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DNA barcoding as an approach for species identification is rapidly increasing in popularity. However,
it remains unclear which statistical procedures should accompany the technique to provide a measure
of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled sequence
is a member of an a priori specified species. We investigate the performance of the test using
coalescence simulations, as well as using the real data from butterflies and frogs representing two
kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence
variability.
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1. INTRODUCTION
DNA barcoding is a technique for assigning specimens
to species or other taxonomic units based on their
DNA sequence in a standard marker, the DNA
barcode (Hebert et al. 2003a; Tautz et al. 2003).
Despite growing popularity of the approach, it remains
unclear which statistical procedures should be used to
assign an unknown specimen to a species, and how to
associate the assignments with measures of statistical
uncertainty. The major problem arises because within-
species variability and between-species variability can
easily be confounded (Lipscomb et al. 2003; Seberg
et al. 2003). The extent of these variations may be
notably different across the animal phylogeny (Hebert
et al. 2003b). Statistical methods in DNA barcoding
must, therefore, be aimed primarily at discriminating
intra- from inter-specific variability on the basis of
actual sequence data.

There are several population genetic approaches for
assignment of individuals, such as the methods of
Paetkau et al. (1995), Rannala & Mountain (1997),
Cornuet et al. (1996), Cornuet et al. (1999), and
Pritchard et al. (2000). All these methods consider
multi-locus data, e.g. restriction fragment length
polymorphisms (RFLP), single nucleotide polymorph-
isms (SNP) or microsatellite data. The situation in
DNA barcoding is slightly different because assignment
is based on a single DNA sequence, usually not subject
to recombination. New statistical and population
genetic methods are needed to deal with this special
situation.

In this paper we consider the problem of testing
membership of a particular, a priori specified, species.
This situation may arise in many cases, for example in
screens of invasive species, pathogenic bacterial strains,
toxic algae or products from protected species (e.g.
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Tautz et al. 2002, 2003; Armstrong & Ball 2005;
Lorenz et al. 2005; Markmann & Tautz 2005). We will
assume that more than one sequence from the focal
species is known. A new sequence has been obtained
from a sample and it is then of interest to the hypothesis
that the new sequence was obtained from an individual
from the focal species. We propose a new likelihood
ratio test to address this problem, based on existing
population genetic Markov Chain Monte Carlo
methods (MCMC).
2. METHODS AND THEORY
In the following, we will describe how a likelihood ratio
test can be constructed to test the hypothesis of species
membership. The basic idea is to use a model with two
populations, one population containing all existing
database sequences from the species, and another
population containing the new sampled sequence. The
null hypothesis is then specified as H0: TZ0, where T is
the divergence time between the two species.

The likelihood function is defined as a function
proportional to the sampling probability of the data,
conditional on the parameters, e.g. Pr(XjJ), where X
is a vector of DNA sequences from multiple individ-
uals, and J is a vector of parameters. A fundamental
problem in the analysis of DNA sequence data in
population genetics is that the likelihood function
cannot be calculated analytically. However, the
likelihood conditional on the underlying gene tree (or
coalescent tree) can be easily calculated using standard
methods of phylogenetics. The following represen-
tation of the likelihood is often used:

PrðX jJÞZ

ð
U

PrðX jG;JÞf ðGjJÞdG; ð2:1Þ

where G is the gene tree, U is the set of all possible gene
trees, and f (GjJ) is the density of gene trees. The
integral can be thought of as a sum over all possible
gene tree topologies and a multi-dimensional integral
q 2005 The Royal Society
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over all possible coalescent times (lineage divergence
times in the gene tree). This integral cannot be
evaluated analytically, or using numerical integration,
for realistically large sets of DNA sequences, but must
be evaluated using stochastic methods. For example,
Griffiths & Tavaré (1994), as well as Stephens &
Donnelly (2000), used a simulation technique known
as sequential importance sampling (e.g. Liu 2001),
while Kuhner et al. (1995) and Nielsen & Wakeley
(2001) used MCMC. In the MCMC methodology of
Nielsen & Wakeley (2001), a Markov chain is defined
with state space on U!J, where J is the parameter
space, i.e. U!J for all values of J. A prior distribution
is assigned to J and a Markov chain is then constructed
with stationary distribution (equilibrium distribution)
given by the joint posterior distribution of G and J,
i.e. f (G, JjX ). When simulating this Markov chain,
parameter values sampled from it (at stationarity)
follow the marginal posterior for J, f (JjX ). Using a
uniform prior for J, the integrated likelihood function
for J is simply given by f (JjX ). Inferences regarding
the parameters can then either proceed in a Bayesian or
a frequentist framework.

Nielsen & Wakeley (2001) considered a model with
migration and divergence between two populations. We
will here use a simplification that assumes no ongoing
gene flow between the two populations (i.e. zero
migration rate). In tests of TZ0, including migration
in the model would add an additional parameter,
leading to an undesirable increase in degrees of
freedom in the test. Also, since only one sequence has
been assigned to one of the populations, the effective
population size of this population does not affect the
likelihood calculation. The only scalar parameters of
the model are then qZ2Nfm (where Nf is the effective
female population size and m is the mutation rate), and
the scaled divergence time T, i.e. JZ(q, T ). This
definition of q is valid for mtDNA. For nuclear DNA of
a diploid species, qZ4Nm.

In the MCMC scheme applied to this model, T can
then be estimated by sampling values of T from the
Markov chain at stationarity. To obtain smooth
estimates of the likelihood surface and to obtain the
likelihood at TZ0, we use Gaussian kernel density
estimation using Silverman’s rule-of-thumb for choice
of bandwidth (e.g. Silverman 1986). The maximum
likelihood value of the integrated likelihood surface
from T and the likelihood value for TZ0 is then
estimated from the same run of the Markov chain.
A likelihood ratio based on the integrated likelihoods is
then formulated as

K2 Log
LTZ0ðT Þ

maxT fLðT Þg

� �
;

where L(T ) is the integrated likelihood function for T.
The reason to base the test on the integrated
likelihood instead of the profile likelihood is that the
Monte Carlo variance in the estimate of the profile
likelihood is higher than the variance in the integrated
likelihood, because of the lower dimensionality of the
integrated likelihood function compared to the joint
likelihood function for both parameters. The classical
results for the asymptotic distribution of the likelihood
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ratio under the null hypothesis would dictate that the

likelihood ratio test statistic is a 50 : 50 mixture of a

point mass at zero and a c2
1 distribution (e.g. Self &

Liang 1987). This would, for example, mean that the

null hypothesis is rejected at the 5% significance level

if the likelihood ratio statistic exceeds w2.71.

However, in this case the likelihood cannot be written

as the product of likelihood functions calculated in

multiple independent data points. The applicability of

the classical results is, therefore, questionable, which

prompted us to perform coalescent simulations to

determine the distribution of the test statistic under

the null hypothesis.
3. ANALYSIS OF SIMULATED DATA
The simulation of sequences under the coalescent

model was performed using the MS program (Hudson

2002) under an infinite sites model, assuming qZ3, 12

and 30 (per locus); qZ12 represented more or less

common situations in animal barcoding (Hebert et al.
2003b), while qZ3 and 30 modelled low-divergence

and high-divergence situations, respectively. For each

of the three values of q, we produced 100 datasets

composed of either 4, 11 or 26 sequences, one of which

was then randomly chosen as the query sequence,

resulting in nZ3, 10 or 25 ‘database’ sequences. For

each simulated data set, 500 000 updates of the

Markov chain were performed using a burn-in period

of 50 000. Although more updates might be recom-

mendable for real data analysis, using 500 000 updates

provides reasonably accurate estimates of the likelihood

ratio while allowing multiple simulations to be

performed in a short amount of time.

The frequency distribution of likelihood ratios are

shown in figure 1. For small sample sizes or small

values of q, the type I error rate (rejection of the correct

species) for the critical value of 2.7 was slightly lower

than 5%. However, for large sample sizes a test based

on a critical value of 2.7 would reject the correct species

much more often than in the expected 5% of cases. The

most extreme case is nZ25 and qZ30, where the

critical value of 2.7 for likelihood ratio statistic resulted

in 15/100 rejections. From the simulations it appeared

that a critical value of 4 would ensure a 5% significance

level test of the right size (figure 1b). Still, the

coalescent simulations did not address the magnitude

of type II error rate for this critical value. This issue was

further investigated in the simulations involving real

data (see below).

The major reason why the rejection rate increases

with q and n appears to be that likelihood ratio is harder

to estimate for larger sample sizes. The increased

Monte Carlo variance for these parameter values

inflates the rejection rate. This problem can be rectified

by increasing the number of cycles in the MCMC

procedure. In real data analysis it may also be desirable

to obtain critical values directly by parametric boot-

strapping, although such procedures may be computa-

tionally expensive. Future research may also be focused

on more computationally efficient methods for estimat-

ing the likelihood ratio.
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Figure 1. (a) Frequencies of likelihood ratios in the test applied to sequence data simulated using different values of q per locus,
for different number of database sequences. Horizontal axis, value of likelihood ratio test statistic; vertical axis, number of
replicates out of 100. (b) Summary of the results from panel A.
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4. ANALYSIS OF REAL DATA
We examined two real data sets representing two
marginal cases of extremely low and extremely high
sequence variability, both at the intra- and inter-
specific levels. The first data set contains sequences
from the skipper butterfly Astraptes fulgerator, which
recently has been proposed to be a complex of perhaps
as many as 12 separate species (Hebert et al. 2004a).
Genetic differentiation between these species was
originally identified by the phylogeny of cytochrome
oxidase I (cox1) sequences, and was corroborated by
the presence of morphological difference in caterpillars
and the species of plants preferred by them as food.
Still, both the degree of divergence within and between
these species is very small (figure 2a), average q

estimate per species being only 0.65 for the whole
locus. In sharp contrast to the butterflies, our second
example—four species of the Australian rainforest frogs
of the genus Litoria—displayed intra-specific cox1
sequence often exceeding 10% pairwise difference
(figure 2b) (Schneider et al. 1998), with average
qZ26. Such a high level of cox1 variability appears to
be common in amphibians (Vences et al. 2005a,b).

In the simulations described here, for each of the two
datasets 100 sequences were drawn with replacement
from the data pool to represent every species with equal
probability (i.e. in each draw, first the species name was
randomly chosen and then a sequence from this species
was randomly selected). These queries were then tested
using the likelihood ratio test for affiliation with their
true species, to estimate the type I error rate, as well as
for affiliation with the most similar ‘sister species’
identified on the basis of the blastn score (Altschul et al.
1997), to evaluate type II error rate. The use of the
word sister species here reflects, therefore, sequence
similarity and does not reflect any phylogenetic
assessment of taxonomic status. From the sequences
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originating from each of these two species, several
‘database sequences’ were randomly chosen to
represent them when applying the likelihood ratio
test. We performed simulations either with three or ten
representative database sequences. In each case
100 000 updates of the Markov chain under a finite
sites model was performed.

The frequencies of the likelihood ratios obtained in
the simulations are shown in figure 2c,e (skipper
butterfly) and figure 2d, f (tree frogs). Notice, that the
distributions in most cases do not show much overlap
when comparing the true species and the sister species.
This shows that, if appropriate critical values have been
obtained, powerful tests for rejecting species member-
ship can be constructed. For 10 sequences, assuming a
critical value of 2.7 for the likelihood ratio test results in
a conservative test with high power to reject the wrong
species, the type I error was less than 5% and the power
(1—type I error) was larger or around 95% (figure 3).
Note that in both these cases, using a critical value of
2.7 results in a test with good properties (figure 3),
whereas re-setting the critical value to 4 would result in
dramatic increase in type II error rate (loss of power).
However, when analysing only three representative
database sequences, the power was significantly
reduced (figure 3). Additionally, a critical value of 2.7
would result in an anti-conservative test in the case of
Litoria.
5. DISCUSSION
The likelihood ratio test presented here is one of the
first attempts to introduce statistical rigor into DNA
barcoding. It is designed to explicitly evaluate the
possible boundaries of intra-specific variation on the
basis of the available sequence data, using population
genetic inference based on coalescent theory. It is
essentially a test of population subdivision between a
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Figure 2. Consensus maximum parsimony trees for cox1 sequences from the two real data sets: (a) skipper butterfly Astraptes
fulgerator species complex, and (b) four species of the tree frogs of the genus Litoria. Scale bars: 10 nucleotide changes. The
number of individual sequences per species is indicates near the species names. (c–f ): frequency distributions of the likelihood
ratio test statistic in simulations with these datasets. The number of sequences used to represent a true or sister species in the test
was either 3 (c, d ) or 10 (e, f ). Filled bars, test with correct species to assess type I error rate; open bars, test with sister species to
assess type II error rate.
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query sequence and a set of database sequences. This

procedure represents a significant step towards realistic

species modelling in comparison to the previously

suggested limiting threshold approach, which simply

assumes that the intra-specific sequence variation

cannot exceed certain pairwise distance (Floyd et al.

2002; Hebert et al. 2003a,b).
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The taxonomic affiliation of the query sequence is

sometimes inferred using tree-building methods on the

basis of phylogenetic grouping of the query (Hebert

et al. 2004a,b). Our method is in fact a tree-based one

as well, but it takes into account phylogenetic

uncertainty and uses population genetic theory to

determine cut-offs in ambiguous cases (e.g. cases with
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lineage sorting). For example, based on purely

topological arguments, at least 12 sequences would

be needed to have a theoretical chance of rejecting

species membership at the 5% significance level,

assuming all topologies are equally likely. The popu-

lation genetic approach essentially makes use of the

distribution of branch-lengths to determine if species

membership is plausible.

Throughout this work, we assumed the simplest

model of intra-specific variability based on a single

panmictic population of constant size. Caution should

be exercised, therefore, in direct applications of the test

to cases where these assumptions may be seriously

violated, for example, when the query sequence has

been obtained from a distinct geographic area than the

database sequences. Although we expect that the

concept of effective population size may mitigate most

of the complications, the extent to which our test is

applicable to non-ideal populations remains to be

investigated. In the future, it may be feasible to include

the possibility of modifying the parameters of the intra-

specific variability model, to appropriately account for

such factors as strong population subdivision or

varying population size (Hey & Nielsen 2004; Hey

et al. 2004; Hey 2005; Won & Hey 2005).

A thorny issue in the application of our test is the

choice of the critical value. Our coalescent simulations

suggest that a critical value of 4 should result in a test of

the right size (i.e. a test where the expected number of

false rejections when the null hypothesis is true is less

than or equal to 5%). However, using such a critical

value in the analysis of real data may result in a

conservative test, as suggested by our simulations with

real data.
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The likelihood ratio test can be easily adapted for

use in routine DNA barcoding. However, it is obvious

that the power of the test depends greatly on the

number of samples in the database. Although tests

based on only three sequences have some power, it is

clear that more sequences are desirable. Databases

containing only a single sequence from each species

cannot be used to test for species membership without

making additional assumptions regarding q. Unfortu-

nately, at the current stage of development of DNA

barcoding databases, in which the depth of individual

species sampling is usually sacrificed in favour of

greater taxonomic coverage, it will in most cases not

be possible to test for species membership using our

procedure. For example, the database of DNA

barcodes for the North American birds (Hebert et al.
2004b) includes just one or two sequences for the

majority of species. We believe that the priorities in the

data accumulation for DNA barcode databases should

be adjusted to balance the two essential informational

components, intra-specific and inter-specific sampling.

Otherwise, the implementation of the DNA barcoding

technology would be delayed, or even worse, would

lead to artefacts resulting from confusion between

intra- and inter-specific genetic variation.

Finally, we would like to point out that the DNA

barcoding technology at the present moment sacrifices a

great deal of potential power by relying on just a single

molecular marker. The data acquisition for a multi-

locus DNA barcoding database may be more feasible

than it seems, since the stages associated with sample

collection, DNA isolation and (partially) PCR set up

would not require additional investments in comparison

to single-locus data acquisition (e.g. see Chase et al.
2005; Summerbell et al. 2005). The current statistical

method could also be modified to analyse data from

multiple loci (e.g. Hey & Nielsen 2004; Hey et al. 2004).
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