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Seasonal climate outlooks provide one tool to help decision-makers allocate resources in anticipation
of poor, fair or good seasons. The aim of the ‘Climate Outlooks and Agent-Based Simulation of
Adaptation in South Africa’ project has been to investigate whether individuals, who adapt gradually
to annual climate variability, are better equipped to respond to longer-term climate variability and
change in a sustainable manner. Seasonal climate outlooks provide information on expected annual
rainfall and thus can be used to adjust seasonal agricultural strategies to respond to expected climate
conditions. A case study of smallholder farmers in a village in Vhembe district, Limpopo Province,
South Africa has been used to examine how such climate outlooks might influence agricultural
strategies and how this climate information can be improved to be more useful to farmers. Empirical
field data has been collected using surveys, participatory approaches and computer-based knowledge
elicitation tools to investigate the drivers of decision-making with a focus on the role of climate,
market and livelihood needs. This data is used in an agent-based social simulation which incorporates
household agents with varying adaptation options which result in differing impacts on crop yields and
thus food security, as a result of using or ignoring the seasonal outlook. Key variables are the skill of
the forecast, the social communication of the forecast and the range of available household and
community-based risk coping strategies. This research provides a novel approach for exploring
adaptation within the context of climate change.
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1. INTRODUCTION
Livelihoods in many regions of the world are under

stress from multiple causes, including the short-term

fluctuations of climate and climatic hazards and the

longer-term prospects of climate change. Livelihoods

are exposed to climate across a continuum of time-

scales, from memories of the recent past, to assess-

ments of present risks and their medium-term expec-

tations, and beyond to scenarios of possible futures on

the longer-time frames of the evolution of the climate

system. Present climate risk management and adap-

tation to climate change are intertwined across all of

these time-scales.

Seasonal climate outlooks provide one tool to help

decision-makers allocate resources in anticipation of

poor, fair or good seasons. To what extent might

seasonal forecasts ensure adaptation to longer-term
tribution of 17 to a Discussion Meeting Issue ‘Food crops in
ing climate’.
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climate change, linking learning at the seasonal scale

with the evolution of climate on longer-time-scales?

This is the central question of the Climate Outlooks

and Agent-Based Simulation of Adaptation in South

Africa (CLOUD) project. This paper describes the

architecture of the project methodology and the first

results of an innovative decision model that explores

scenarios of household behaviour in a case study from

South Africa.

The approach described here rests on four shifts in

thinking about climate change (see box 1 below). The

first shift has been in the understanding of climate

change and the demand for information on both

present and future climates. The ‘first generation’ of

climate change studies relied on scenarios of climate

change, mostly from general circulation models.1 The

current direction of climate science is more oriented

toward probabilistic predictions of climate change

(albeit contingent on future greenhouse gas emissions).

Seasonal climate predictions developed as an inter-

mediate scale between the current climate observations

and global climate change. Seasonal forecasts have
q 2005 The Royal Society



Box 1. Shifts in thinking about climate change,

vulnerability and adaptation.
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been operational for two decades (Washington &
Downing 1999; Goddard et al. 2001).

The second shift in thinking has been underway for

several decades as well, although it has only become
‘mainstream’ in the past several years as analytical

techniques and practical experience have caught up
with theoretical orientations. This is the shift from

‘what if ’ scenarios of future impacts to understand
present exposure to climatic risks in the context of

multi-stressor and multi-attribute vulnerabilities.
Once a vulnerability baseline has been established,

there is a natural connection to interpret vulnerability

as a dynamic process over time. This is the shift from a
snapshot of vulnerability (already widely practiced in

monitoring systems such as the Global Information
and Early Warning System) to understand the adaptive

capacity of different populations at risk, economic
sectors and regions. This, the third shift in thinking, is

demonstrated by the progression from vulnerability to
adaptation shown in the Adaptation Policy Framework

(Lim et al. 2005) and other similar frameworks (e.g. the

guidelines and support material for the National
Adaptation Programmes of Action, see UNITAR

et al. 2004, www.unitar.org/ccp/NAPA/index.htm).
The fourth shift addresses the need to support

strategic and operational decision-making on climate
risk management and adaptation. This demand for

practical guidance is rapidly gaining prominence in
development planning. Key concepts are the need to

reduce decision uncertainty, the value of climate

information and understanding actual decision pro-
cesses (e.g. Patt et al. in press).

This progression toward understanding the baseline
of vulnerability and dynamics of adaptation, linked to

probabilistic climate predictions at a continuum of
time-scales, has been termed a vulnerability/adaptation

science (Downing 2003).
Section 2 in this paper introduces multi-agent-based

simulation (MABS) as one method in the vulnerability/

adaptation science toolkit. The case study in Mangondi
village, South Africa, linking household interviews and

the multi-agent model are described in §3. The
conclusions reflect on progress in modelling vulner-

ability and adaptation decision-making, including
suggestions for further research.

A short list of key references is included; this
material includes far more extensive reviews of the

literature than is attempted in this article (see Stern &

Easterling 1999). Readers are also encouraged to look
at the briefing notes and training material posted on

www.VulnerabilityNet.org, and to become active par-
ticipants in sharing their work with the Vulnerability

Network.2
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2. MULTI-AGENT-BASED SIMULATION IN
A VULNERABILITY/ADAPTATION SCIENCE
An agent-based model is a programme of self-
contained entities called agents each of which can
represent real world objects such as individuals or
households. Simulation of social agents is included in
the generic term, Multi-Agent-Based Simulation
(MABS). The data required for such a model is
ideally suited to data-intensive fieldwork. Hence, the
representation of place-based understanding of the
dynamics of vulnerability and adaptation in MABS is a
natural, yet innovative approach. Participatory tech-
niques provide a robust and effective method to
formalize and verify qualitative ethnographic data,
for use in an agent-based model.

Agent-based modelling illustrates how macro-level
behaviour can emerge from various types of rules which
inform decisions at the local, individual level. An agent-
based model can be used to establish which patterns of
strategic behaviour emerge as a result of local responses
and whether such emergent phenomena account for a
clearer understanding of the original field data.

The adaptive dynamics involved in climate change-
related behaviour within agriculture, human–environ-
ment interaction and impacts for the individual and the
group can be investigated. However, from a social
science perspective, we are concerned with how such
strategies emerge over time as a part of cultural process
and the structural relationship between adaptive knowl-
edge and the cultural context (Fischer 1994). There has
been much discussion among experts in the field of
social simulation (see ‘Sim-Soc’ discussion list: http://
www.jiscmail.ac.uk/lists/simsoc.html), regarding the
purpose of agent-based models. That is, whether they
should be built as an implementation of theory, as
theory-building tools, or whether observation is
altogether more important than theory. This research
creates a model with a feedback process between
observation and theory, where the model is driven by
the data collected from the field in a bottom-up process.

It should be acknowledged that many, if not most,
complex socio-ecological systems will remain unpre-
dictable even if an understanding of the influences of
behaviour within the system is achieved. Social science
is less concerned with prediction than with identifying
how behaviour evolves and influences other processes.
Since, the study of complex systems is an attempt to
better understand systems which are difficult to grasp
analytically, often the best available way to
investigate such systems is through simulation (Gil-
bert & Troitzsch 1999). Purely deterministic prediction
is difficult in matters of human thought and its relation
to action; stochastic prediction is likely to remain the
norm. This is, in part, because ‘rules’ are not rules of
action, but indicators of possible courses of action and
are influenced by both the goals of the agent and the
reliability of the agent’s categorization of the context,
which relates to the different rules. MABS can explore
social and environmental scenarios that do not exist at
present, providing an experimental laboratory on the
same level of sophistication as models of the global
climate system.

The use of even simple agent-based models can help
to illuminate field-based descriptions. The benefits of

http://www.unitar.org/ccp/NAPA/index.htm
http://www.VulnerabilityNet.org
http://www.jiscmail.ac.uk/lists/simsoc.html
http://www.jiscmail.ac.uk/lists/simsoc.html
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mapping and modelling a complex adaptive system
using this framework lie in the ability to identify
characteristics—macro-level patterns—which are
important to the functioning of a successful system
and its essential underlying components. These micro-
level effects can also be easily identified within an
agent-based modelling environment, which can then
allow the analysis of the interaction of models of
adaptation developed from the social sciences domain
with environmental models from the physical sciences
domain. That is, simulations illustrate how systems of
different orders interact with each other and we are
often interested in the structure, organization and
interaction of these sub-models more than their
content (Fischer 1994).

Furthermore, agent-based models allow us to
examine the consequent behaviours of individual
strategies on a group. They permit the representation
of incremental complexity (i.e. where models include
more and more factors and their contextual inter-
actions) and facilitate the identification of critical
situations that can lead to prediction outside the
simulation. That is, the ability to demonstrate that
some values for the system under study are salient
enough to drive phenomena and not simply be a
contributing factor (see also the applications in Fischer
1980; Buchler & Fischer 1986; Fischer 2002).

Nevertheless, a simulation is only a descriptive
model and its explanatory power is constrained by the
assumptions made, including the researcher’s under-
standing of the field data and the level of implemen-
tation of the model. Furthermore, such a model will be
a simplification of the system under study and in many
cases will not represent any ‘real’ system but will be
intended to generate model data for an ‘ideal’ world,
against which real data can be compared, noting where
it corresponds to, and departs from the ideal world.
This can help to establish a sense of important
contextual drivers within the domain and new areas
for investigation which can be further validated with
the model.
3. SEASONAL CLIMATE OUTLOOKS
AND ADAPTATION TO CLIMATE CHANGE IN
SOUTHERN AFRICA
(a) Case study site: Mangondi, South Africa

Mangondi village is situated within Vhembe district,
Limpopo Province, in the northeast region of South
Africa. Parts of Vhembe district were the former Venda,
which was a homeland of apartheid South Africa,
allocated to black families, where the land was often
marginal. Limpopo province is known for its livestock
farming in the northern drier parts, for Kruger
National Park game reserve in the east and for its
fruit industry in the central zone, within which the
Vhembe district is located. Large-scale commercial
fruit farms produce mangoes, bananas, macadamia
nuts and avocados. Many of the previously disadvan-
taged farmers in the area have begun increasing the size
of their production to try and enter into national and
regional fruit and vegetable markets. The post-apart-
heid South African government has implemented
agricultural policies and procedures to encourage this
Phil. Trans. R. Soc. B (2005)
process. Although there has been an increase in
productivity among previously disadvantaged farmers,
there are still many constraints and risks.

One key constraint is high climate variability, with
numerous droughts and floods having occurred in past
decades (e.g. 2000 floods, 2002/2003 drought).
Managing this climate variability is paramount, but
many other stressors such as land access, political
instability, market fluctuations, globalization and the
impact of HIV/AIDS have to be managed at the same
time. The case study reported below focuses on only
one of these stresses (climatic variability, linked to
climate change) and one adaptive response (seasonal
climate forecasts). Thus, the case study is not a full
implementation of a livelihood-multi-stressor model of
vulnerability.

A communal farming project was initiated in
Mangondi in 1993 with support from ABSA building
society and other donors that aimed to support women
in the production of vegetables for combating malnu-
trition among children (Archer 2003). Land was
identified and took a few years to prepare and in
1996 it was first cultivated by a group of 59 women and
5 men. In the first year, subsistence crops were planted
and in later years vegetables were planted for sale.
Through the years, the success of the project has
fluctuated. In some years, the farmers have had a
functional irrigation scheme, money for inputs and
have made profits. In other years, the pump for the
irrigation has failed, people have not planted and
harvest and marketing has been poor.

The case study is not intended to be representative
of subsistence rainfed farming. However, it is relevant
to understanding how emerging farmers, those who
have access to some resources and support, respond to
constraints such as a lack of access to credit and
information. The existence of the communal farming
project allows us to move beyond the purely sub-
sistence-based exploration of our previous agent
modelling (Ziervogel et al. 2005), and to include the
effects of economic and cultural drivers on the
decision-making of the households, and to explore
how this might interact with the availability of seasonal
forecast information. Since the pumping system is
generally unreliable, we will assume in the following
that it cannot be used, and explore the consequences
for the system in the absence of irrigation.

Research in Vhembe district on the use of
seasonal forecasts and agricultural support among
smallholder farmers has been undertaken since 1999.
An Agricultural Research Council project has been
based in Mangondi village for a number of years.
Research with the Mangondi community has involved
numerous visits and has involved time with the
committee members, community members, local
researchers and local organizations. The results from
the research have highlighted the constraints associated
with using seasonal forecasts (Archer 2003). Although
the role of agriculture is declining in Africa as people
migrate to urban areas, reduce their involvement in
subsistence agriculture as productivity decreases (FAO
2004), agriculture still requires support. Africa needs
to increase production relative to the growing popu-
lation (Clover 2003) and so the focus on adapting to
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Figure 2. (a) Precipitation and (b) potential evapotranspiration for October–November–December.
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climate variability for market-based farmers is of great
importance.
4. DESCRIPTION OF THE MULTI-AGENT MODEL
Based on fieldwork over the past five years, an agent-
based model was developed to represent this farming
community at an abstract level. The model consists of
50 poor and better-off farmer-agents3 with fields for
planting and a market place at which to buy and sell
produce (figure 1). The distinction between poor and
better-off farmers during fieldwork was made through
the use of household surveys spanning three years and
the expert judgement of a field researcher. In the
model, it is assumed that each agent represents a
household of six people. At the case-study site, most of
the plots are tended by women who often make
decisions regarding household food needs, while men
make decisions related to the domain of financial
resources (Archer 2003). However, in the current
modelling exercise the effect of this decision-making
division is not explored—farmer-agents represent
household units, and decisions are implemented only
at the household level.

Data from the Hadley Centre model was used to
generate a baseline climatology (from the control run,
without greenhouse gas forcing) and a scenario of
future climate change for the Mangondi region.
Precipitation and potential evapotranspiration (PET),
Phil. Trans. R. Soc. B (2005)
calculated in the Hadley Centre model, were used

(figure 2). The climate data have a drying trend in

rainfall, but with significant variability, and an increase

in PETover the 140 years used. PET increases from the

present climate norm (as presented in the model) of

520–540 mm in the rainy season (October–December)

to over 620 mm in 100 years. Along with the drying

trend, this represents a significant climate change. Of

course, this is only one scenario (see Stainforth et al.
2005 and www.climateprediction.net for large-ensem-

ble results); however, the intention of the project is to

test the utility of climate prediction rather than forecast

climate change per se.
A crop–water balance module, based on the FAO

Water Requirements Satisfaction Index (WRSI),

calculates potential yields with the above rainfall and

PET as inputs. The WRSI was calibrated using the

yield data obtained during fieldwork (using surveys

which included data on historical yields combined with

further stakeholder elicitation), so that the use of

current climate as model input would give the right

level of output from the garden in rainfed conditions.

As mentioned above, irrigation was not included in the

model since it has often failed at the community garden

project in Mangondi village and, therefore, farmers

ideally need to undertake strategies which can make

them resilient in circumstances where irrigation can be

unreliable.

http://www.climateprediction.net


Table 1. Planting dates and crop coefficients of water
demand.

crop
planting
month

relative water demand

month 1 month 2 month 3

maize September/
October/
January

0.5328 1.027 0.900

butternut September 0.550 0.750 0.900
cabbage January/

February
0.712 1.003 1.035
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A learning component and agent memory were
incorporated in the agent-based model to capture
perceptions of the forecast. A market module creates
reserves of capital which affects long-term strategies
and investment in agriculture. The past history of both
climate and farmer-agent behaviour can thus affect
their current strategy. The time-scales over which this
can have an effect may be several decades (see below).
This can help to illustrate which long-term strategies
are sustainable in dealing with longer-term climate
change, with and without the use of seasonal forecasts.
Although we only incorporate a limited range of
adaptation behaviour in this model, where this leads
to failure of the farm (in the sense that persistently low
yields make the returns from the farm unsustainable),
we have an indication that the adaptation process will
need to be broader than our current representation for
the farmer-agent to survive.

Forecast information is issued in September, for
October–November–December (though occasionally it
only reaches farmers in October/November), but often
inputs need to be bought before this. The forecast is
updated for January–February–March. However, fore-
cast information only provides total predicted rainfall
for the season and the distribution throughout this time
period is not given. The national meteorological offices
are responsible for disseminating the forecast using the
radio and through agricultural advisory bulletins. In
Mangondi area, many people are aware of the forecast,
because the radio presenter who discusses the forecast
is from the Vhembe district.

Farmer-agents have a specified trust in the forecast
(Ziervogel 2004) and their use of it affects their
cropping decisions. However, market farmers such as
those in Mangondi are more likely to use a dry forecast,
whereas it has been shown that subsistence farmers are
more likely to use a wet forecast and ignore a dry one
(Ziervogel 2004). That is, in the Mangondi case, there
is symmetry between forecast use and market demand.
The output from the model is total household
income—best interpreted as a relative index of the
sustainability of different responses to climate forecasts.

Three crop choices are included in the Mangondi
model (table 1). The possible number of choices
observed during fieldwork was reduced to represent
salient drivers of cropping choices established during
interviews and a participatory knowledge elicitation
process. This process (figure 3) used computer-aided
knowledge elicitation tools (Bharwani 2004) to help to
inform the variables which were included in the agent-
based model. An interactive questionnaire was used
to identify the dominant variables/principles which
governed the farmers’ decision-making processes and
to generate protocols, using a limited number of
variables to simplify the domain. McGraw & Harbi-
son-Briggs (1989) refer to this method as a type of
constrained information processing task in which the
expert’s access to knowledge is restricted in order to
determine what specific information is needed for their
decision-making.

The salient domains in the decision-making process,
which had been identified during interviews, were the
economic, climatic and strategic domains, and one
which described access to irrigation. A domain is a
Phil. Trans. R. Soc. B (2005)
range of possible enquiry space within which different

variables used in the decision-making process can exist.
The strategic domain contained expertise on adaptive
options which was derived from discussions with the

farmers.
That is, information about the conditions under

which crops were grown, including the necessary input

and climate requirements was captured using scenarios
which randomly presented drivers which appeared to
be salient in the decision-making process. Initially,

farmers were asked which crops and how much they
would plant if irrigation was reliable and if it was

unreliable, for both the winter and summer seasons.
Second, they were asked what they would do in these
conditions if they received a forecast of below-normal,

normal and above-normal rainfall for each season. And
lastly, to increase the complexity of the decision-
making process, varying market demand for different

crops was added to establish whether there would be a
difference in strategy if market demand were to change,

given the resource constraints of each scenario.
The crop categories that were included in the

interactive questionnaire were tomatoes, butternut,

cabbage, maize, Chinese lettuce, spinach, groundnut,
cowpeas and beetroot which were many of the crop
options considered by farmers. The domains of

irrigation, forecast and market were chosen for
representation due to their importance in the farmers’

decision-making. Adaptive choices were made by the
farmers based on the constraints represented by each
scenario. These data were translated into protocols

using a machine-learning algorithm to produce
decision trees of the possible rules and heuristics that
exist within the domain. This helped to identify

decision pathways that could then be analysed further
during interviews and included in the agent-based
model.

In the model, poor farmer-agents always grow
maize, which is mainly a subsistence crop, though any

excess which is surplus to household consumption
requirements is sold. Butternut is culturally a seasonal
Christmas crop in this region and is grown by all

farmer-agents because there is a perceived market
demand for it in December. Cabbage is also a
marketable crop and is grown by poorer farmer-agents

if crop prices are anticipated to be good as a result of a
lack of rain. A whole field of butternut is always grown

by better-off farmer-agents in September, regardless of
market demand, since empirical evidence indicates
that many better-off farmers have access to transport



stage 1 stage 2 stage 3 stage 4

fieldwork
(interviews, focus

groups, etc.)

interactive
questionnaire—

design informed by
stage 1

machine learning
algorithm creates
heuristics using
data from the
questionnaire

knowledge
representation—

decision trees/rules

learning decision
tree program—
expands/prunes/
refines existing
decision trees

testing with
stakeholder input

identification of salient
domains, drivers and

strategy choices

choices made
by stakeholders

are recorded

Figure 3. Stages within the knowledge elicitation process.
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and, therefore, feel confident in being able to sell their
crops further away than local markets if necessary.
In contrast, poorer farmer-agents employ more soph-
isticated cropping patterns, in that they will vary the
ratio of the market crop to the subsistence crop in
response to forecast information. Other strategies
poorer farmer-agents employ include delaying plant-
ing, increasing the area of the default market crop,
butternut and experimenting with new market crops,
such as cabbage.

Adaptive farmer-agents, whether poor or better-off,
grow crops for marketing, if climatic conditions are
favourable or if they trust the seasonal forecast. If they
do not have enough food for subsistence requirements,
but they have a surplus of cash, they buy food. If they
have an excess of produce, they sell their crops. Maize is
only grown by poorer farmer-agents to meet subsis-
tence requirements, and put into storage, as they may
often not have enough cash to buy food while better-off
farmer-agents always buy the staple crop, maize.

If the forecast is not adequate to plant maize in
September, i.e. below-normal rainfall is forecast, maize
is planted in October instead. If poor farmer-agents
have enough capital in September they plant both
maize and butternut in equal proportions to spread
their risk, since there is a perceived guaranteed market
demand for this seasonal Christmas crop. Better-off
farmer-agents plant 100% butternut if they have
enough capital. If the seasonal forecast is for below-
normal rainfall, poorer farmer-agents, who trust the
forecast, plant a greater proportion of butternut (75%)
compared to maize (25%) since it is assumed there is a
higher market demand for butternut and they can
create a greater income from this than from selling
excess maize. Similarly, poor farmer-agents experiment
with a small percentage of the marketable crop,
cabbage in January, if the forecast is below normal,
since they expect high market demand and thus higher
prices. If they have enough capital, they even delay their
planting and plant a whole field of cabbage in February,
since they can make a larger financial return from this
than from selling their excess maize. A summary of
these heuristics is illustrated in table 2.

The basis for the distinction in cropping strategies
between poor and better-off farmer-agents was estab-
lished during fieldwork. It appeared that poor farmers
respond to climate signals more than better-off farmers
who respond to market signals since they have access to
transport to sell their crops. However, the conse-
quences of this are that better-off farmer-agents make
Phil. Trans. R. Soc. B (2005)
relatively large losses in potential income in a bad year,

with high costs, since they plant large amounts of high-

input crops with a lower than expected return. That is,

better-off farmer-agents employ few, but high-input

strategies while poorer farmer-agents employ many

more low-input strategies, which buffer them from

uncertain events. Since better-off farmer-agents have

no such buffers they are more cautious in taking such

risks and would only plant a whole plot of cabbage, e.g.

if forecast information supported this. If it did not, they

would not plant at all because they can sustain such

losses in potential income and make investments

elsewhere if possible.

The market module has been designed such that

there are differing dynamics for poor and better-off

households. For example, the income that can be

achieved by each farmer is influenced by their wealth

profile since fieldwork revealed that poorer farmers

only sell from the garden, thus achieving lower prices,

while better-off farmer-agents usually have some form

of access to transport and can take their crops to market

where they sell for higher prices (table 3). The

assumption that better-off farmer-agents have access

to transport and thus sell at higher prices is included in

the model. Sale prices of the various crops were

determined by observation during fieldwork and expert

judgement from a field researcher (table 3).

Butternut is a more expensive crop to invest in than

cabbage, although it has a perceived guaranteed market

demand. However, cabbage is less expensive and more

profitable though it is perceived as more risky due to the

variable market demand (table 4). However, this can be

anticipated using seasonal forecasts—the impact on

farmer-agents ability to experiment with a cabbage

crop was analysed. The cost of investment in each crop

was determined by household responses from two

rounds of interviews and expert judgement from a field

researcher.

The subtle difference in the case of the selling

opportunities of poor farmer-agents is that they can

also sell any excess subsistence maize that is not put

into storage (table 5). Although they sell at low prices

from the garden, they also buy maize at low prices from

other poor farmers if they do not have enough in

storage to meet their consumption requirements.

However, better-off farmer-agents can only buy maize

at higher prices from the market.4 Better-off farmer-

agents also sell all the crops they grow (i.e. butternut

and cabbage) at market getting higher prices.



Table 2. Rules for household decision-making.
(BN, below-normal forecast; N, normal forecast; AN, above-normal forecast. Left column is amount of cash available in Rand.
M, maize; B, Butternut; C, cabbage.)

BN forecast N forecast AN forecast no forecast

M% B% C% M% B% C% M% B% C% M% B% C%

poor farmer
September

cash!R435 25 — — 25 — — 25 — — 25 — —
R435!cash!R525 100 — — 100 — — 100 — — 100 — —
R525!cash!R570 50 50 — 50 50 — 50 50 — 50 50 —
cashOR570 25 75 — — — — — — — — — —

October
cash!R435 100 — — — — — — — — — — —

January
cash!R435 25 — —
R435!cash!R450 100 — — 100 — — 100 — — 100 — —
R450!cash!R495 75 — 25 — — — — — — — — —

February
cashOR495 — — 100 — — — — — — — — —

better-off farmer
September

cashOR750 — 100 — — 100 — — 100 — — 100 —

January
cashOR630 — — 100

Table 3. Differential sale price of crops depending on wealth
profile.

crop farmer type market
selling price,
Rand per kg

maize poor garden/roadside 1.75
better-off local/regional 2.50

butternut poor garden/roadside 0.87
better-off local/regional 1.74

cabbage poor garden/roadside 2.00
better-off local/regional 2.33

Table 4. Cost of investment in different crops.

price,
Rand
per line

% of the plot planted

100% 75% 50% 25%

maize 4 120 90 60 30
cabbage 6 180 135 90 45
butternut 10 300 225 150 75
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The market module is coupled to climate, in that
prices are boosted by climate events. If the forecast is
below normal, market demand is expected to be high
and crops can become high-value commodities due to
increase demand, therefore commanding higher prices.
Prices are boosted by 20% when a below-normal
forecast is predicted. By default, farmer-agents initially
do not use forecasts and in the time it takes them to
trust and begin using forecasts they lose out on high
crop prices when rainfall is below normal and the
forecast is correct.

Table 6 indicates the yield that can be harvested
given varying levels of water availability for each crop,
calculated using the crop–water balance module. The
resulting potential income that can be achieved by each
class of farmer as a result of their differential access to
the higher sale prices available at the urban market is
shown in table 7.

The output from the model is a relative sense of how
successful farmer-agents might be in using seasonal
climate forecasts in their agricultural decision-making.
The model does not attempt to produce a full analysis
of household economics nor represent the wide array of
strategies and measures that might be employed to
mitigate climatic risks.5 Thus, when model results
suggest that poor farmer-agents receive no income in
the future, the conclusion is that they will need to
depend on other crops and non-farm income in order
to meet their basic needs.

(a) Simulation results

This section illustrates some of the results of the model
in an attempt to understand possible processes which
reduce the vulnerability of households to long-term
climate change, as experienced one season at a time.
Figure 4 shows the impact on cumulative mean
household income when the seasonal forecast is not
Phil. Trans. R. Soc. B (2005)
being used. Cabbage—a market crop—is never chosen
by either poor or better-off farmer-agents and, there-
fore, income gradually declines because the cost of
growing the other main market crop, butternut, is too
high and maize needs to be bought for consumption.

Figure 5 shows the increase in household income
when the forecast is used. However, the forecast is of no
benefit to poor farmer-agents when it is only correct
65% of the time as it is not accurate enough to
influence their cropping choices. That is, there is not
enough trust in the forecast to increase the area of the
market crop butternut, which would provide a larger
income than the sale of excess maize. The forecast
becomes beneficial to poorer households when its



Table 5. Excess crop available to poor farmers to sell for income.
(WRSI, Water Requirements Satisfaction Index, converted to classes of increased water availability.)

crop WRSI yield, kg
excess allowing one season’s
reserve in storage, kg

income from
excess, Rand

income from
excess from two
harvests, Rand

maize 3 216 36 63 126
4 285 105 184 368
5 357 177 310 620
6 423 243 425 851

Table 6. Yield based on Water Requirements Satisfaction Index (WRSI) and 100% plot planted.

yield (kg per plot) based on WRSI

WRSI class 1 2 3 4 5 6

maize, kg 84 150 216 285 357 423
butternut, kg 1050 1560 2070 2550 3120 3600
cabbage, kg 330 1350 2250 3300 4200 5100

Table 7. Income based on yield of 100% plot planted.

crop wealth class price

WRSI yield classes

1 2 3 4 5 6

maize poor R1.75 147 263 378 499 625 740
better-off R2.50 210 375 540 713 893 1058

butternut poor R0.87 914 1357 1801 2217 2714 3132
better-off R1.74 1827 2714 3602 4437 5429 6264

cabbage poor R2.00 660 2700 4500 6600 8400 10 200
better-off R2.33 769 3146 5243 7689 9786 11 883
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Figure 4. Household income without the use of the seasonal
climate forecasts.
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accuracy is increased to 85%, and their cropping

strategies become substantially more resilient in the

long-term, as they are using the forecast to implement

more sophisticated cropping patterns, which ultimately

improve their food security. Still, household income, in

the model, declines mid-way through the simulation in

the face of increasingly adverse climate conditions.

The corresponding trust of farmer-agents in the

forecast (they compare the forecast with the actual

weather and adjust their trust accordingly) depends on

their experiences of its past accuracy as shown in

figure 6. The changes in trust affect the use of the

forecast, which is only used when it has been correct

three years in a row (Ziervogel 2004). Subsequently,

the use of the forecast combined with available capital,

influences cropping decisions and specifically the

timing and ratio of which crops to plant.

In initial years when farmer-agents do not trust the

forecast, they lose out on high prices when the weather

is below normal and the forecast is correct. Some

agricultural responses to climate variability have

significant opportunity costs as they miss out on

increased production in more favourable seasons.

However, there is a guaranteed market for butternut

and, therefore, they do not use the forecast to influence

the decision to grow it, although poor farmers use it to

increase the proportion that is grown. This allows them

to accumulate enough capital to survive longer and
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eventually grow cabbage when the forecast starts being
used. For example, the variation over time of the crops
that are chosen is shown in figure 7.

In a situation where poor farmer-agents possess
neither maize in storage nor the capacity to buy maize,
it is assumed that they are given enough seed to plant
25% of their plot. Such support from social networks
was observed during fieldwork. This would cover
some of their consumption requirements for one
month where yield is equal to or greater than 285 kg
(WRSIO4) (see table 6). Better-off farmer-agents do
not have access to this type of social safety mechanism,
but they are never confronted with such a situation in
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Figure 5. Use of seasonal forecasts, when accuracy is (a) 65% and (b) 85%.
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the model. The advantage for poor farmer-agents is
that the safety mechanism allows them to invest more
of their money into planting a butternut crop since this
has a guaranteed market at Christmas. Over time, if
they begin to trust the forecast enough, this combi-
nation of strategies and the social support eventually
allows them to experiment with cabbage, a marketable
crop which is less expensive to produce than butternut
and more profitable. In the past, the irrigation supply
has been unreliable and, therefore, poor farmer-agents,
in particular, view forecast information as an additional
strategic tool to buffer the uncertainties they face.

Since poor farmer-agents plant two sets of maize
crops (table 1) they may be able to sell their excess crop
after both harvests. If it is a bad year for butternut and/
or cabbage this may be of some benefit compared to the
effects on better-off farmer-agents who only suffer the
relative losses from these market crops and
the associated cost of planting large quantities of
them, since they plant whole fields of crops at a
time rather than spreading their risks as poor farmer-
agents do.

It is possible that poor farmer-agents maintain a
crucial income from the maize that is being grown twice
a year. However, below a yield of 216 kg there is no
excess maize to sell (table 5), and therefore capital
declines since the yield of butternut is usually 1050 kg
(table 6) which provides an income of only R456.75 per
season (table 7), since poor farmer-agents usually plant
50% of their plot. Therefore, the income provided by
the excess maize is critical since this creates some
balance between liquid capital for investment into more
profitable market crops and the necessary subsistence
in storage. Additionally, the point at which the maize
harvest is not large enough to be put into storage,
means that there is no excess for sale and the staple may
have to be bought every month to meet consumption
requirements, and therefore capital declines rapidly.
This has the knock-on effect that there is no longer
enough capital for poor farmer-agents to invest in
butternut. Therefore, the ability to sell excess maize in
good years provides a way to reduce vulnerability to
inter-annual variability in rainfall. The model indicates
that an extra crop of maize planted in January is
necessary to achieve this. One maize crop alone does
not provide enough income to reinvest into other
marketable crops such as butternut and to provide
subsistence. However, this balance between
Phil. Trans. R. Soc. B (2005)
subsistence and market crops is difficult to maintain
since butternut is an expensive crop to invest in.
Consistent poor years of butternut yields with one bad
year of maize lead to vulnerability which is irreversible
in the standard model.

While both sets of farmer-agents can make an
income from the good butternut harvest to begin
with, the poor farmer-agents make less because they
only plant 50% of their plot, by default, spreading their
risk when the forecast is not being used. They also sell
their crop at half the price from the garden at R0.87
compared to R1.74 for better-off farmer-agents who
can take their produce to urban markets where they get
higher prices. Butternut is more expensive to produce
and in most cases more money can be made from
cabbage, but this is perceived as more risky due to
variable market demand.

Poor farmer-agents will experiment with cabbage,
only planting 25% when they trust the forecast enough
and rainfall is predicted to be below normal, since they
are aware of market dynamics and expect high market
demand and high prices. However, under these
conditions, if they have enough capital, they try and
plant a whole plot of cabbage in February and forego
their maize crop in January as more money can
potentially be made from this strategy. When cabbage
is also included in cropping choices, income from a
good butternut harvest and cabbage increases capital
significantly.

Additionally, households planting cabbage are able
to increase their ratio of butternut to maize planted,
more than those only planting maize. Cabbage is
approximately twice as profitable than butternut if
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there is a good yield—i.e. 1350 kg for a whole plot or
338 kg when a quarter plot is experimented with and it
is also cheaper to produce. Therefore, cabbage allows
for the capital to reinvest in butternut which has a
‘guaranteed’ market, especially for poor farmer-agents
who cannot always create enough income from low
maize or butternut yields to consistently grow it year
after year. However, growing cabbage requires suffi-
cient trust in the forecast for it to become usable since
neither poor nor better-off farmer-agents will grow it
without this additional climate information to support
their choice.

In the Mangondi case, farmer-agents benefit from
choosing crops which are suited to climate change
conditions such as butternut and maize which both do
well under the changing climate. Butternut is a good
crop to deal with below-normal rainfall conditions
since it is a crop for which there is market demand.
Observations from fieldwork were that farmer-agents
were often forced to choose drought-resistant crops
above market crops due to a lack of access to irrigation.
That is, crops are needed which are both drought
resistant and have high market demand, whether it is
because of the cultural calendar as with butternut in the
Mangondi case, or due to traditional use/consumption
requirements, as in the case of maize.

The results of the agent-based model illustrate the
impacts of such short-term adaptation strategies which
contribute to long-term resilience under certain climate
change conditions or conditions of climate variability.
The short-term responses described in the previous
sections, which are based on observations from field-
work, have impacts which promote sustainability from
seasonal to annual and decadal time-scales, as accu-
mulated capital allows more innovative strategies to be
pursued.

Fieldwork has shown that past experience of the
weather can have an influence on the perception of
forecast information and thus this could bias the
interpretation of forecast information. Preliminary
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model runs suggest that adding recent memory into
the farmer-agent decision-making substantially
decreases the perceived accuracy of the forecast and
its use. As a result, mean household income is reduced.
For poor farmer-agents, the impact is so dramatic that
they may as well not be using the forecast. Instead, they
adopt a more conservative approach to new infor-
mation and, therefore, they are not able to build trust in
the forecast in the short-term.
5. CONCLUSIONS
Clearly, the limitations and assumptions of the model
must be considered when deriving specific conclusions
from the results. For instance, the model suggests that
income for poor farmer-agents will suffer adversely
with climate change, even with some use of seasonal
climate forecasts. Of course, this does not mean that
real farmers will not have other options and built-in
contingencies in place—new agricultural technologies,
non-farm income, social networks, insurance and risk-
spreading mechanisms, and even migration, e.g. to
better agricultural lands or for employment in urban
areas. Similarly, we do not consider dynamical effects
on the market value of goods—these are likely to be
controlled by larger-scale processes than considered
here and would likely require a study involving at least
several villages or towns in a region. Our results are
thus relevant to the case of a stable market—the results
for marginal classes of farmer are likely to be made
worse by market fluctuations, but clearly this is an area
for further investigation. Finally, we investigate only a
single climate scenario—one with a strong drying trend
and decreasing rainfall, and thus most likely to be
problematic for agricultural communities reliant on
rainfall to provide the majority of their income. The
sensitivity of the results to the existence of, or to, the
rate of such a trend could be an important factor,
particularly with regard to the utility of the seasonal
forecast.



Table 8. Summary of key messages.

rainfall variability is a critical factor
contributing to household vulner-
ability

even if average rains enabled a household to feed itself from its own production, a
succession of a few dry years may place subsistence farmers in difficulty, even
after a previous run of wet years

risk is multi-dimensional changes in planting density offer the prospect of higher yields in good years but
expose farmers to greater risks (higher input costs, variable market prices).
Poor farmers grow maize for subsistence and sell any excess while better-off
farmers grow market crops and buy maize to feed their household

time-scale for adoption of forecasts may
be very long

building up trust in the forecasts depends on the accuracy and pay-offs of different
strategies. Changes in farming practice take years to become established in the
community

coupling of forecasts with the ability to
sell excess in good years overcomes
inter-annual variability in rainfall

wealthier households benefit more than poor, related to their access to regional
markets

farmers that sell crops for market are
more likely to use forecasts of dry
seasons than forecasts of wet seasons

to benefit from higher prices in a dry year, more than one maize crop is necessary
to achieve surplus among poor farmers. In contrast, in Lesotho, subsistence
farmers were more likely to use wet forecasts than dry forecasts to take
advantage of market opportunities
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The innovative methodological approach used in
this research highlights the effect of climate on small-
scale agriculture in South Africa. Many of the lessons
learned are generic and supported from a wide range of
methods. However, the combination of intensive field
surveys (and long-term community engagement) with
formal modelling allows the analyst to experiment with
scenarios that do not exist at present (long-term
climate change being the most obvious one).

In the context of this hybrid methodology and
exploratory modelling, some of the key lessons learned
are recorded in table 8. Rainfall variability is an
important stressor for households in this region.
However, the baseline vulnerability and exposure to
risk is multi-dimensional. There is a fine balance
between climate and economic variability, against a
background of social networks, poverty and access to
environmental resources.

Seasonal climate forecasts are one tool in managing
climatic and economic risks, and even more so to take
advantage of opportunities. Market strategies link to
climatic risks and opportunities, with different linked
strategies appropriate for different types of farmers.
A simple overlay of climatic risks (such as drought-
prone areas) with economic systems (perhaps indi-
cators based on household income and dependence on
non-farm sources) is unlikely to capture the complexity
of real household strategies.

The context of vulnerability and adaptation is
important. The situation in Lesotho is not the same
as South Africa, although both are regions of climatic
stresses. A fishing livelihood system is unlikely to
pursue the same strategies as an irrigated agricultural
economy. While such place determinism is clear, a
generic methodological approach may be possible.

Numerous examples from rural Africa suggest that
environmental shocks have a greater impact and
prompt change or collapse rather than the slower
stresses, such as resource degradation (Goldman
1995). A key lesson in the climate change field is that
climatic variability is superimposed on slow changes in
mean conditions. But agents adapt to both. Increases in
extremes and the range of variability might push
vulnerable groups beyond their ability to adapt. Even
forecasts with high accuracy may not be sufficient for
Phil. Trans. R. Soc. B (2005)
poor farmers. Further development of an actor-
oriented methodology, using MABS, could incorporate
additional extreme events such as droughts and floods,
and a wider range of non-climatic stressors, to under-
stand the limits of adaptation.
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ENDNOTES
1This is a common observation (see www.AIACCProject.org for an

introduction in the context of recent research in developing

countries). However, we suggest that the earlier tradition in climate

impact assessment (Kates et al. 1985) should be considered as the

benchmark.
2A reference bibliography (in Endnote format) on the web site

includes some 3000 references (and will be updated periodically).

The bibliography includes the references compiled by Gina Ziervogel

in her dissertation on the use of seasonal climate forecasts; as such it is

particularly relevant background material for this article (see Murphy

et al. 2001; Ziervogel & Calder 2003; Ziervogel 2004; Ziervogel &

Downing 2004).
3The term farmer-agent is used to describe behaviour in the model

while results specifically based on the fieldwork is attributed to

farmers. This convention helps to distinguish between the general-

izations achieved in a formal model and the specificity of actual

behaviour in Mangondi village.
4Though this is an assumption which may not necessarily hold true in

reality, it does not affect the conclusions which are derived from the

results of the model.
5For an introduction to livelihood security issues, which are clearly

relevant background to this paper, see www.livelihoods.org.
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