equally
likely to have been the illuminant, and that the best
estimate is obtained by taking the average of the
observed values. This clearly does not capture our
(implicit) knowledge of the interaction between sur-
faces reflectance and illumination (see also §4b(iii)).
For machine vision, the correlation matrix is con-
structed during an initial process of sensor calibration.
Recent data from infant monkeys (Sugita 2004)
suggest that experience in early infancy with broadband
lights and surfaces is vital for the development of
normal colour constancy. It is appealing to interpret
this as evidence for a calibration phase in human colour
constancy.

(c) Limited availability of cues

(i) How many surfaces?
With only a single uniformly illuminated surface in
view, it is impossible to disambiguate illumination
and surface reflectance; with multiple surfaces, esti-
mation of the illuminant becomes possible. Interest-
ingly, observers in a surface-matching task perform
nearly as well with spatially congruent ‘scenes’ contain-
ing only two samples of spectral reflectance, as they do
with scenes containing many samples (Blackwell &



1340 H. E. Smithson Human colour constancy
Buchsbaum 1988; Arend et al. 1991). This result
suggests that performance in such tasks is mediated by
purely relational constancy, rather than by a process of
illuminant estimation and subsequent discounting
(Foster et al. 2001; Zaidi 2001; Foster 2003).

Linnell & Foster (2002) have asked how operational
colour constancy depends on the number of surfaces in
a scene. Observers’ ability to detect a change in
illumination over two scenes, containing different
random samples of reflectance, improved as a function
of the number of patches in the scene (from 9 to 49).

Smithson & Zaidi (2004) measured boundaries
between colour categories (red versus green, and yellow
versus blue) as a function of the illuminant on a
sequence of single test patches, with a conflicting
illuminant on surrounding patches. In a single trial
there was no information about the test illuminant,
since this fell only on a single surface. However, colour
boundaries were more closely predicted by the test
illuminant (estimated over time) than by the surround
illuminant (estimated across space). The recent history
of reflectances sampled by the observer is a primary
determinant of colour appearance. The history of
reflectances might be taken from successive presenta-
tions (as in this study), or from successive fixations
within a steady image. Spatially distributed cues to the
illuminant are carefully specified in studies and models
of colour constancy. This study highlights the import-
ance of also considering temporally distributed cues.

(ii) ‘Flat-world’, ‘shape-world’ or real-world?
The simplified physical world (‘flat-world’; Maloney
1999) in which the illuminant is spatially uniform, and
surfaces are flat and matte and engage in no mutual
reflections (and for which equations (1.1a)–(1.1c)
describe the cone signals from surfaces) has been
used extensively in colour-constancy experiments.
However, this world is impoverished compared with a
world that includes cues from specularity, mutual
reflections and shadows (‘shape-world’; Maloney
1999), which in turn is severely impoverished com-
pared with the world in which we live (real-world) that
additionally includes multiple light sources and trans-
parency. The flat-world has an important place in
colour constancy research since scenes from such a
world are straightforward to simulate, manipulate and
control. Recently, the visual world of colour-constancy
experiments has been enriched through the use of
sophisticated physics-based rendering software (Yang &
Maloney 2001; Maloney 2002) and through the use of
real objects and computer-controlled lighting systems
(Brainard et al. 1997; Brainard 1998).

(iii) Real or simulated?
The level of colour constancy achieved by human
observers is typically less for simulated scenes than for
real scenes. Brainard (1998) found that with real
scenes, observers can compensate for 84% of the
change in illumination (assessed via achromatic set-
tings), while typical performance with scenes presented
on computer monitors suggests only 50% compen-
sation. Yang & Maloney (2001) took several steps to
ensure that their simulated scenes were as real as
possible, and their observers achieved achromatic
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settings that compensated for 65% of the change in
illumination. It is clear that there are subtle cues in the
real world that we do not yet understand, and cannot
yet simulate.

(d) Perceptual and cognitive factors

(i) Combination of cues
It is likely that the visual system makes use of several
sources of information. Much of the current work on
colour constancy aims to discover what weights the
visual system gives to different cues under different
natural settings. Kraft & Brainard (1999) used real
objects (rather than rendered images of objects) and
‘silenced’ some of the individual cues in a semi-
naturalistic setting. Their subjects exhibited poorer
and poorer constancy as cues were successively
reduced.

Maloney (2002) highlights a possible complication,
for the human visual system may dynamically assign
different weights to different cues, depending on which
cues are available, or on the basis of task demands, or
prior knowledge. When the scene is rich in reliable
cues, eliminating one of the cohort may have little effect
on the illuminant estimate since the shortfall may be
taken up by the remaining cues. Maloney suggests that
to understand cue-weighting we might use the method
of perturbation analysis, developed in studies of depth
and shape perception. In this method, cues are not
removed, but instead are perturbed to signal a
conflicting illuminant. Although this is difficult to
achieve in real scenes, Yang & Maloney (2001) describe
an experiment in which they perturbed cues in a
simulated scene that was rendered with physics-based
graphics software.

(ii) Segmentation of the image
In order to use shadows, mutual reflections or specular
highlights to identify the illuminant, the visual system
must first identify these components within a complex
image. This is the problem of image segmentation. The
visual system must parse the two-dimensional image on
the retina into regions that correspond to distinct three-
dimensional objects that cast shadows, reflect light on
to one another and offer specular reflections. Hurlbert
(1998) provides a full discussion of the relationship
between algorithms for colour constancy and algor-
ithms for colour segmentation.

The process can fail when the visual system chooses
the wrong perceptual hypothesis to interpret a given
input signal. Such illusions have been analysed more
frequently in the lightness literature than in the colour
constancy literature, perhaps because with lightness,
the form of the illuminant transformation is well known
(see §3a). Striking demonstrations of the role of
perceptual organization in lightness constancy are
provided by Adelson (1993; see also Adelson &
Pentland 1996; Gilchrist et al. 1983 for discussion).

(iii) Memory colour
Some objects have a characteristic colour. Bananas are
yellow, grass is green, and blood is red. Hering (1874,
1964) has suggested that the characteristic colour of an
object is an important factor in colour constancy, but
empirical tests of this claim have yielded conflicting
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results (see Beck 1972 for discussion). Clearly, to use
the characteristic colour of an object to anchor colour
percepts, observers must have extracted an illuminant-
independent description of the colour of an object,
remembered that description, and subsequently be able
to identify examples of such objects in complex scenes
under different illuminations.
5. WHERE ARE THE COLOUR CONSTANCY
MECHANISMS?
(a) Scope

The highly systematic nature of transformations of
cone coordinates under an illuminant change implies
that simple neural transformations could support
colour constancy. The types of neural mechanisms
that could, in principle, contribute to such processing
range from automatic to volitional and from peripheral
to central.

Naturally, this discussion is intrinsically linked to the
types of computation that must be performed (see §3),
and to the way in which the parameters of the transform
might be set by the image (see §4). However, when
asking which neural mechanisms are responsible for
colour constancy we must additionally consider the
conditions under which colour constancy has been
assessed. Colour constancy is influenced by the task at
hand, and by the instructions given to observers (see
§2). Furthermore, different neural mechanisms are
required for colour constancy exhibited over different
time-scales (seconds, hours, days or even years).

(b) Early sensory mechanisms

(i) Processes of adaptation
How do the types of transformation imposed on cone
coordinates by a change in the illumination correspond
to early adaptation mechanisms? In his coefficient law,
von Kries (1878, 1905) identified receptor scaling as
the mechanism that maintains the constancy of colour
appearance under adaptation. Receptor scaling is
implicit in Stiles’ two-colour increment-threshold
technique (Stiles 1939, 1949), and is discussed
explicitly by Rushton (1972). It is widely accepted as
part of the process of visual adaptation.

Current models of the early stages of human vision
propose that the signals from the cones are recombined
into two chromatically opponent channels and one or
more achromatic channels. In addition to first-site
modification of signals within cone classes (e.g. von
Kries 1905) a second-site modification of the opponent
signals (e.g. Pugh & Mollon 1979) is also identified.
Processes of adaptation are likely to be nonlinear if
considered over a wide dynamic range, but given only
moderate excursions from a constant level, both single-
cell responses and psychophysical sensitivity are
consistent with transformations of the cone signals
that have a similar form to matrix 3 (Maloney (1999)
discusses the relationship in more detail). D’Zmura &
Lennie (1986) explicitly link their model of colour
constancy to the two sites of adaptation identified
above. Importantly though, the work discussed in §§3b
and 3d does not require the constancy computations to
occur in the receptors themselves or at any particular
point in the visual pathways.
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(ii) Spatial and temporal extent
The spatial extent of colour constancy mechanisms is
not known. The grey-world hypothesis clearly requires
mechanisms that collect information from an extended
area. Kraft & Brainard (1999) have shown that remote
surfaces have a significant effect on appearance even
when pitted against local contrast. Shevell & Wei
(1998) have shown that contrast in a remote region
markedly influences colour induction in a chromatic
matching task. On the other hand, when observers are
asked to null or discriminate the colour change induced
during a short (500–800 ms) presentation of a
surround stimulus, remote fields contribute relatively
little to appearance (Wachtler et al. 2001; Wolf &
Hurlbert 2003; Barbur et al. 2004).

Published psychophysical measurements indicate
that early adaptation mechanisms are extremely local
in their spatial properties (MacLeod et al. 1992;
MacLeod & He 1993; He & MacLeod 1998). This
limitation might at first suggest a role for central
mechanisms with large receptive fields. However, there
are other ways in which spatially extended information
could be collected. Eye movements convert spatial
variations into temporal variations, so local mechan-
isms do in fact sample information from spatially
dispersed points in a scene (D’Zmura & Lennie 1986;
Fairchild & Lennie 1992). Obtaining illuminant
information from such samples would require these
local mechanisms to respond with long time-constants.
Although a significant change in sensitivity occurs
within approximately 200 ms of a change in back-
ground level (Crawford 1947), adaptation may not be
complete for several seconds, and this is especially true
for adaptation at the second site (Pugh & Mollon
1979).

A very different suggestion for how early sensory
mechanisms might integrate information from the
entire scene was made by Mollon et al. (1998). The
human retina is encircled at the ora serrata by a cone-
rich rim. The function of these cones is uncertain but it
is possible that they may integrate light scattered within
the globe of the eye, or passing through the sclera.

(iii) Information about the illuminant is not discarded
The main argument against a theory of constancy
based only on distal gain adjustments has been
eloquently described by Katz, ‘Paradoxical as it may
at first sound, such a thoroughgoing efficiency on the
part of the adaptive mechanisms as Hering postulates is
not even to be considered as desirable; for it would
partially or wholly compensate for any change in
illumination, and thereby make it imperceptible’
(Katz 1935, p. 265). Under some circumstances,
observers do seem to have access to both the surface
colour and the illuminant colour, although colour
scission of this sort is particularly dependent on the
geometrical properties of the scene (D’Zmura &
Iverson 1993a,b, 1994a; Hagedorn & D’Zmura
2000). Further evidence against automatic and com-
plete peripheral adjustments is that colour-appearance
judgements can be influenced by the set of surfaces
requiring judgement, and not only by the temporal and
spatial statistics of the stimuli (Smithson & Zaidi
2004).
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(c) Cortical mechanisms

Lesion studies, and more recently, neuroimaging
studies, have suggested functional segregation and
specialization of the human cortex. The search for a
‘colour area’ or even a ‘colour constancy area’ has
attracted considerable effort. In an influential study,
Land et al. (1983) tested the colour constancy of a
patient with complete resection of his corpus collosum.
Since the patient’s speech centre was in his left
hemisphere, he was able verbally to describe things in
his right visual field, but not in his left visual field.
When a Mondrian was presented in his right visual
field, his reports of the appearance of a centrally
presented test-patch were consistent with those made
by normal observers. However, when the Mondrian
was presented in his left visual field, his reports of the
same centrally presented test-patch paralleled those
that a normal observer would give if the test-patch were
seen in isolation. Land et al. argue that the long-range
constancy computations that presumably set the
appearance of the centrally presented test-patch for
normal observers, could not occur in the retina, and
must occur in the cortex where regions representing the
two halves of the visual field are joined by the corpus
collosum. Ruttiger et al. (1999) presented further
evidence that cortical computations are essential for
colour constancy. Five patients with circumscribed
unilateral lesions in parieto-temporal cortex of the left
or right hemisphere exhibited a selective loss of colour
constancy (assessed via achromatic settings), while
their colour discrimination thresholds and colour
associations for familiar objects were preserved.

Zeki (1983a,b) has shown that area V4 of macaque
visual cortex contains many cells whose response
parallels more closely ‘perceived colour’ rather than
the wavelength composition of the stimulus. He and his
collaborators have also demonstrated that damage to
human cortical area V4 (see Wandell & Wade 2003 for
discussion of the distinction between macaque V4,
human V4 and V8) can result in a failure of constancy
in a colour-naming task (Zeki et al. 1999). The
receptive fields of V4 neurons are well suited to a
constancy computation since they have a large, silent,
suppressive surround around the classic receptive field
(see Hurlbert & Poggio (1988) and Schein & Desimone
(1990), for modelling and electrophysiology,
respectively).

However, V4 is not wholly devoted to computing
surface colour (Schiller & Lee 1991), nor is it the only
neural area required for such computations. Areas V1
and V2 contain cells that respond not directly to the
hue of a stimulus but to combinations of hue and
surrounding luminance (Yoshioka et al. 1996).
Hurlbert et al. (1998) found that a cerebrally achro-
matic observer (with bilateral damage to the ventral
and temporo-occipital regions including the lingual
and fusiform gyri; Heywood et al. 1991) could
discriminate changes in cone-excitation ratios for
simple but not complex scenes and was thus able to
display colour constancy in an asymmetric matching
paradigm. Barbur et al. (2004) used a dynamic
matching technique to quantify changes in the appear-
ance of a central test-patch as a function of rapid
changes in the illumination of a surrounding Mondrian
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pattern. Data from a patient with unilateral damage to
V1 suggested that retinal mechanisms could not
support constancy in this situation. However, data
from two patients with cerebral achromatopsia showed
evidence for constancy mechanisms (revealed as a
modification of chromatic discrimination thresholds
measured along the line joining the two illuminants).
The magnitude of the simultaneous constancy effect
was smaller than the observer’s chromatic discrimi-
nation threshold, and would thus remain hidden in
other paradigms. Barbur et al. suggest that mechanisms
that support colour constancy under instantaneous
changes in illumination may occur in V1, with only a
small contribution from extrastriate areas.

Colour constancy is not a unitary process, achieved
by all or nothing computation. Wandell et al. (1999)
argue that rather than looking for functional segre-
gation of a ‘colour constancy area’, imaging techniques
might be most usefully employed to track the trans-
formation of visual information along specialized
pathways. It seems most reasonable to say that
processing for colour constancy starts in the retina, is
enhanced in V1/V2 and continues in V4 (see also Walsh
1999).
6. SUMMARY
Our current understanding of colour constancy is
patchy, at best. A full understanding would require
detailed knowledge of the physical world of illuminants
and surfaces, and of the biological and psychological
worlds of our sensory and cognitive processes. Soph-
isticated analyses of the colour conversions imposed by
a change in illumination show that reasonable con-
stancy could be obtained from a variety of neural
transformations. These range from independent multi-
plicative scaling, or rank-ordering of receptor
responses, to more complex transforms of cone signals
that require interactions between receptor classes.
Observers are exquisitely sensitive to violations of the
invariance of cone-excitation ratios, at least when the
two images are presented in quick succession (Foster
et al. 2001), but where and how our neural systems
compute these ratios we do not know, and their role in
predicting appearance-based phenomenological colour
constancy remains uncertain. There are two significant
hurdles in constructing critical experiments to dis-
tinguish the hypotheses.

First, there is the problem of generating the right
stimuli. As we have seen, ‘illuminant estimation’ can
proceed via several cues. Given the superiority of
constancy measured with real scenes compared with
simulated scenes, there are presumably additional cues
that we do not yet understand. Brainard and colleagues
have suggested that when confronted with impover-
ished stimuli, the colour constancy mechanisms that
normally operate in the real world may produce
unstable or conflicting results, and they therefore
advocate using real scenes to study constancy under
nearly natural viewing (Brainard et al. 2003). Maloney,
on the other hand, argues that our understanding
would be better advanced by accurate simulations of
(unnatural) environments that are defined according to
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the mathematical idealizations which form the basis of
competing theories of constancy (Maloney 2003).

The second problem is to choose the appropriate
task for the observer. If asymmetric matches can be
solved via relational judgements, the stability of colour
appearance must be assessed via alternative techniques.
However, the options are limited. Colour naming is of
limited resolution and achromatic settings track only a
single point in colour space (Foster 2003). Measure-
ments of boundaries between colour categories (e.g.
red versus green, and yellow versus blue), rather than a
single achromatic point, may provide a means of
tracking the transformations of perceptual colour
space under an illuminant change (Chichilnisky &
Wandell 1999; Smithson & Zaidi 2004).

It is likely that multiple constancy computations are
performed in parallel. The different computations may
perform different transformations and use different
subsets of cues to set the parameters of those
transformations. The observer’s perceptual experience
may depend on what they are doing and their report
may depend on what they think we want to know.

I would like to thank Qasim Zaidi and John Mollon for many
helpful discussions, and for their comments on an earlier
version of the manuscript.
ENDNOTES
1

A second kind of colour constancy, which is only touched upon here,

acts to discount the effects of simultaneous colour contrast and thus

preserve the constancy of colour appearance in the presence of

different surrounding colours or different backgrounds. For discus-

sion, see Whittle (2003).
2

Initially, we will consider a simplified physical world in which the

illuminant is spatially uniform, and in which surfaces are flat, matte

and engage in no mutual reflections (although see §§4b(v)–4b(vii)). In

such a world, the fraction of incident light reflected at each

wavelength is not altered by the geometry of the surfaces, light

source or observer.
3

Cone coordinates (L, M and S in equations (1.1a)–(1.1c)) are

inferred from multiplication of the cone spectral sensitivities and the

reflected light. Primate photoreceptors in a steady state of adaptation

respond reasonably linearly to small increases in light intensity

(Schnapf et al. 1990) so, within limits, these coordinates are assumed

to be linearly related to the cone signal. This issue is discussed further

in §3b(iii).
4

Ives’ diagonal transform has been widely analysed in the computer

vision literature where it is frequently misnamed the ‘von Kries

transform’.
5

In general, a match will be obtained if the triad of cone signals for one

surface is the same as the triad of signals for a second surface (L1ZL2;

M1ZM2; S1ZS2). If the effect of an illuminant change were simply to

modify the signals in each class of cone by a multiplicative constant,

and to preserve cone-excitation ratios for the pair of surfaces, the

match should be undisturbed (e.g. if L 0
1ZkL1 and L 0

2ZkL2 then

L 0
1ZL 0

2 etc., or if L1/L2Z1ZL 0
1/L 0

2 then L 0
1ZL 0

2 etc.).
6

Changes that preserve cone-excitation ratios appear like a ‘wash of

colour’ over the scene, while natural changes with large violations of

invariance appear spatially non-uniform. In Foster & Nascimento’s

experiment, some discriminations were easy and others not, but the

difficult discriminations were always between changes that had only

small violations of invariance. It would not be unreasonable for

observers to assume that these presentations were the ones that most

interested the experimenters, and thus to select these for response.
7

In the case where the effect of an illuminant change is not a simple

multiplication of cone signals, and surfaces do not plot on perfect

straight lines, Khang and Zaidi (2002) show that this normalization

will work provided that deviations from perfect correlation sum to zero

(e.g.SeiZ0, where eiZS 0
i K(kSi), where Si is the S-cone signal for the
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ith surface under the first illuminant; S 0
i is the S-cone signal for the ith

surface under the second illuminant, and k is a constant).
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