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In this paper we briefly review some of the recent progress made by ourselves and others in developing
methods for predicting the structures of transmembrane proteins from amino acid sequence.
Transmembrane proteins are an important class of proteins involved in many diverse biological
functions, many of which have great impact in terms of disease mechanism and drug discovery.
Despite their biological importance, it has proven very difficult to solve the structures of these
proteins by experimental techniques, and so there is a great deal of pressure to develop effective
methods for predicting their structure. The methods we discuss range from methods for
transmembrane topology prediction to new methods for low resolution folding simulations in a
knowledge-based force field. This potential is designed to reproduce the properties of the lipid
bilayer. Our eventual aim is to apply these methods in tandem so that useful three-dimensional
models can be built for a large fraction of the transmembrane protein domains in whole proteomes.
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1. INTRODUCTION
A wide range of fundamental biological processes such
as cell signalling, transport of membrane-impermeable
molecules, cell–cell communication, cell recognition
and cell adhesion are mediated by membrane proteins.
Not surprisingly, therefore, understanding the struc-
ture and function of membrane proteins is of great
importance in biological and pharmacological
research.

Analysis of the complete genomic sequences for
several organisms indicates that 20–25% of all genes
code for transmembrane proteins ( Jones 1998; Wallin
& von Heijne 1998). Despite their large number and
their importance only less than 1% of all three-
dimensional protein structures deposited in the
Protein Data Bank (PDB) are of membrane proteins
(Berman et al. 2000), probably because they are not
easy to crystallize and are hardly tractable by nuclear
magnetic resonance (NMR). It appears therefore of
particular importance to develop efficient theoretical
structure prediction methods for transmembrane
proteins.
2. BIOLOGICAL MEMBRANES
To understand how transmembrane protein structures
can be predicted, it is important to understand the
properties of biological membranes, which are com-
posed of a lipid bilayer. Membranes serve to separate
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different compartments of the cell or the cell from its
environment, and to achieve this, the lipid bilayer is
impermeable to polar (soluble in water) molecules and
ions.

A space-filling model of a lipid bilayer is shown in
figure 1 (Heller et al. 1993). Each phospholipid is
composed of a negatively charged phosphate group
and two tails, which are two highly hydrophobic
hydrocarbon chains. The hydrophobic effect ensures
that the tails of the phospholipids in each layer orient
towards each other creating a highly hydrophobic
environment within the membrane. The charged
phosphate groups face out into the hydrophilic
environment.
3. MEMBRANE PROTEIN CLASSES:
STRUCTURES AND FUNCTIONS
All of the active processes involving membranes are
carried out by proteins within the membrane environ-
ment. These proteins are usually classified as being
either peripheral (membrane associated proteins) or
integral on the basis of how readily they can dissociate
from the membrane. Peripheral membrane proteins are
loosely associated with the membrane and usually
interact with the polar head groups of the membrane
phospholipids. These proteins can therefore be solu-
bilized under relatively mild conditions, such as an
environment of high ionic strength. Integral membrane
proteins, on the other hand, are found to interact
extensively with the hydrocarbon chains of the
membrane lipids (figure 2) and can therefore be
solubilized only by using detergents or an organic
solvent. They are embedded in the phospholipid
q 2006 The Royal Society



Figure 1. A space-filling model of a typical phospholipid
bilayer.
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bilayer, often membrane spanning, although some
unilateral ones can be embedded in only one leaflet
(see figure 2).

(a) Integral membrane proteins

The principle that underlies the structure and stability
of membrane proteins is the high energetic cost of
dehydrating the peptide bond during its transfer into
a non-polar phase (White 2001). This has two
consequences. First, and perhaps most obviously,
most of the amino acid side chains found within
transmembrane segments should be non-polar.
Second, the polar groups of the polypeptide backbone
of the transmembrane segments must participate in
hydrogen bonds in order to lower the energetic cost.
This second constraint is typically accomplished by
exploiting two structural motifs: the membrane-
spanning a-helix bundle and the b-barrel (White &
Wimley 1999). In the a-helical structure, the peptide
bonds are internally bonded with hydrocarbon bonds
whereas b-strands form a closed structure termed the
b-barrel.

(b) b-Barrel integral membrane proteins

The b-barrel proteins, also called porins, consist of
b-strands spanning the membrane connected by short
loops facing the periplasm and larger loops protruding
outside the outer membrane (von Heijne 1996). The
b-strands are amphiphilic, i.e. the side chains of the
strand residues are alternately polar and hydrophobic
with polar residues projecting into a central pore. Thus,
the structure forms a pore with a polar environment.
All b-barrel membrane proteins form oligomers
(Seshadri et al. 1998).

The porins are found in the outer membrane of
Gram-negative bacteria and in the outer membrane of
chloroplasts and mitochondria. Their function is to
facilitate diffusion of salts and polar compounds.

(c) a-Helical integral membrane proteins

In the a-helical proteins, the transmembrane seg-
ments are arranged in helices of 17–25 residues length
and may cross the membrane once or several times
(figure 3). Bi-topic proteins (or membrane-anchored
proteins) are a-helical membrane proteins, which cross
the membrane once (or sometimes twice), exposing
globular domains on the extracellular and cytoplasmic
surfaces. They typically act as cell surface markers,
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adhesion factors or receptors. The cytoplasmic
domains often play a role in cell signalling (e.g. tyrosine
kinases) or may connect to the cellular cytoskeleton.
Polytopic (multi-spanning) a-helical membrane pro-
teins have more than one a-helical transmembrane
segment and the helices are arranged into a bundle (see
figure 4). Possible driving forces for helix–helix
association in the lipid bilayer are van der Waals
interactions and inter-helical polar interactions,
including hydrogen bonds and electrostatic inter-
actions (Popot & Engelman 2000).

When polytopic a-helical membrane proteins are
grouped according to their topology, differences
between various species can be observed. In general,
eubacteria, archaea, fungi and plants have large
collections of membrane proteins built of 6 and 12
transmembrane segments, whereas in Caenorhabditis
elegans and human proteins with seven transmembrane
segments are preferred (Wallin & von Heijne 1998).

Perhaps the most biologically important example of
polytopic proteins (at least with respect to pharma-
cology) is the superfamily of G-protein-coupled
receptors (GPCRs), which includes receptors for
hormones, neurotransmitters, growth factors, light
and many other kinds of ligands (Dewji & Singer
1997). Other families of this superfamily function as
channel and pore forming proteins involved in
membrane transport (Singer 1990).

4. HELIX-BUNDLE INTEGRAL MEMBRANE
PROTEIN FOLDING
The folding process of helix-bundle membrane pro-
teins consists of two stages. The first stage involves
formation of stable helices across the hydrophobic
region of the membrane lipid bilayer. In the second
stage, the helices interact to give a functional
membrane protein (Popot & Engelman 1990). The
assembly is carried out by a translocon apparatus
involving the transient attachment of an active
ribosome to a translocon embedded in the membrane.
As soon as the protein is synthesized into the translocon
and transferred into the membrane, the apparatus
disassembles leaving the folded protein within the
membrane (White & Wimley 1999).

5. EXPERIMENTAL STUDIES OF HELIX-BUNDLE
INTEGRAL MEMBRANE; MEMBRANE HELIX
LOCATIONS AND TOPOLOGY
As mentioned above, elucidation of the three-dimen-
sional structure of membrane proteins is a difficult task.
Therefore, other approaches for studying the structure
of the proteins are being employed. One such approach
is to determine the protein topology, i.e. the inside–
outside location of the N and C termini relative to the
membrane, and the number and positions of the
membrane spanning regions. Knowing a protein’s
topology is a significant step towards determining
both its structure and function. Topology assignments
are also sometimes referred to as ‘low resolution
structures’ (Kernytsky & Rost 2003), but there is
clearly no actual three-dimensional information
produced.

Several experimental approaches can be used to
determine transmembrane topology:



Figure 2. Diagrammatic representation of an integral membrane (transmembrane) protein. The first two helices fully span both
leaves of the bilayer, but the third helix (typically an amphipathic helix) is shown not fully penetrating the bilayer.
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(i) Fusion proteins: a protein segment that can be
detected while it is translocated through the
membrane is fused to the predicted loops of the
tested protein (van Geest & Lolkema 2000).

(ii) Proteolytic digestion in situ: proteolytic enzymes
can be used to cut the loops outside the
membrane. It is then possible to run the
segments remaining in the membrane by SDS-
PAGE (Kuroiwa et al. 1996).

(iii) Antibody binding: antibodies specific to the
loops are used to locate the loops outside the
membrane (Amstutz et al. 2001).
6. PREDICTING TRANSMEMBRANE
HELIX-BUNDLE PROTEIN TOPOLOGY
Given the amount of information that can be
potentially obtained from topology assignment and
the relative difficulty in obtaining this information
experimentally, it is not surprising that a great deal
of attention has been paid to prediction of trans-
membrane topology from sequence.

Transmembrane protein topology prediction
methods rely on two major topological features. The
first is that, as already discussed, transmembrane
helices are ultimately formed by hydrophobic stretches,
the second is primarily the bias towards positively
charged residues in the regions flanking the hydro-
phobic stretches, especially on the intracellular side of
the membrane. The feature is commonly known as ‘the
positive-inside rule’ where short loops are found to be
enriched with Lys and Arg residues on the intracellular
side and depleted on the outside (Wallin & von Heijne
1998; von Heijne 1999).

More than 30 methods have been developed for
predicting the topology of helix-bundle membrane
proteins (Kernytsky & Rost 2003) and here there is
only space to mention a few of them. Below is a brief
summary of the main representative methods
developed and the advances made over the last two
decades.

In the earliest transmembrane prediction
methods, simple hydrophobicity scales were used
(e.g. Kyte & Doolittle 1982) to detect probable
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transmembrane segments. These scales classify
amino acids according to their preference to be
found in polar or non-polar environments. Thus, a
high hydrophobicity value indicates a preference
for a non-polar environment, i.e. the lipid bilayer.
Kyte & Doolittle used a ‘sliding window’ approach to
identify membrane segments where a fixed window
of width 19 residues is moved along the protein
sequence and the sum or average hydrophobicity is
calculated for amino acids within the window. Using
these mean hydrophobicity values, a threshold can
be identified for deciding whether the centre of the
window is within a membrane spanning membrane
helix or not. The Kyte & Doolittle method, along with
other similar approaches, predict the occurrence of
transmembrane segments only and were not designed
to predict the inside–outside location of the segments
relative to the membrane.

The first major advance in transmembrane topology
prediction was the TopPred method proposed by von
Heijne (1992). TopPred still made use of hydrophob-
icity scales and a sliding window to predict trans-
membrane segments, but combined these predictions
with a simple topological rule: the so-called ‘positive-
inside rule’. The observation that there was a strong
bias for positively charged residues on the inside facing
segments of a transmembrane protein provided a
means for identifying which predicted topology is
correct from a small number of alternatives. Even
though the starting point to TopPred was a basic
hydrophobicity plot, it was nonetheless the first
transmembrane topology prediction method.

The MEMSAT method of Jones et al. (1994) was
the first prediction method to fully integrate the
prediction of transmembrane topology with the
prediction of transmembrane segments. Rather than
simply deciding between a few possible topological
models, MEMSAT was able to calculate the most
probable length, location and topological orientation
for each transmembrane segment, guaranteeing a
mathematically optimal solution. The method made
use of statistical tables (log likelihood ratios)
compiled from membrane protein data and a
dynamic programming algorithm to search through



Figure 3. An example of an a-helical bundle integral
membrane protein (halorhodopsin from Halobacterium
salinarum).
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all possible topological models by a process of

expectation maximization. The propensity of each

amino acid to be in one of five states (inside loop,

outside loop, inside helix end, helix middle and

outside helix end) was calculated from experimentally

well-described membrane proteins and was rep-

resented as a log-likelihood ratio. This approach can

clearly be seen as a forerunner of more recent

approaches which are based on formal Hidden

Markov Models.

PHDhtm (Rost et al. 1996) was the first method to

use neural networks for prediction of transmembrane

helix topology. It used multiple sequence alignments to

do a consensus prediction of the target protein, and

then predicted topology by using a neural network

trained on proteins with experimentally characterized

topologies.

TMHMM (Sonnhammer et al. 1998) and

HMMTOP (Tusnady & Simon 1998) are methods

which are both based on Hidden Markov models.

TMHMM implements a cyclic model with seven states

for transmembrane helix, whereas HMMTOP uses a

Hidden Markov model which distinguishes between

five structural states (helix core, inside loop, outside

loop, helix caps (C and N) and globular domains). The

states are connected by transition probabilities. As with

the earlier MEMSATapproach, dynamic programming

is used to match a sequence against the model in order

to find the most probable match.

DAS-Tmfilter (Cserzo et al. 2004) is based on

computing a dot plot between the query protein and a

library of known transmembrane proteins. The result is

a hydrophobicity profile.
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Finally, in line with recent developments in methods
for predicting globular protein structure, consensus
methods have started to appear. The first such
approach has been developed by Nilsson et al. (2002),
and uses the consensus of five topology prediction
methods (TMHMM, HMMTOP, MEMSAT, PHD,
TopPred). They find that approximately 90% of partial
consensus topologies are correctly predicted in mem-
brane proteins from both prokaryotic and eukaryotic
organisms, which is a higher accuracy than can be
achieved by any single component method. They
further go on to show that a consensus topology can
be predicted for 70% of all membrane proteins in a
bacterial genome and for ca 55% of all membrane
proteins in eukaryotic genome. These accuracy esti-
mates were surprisingly low compared to some of the
values quoted in the original method papers, which was
further confirmed by Melen et al. (2003). One possible
reason for this is the low reliability of experimentally
determined topology information available when the
first prediction methods were developed. Another
possibility is that earlier accuracy estimates were biased
by the lack of proteins with unusual three-dimensional
structures in the testing sets used. As more high
resolution structures are determined for trans-
membrane proteins, more accurate benchmarking of
methods should be possible and hopefully this will
stimulate further developments in the field.
7. PREDICTING TERTIARY STRUCTURE OF
HELIX-BUNDLE MEMBRANE PROTEINS
At present there is no general-purpose method for
three-dimensional structure prediction for trans-
membrane proteins, though of course the same can
be said for globular proteins. As with globular proteins,
the most reliable method for deriving a three-dimen-
sional model for a protein is that of comparative
modelling. Unfortunately, the reputation of compara-
tive modelling for membrane proteins suffered slightly
from the efforts made in the early 1990s to model
proteins in the seven-helix GPCR superfamily based on
templates derived from bacteriorhodopsin. The sub-
sequent crystal structure of rhodopsin showed that
despite similarities in the overall topology and approxi-
mate positioning of the helices, the structure of
bacteriorhodopsin was substantially different in terms
of the helix packing arrangements. The very remote
sequence similarity observed between the GPCR
sequences and bacteriorhodopsin also contributed to
the inaccuracy of the models which were built, and so in
hindsight the attempts to build useful models of the
GPCRs by comparative modelling must be seen as
failures.

Even ignoring the difficulties in identifying remote
evolutionary relationships between membrane proteins
and the difficulties in arriving at accurate alignments, a
much more fundamental problem is the lack of
structural templates available. Given the difficulties in
experimentally determining structures for integral
membrane proteins, it is not surprising that so few
structures are currently available in the structure
databases. At the time of writing, there are 95
sequence-unique membrane proteins in the current
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Figure 4. A plot of the potentials of the bilayer potentials (in units of kcal molK1) for the charged amino acids.
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release of PDB (Berman et al. 2000), compared to
20 000 or so globular proteins. The chance of finding a
suitable template structure for transmembrane proteins
is consequently very small in comparison to that of
globular proteins, though a little higher than might
otherwise be expected due to the dominance of very
large families such as the GPCRs.

In view of the difficulties in applying comparative
modelling to transmembrane proteins, a number of
groups have looked into the problem of structure
prediction for these proteins without the requirement
for a template structure, and several studies have been
published on analysing the important structural
features of helix-bundle membrane proteins that can
be used for the prediction of their structure.

As discussed earlier, topology prediction methods
give some spatial information, but as a first step
towards full three-dimensional modelling of proteins
with multiple transmembrane segments, information
on the orientations of each transmembrane helix is
required. After topology, the next most readily
predicted feature of each transmembrane helix is the
relative orientations of the helix around its own axis, i.e.
the identification of which residues are exposed to the
lipid phase and which are packed against the interior of
the transmembrane bundle.

Early attempts were made to predict relative helix
orientation by using the concept of the hydrophobic
moment (Eisenberg et al. 1984; Rees et al. 1989). The
hydrophobic moment is essentially a vector pointing
from the helix axis to the most hydrophobic surface of
the helix. In these methods, the angular orientations of
transmembrane helices could be predicted by assuming
that the helical hydrophobic moments should point out
into the lipid phase. Later, however, it was found that
hydrophobic moments are poor indicators of the
angular orientation of the transmembrane helices due
to the fact that hydrophobic residues often face both
the core of the protein and the lipid (Stevens & Arkin
1999; Rees & Eisenberg 2000).

In later work, a statistical analysis was conducted on
known high-resolution structures of integral membrane
proteins in order to find the lipid exposure propensities
of the different residues (Cronet et al. 1993; Donnelly
et al. 1993). The work of Donnelly was particularly
important in that it described very clearly the
importance of sequence conservation in discriminating
between lipid exposed and buried residues. Lipid
exposed residues, while needing to be highly
Phil. Trans. R. Soc. B (2006)
hydrophobic are also under no significant steric
constraints and so are often seen to be evolutionarily
quite variable. Buried residues, on the other hand,
while also being typically hydrophobic are also subject
to steric constraints and so are commonly seen to be
highly conserved in sequence alignments. As an
alternative to the evolutionary approach, Pilpel et al.
(1999) proposed a knowledge-based scale for the
propensity of residue orientation in the transmembrane
segments. The authors made the assumption that
residues which tend to be exposed to the membrane
will be more frequent in the transmembrane segments
of single spanning transmembrane proteins than in
multi-spanning proteins, whereas residues that prefer
to be buried in the transmembrane bundle interior
would show the opposite trend.

Using this kind of knowledge, some attempts have
been made to develop prediction methods for mem-
brane protein three-dimensional structure. Taylor et al.
(1994) adapted some programs originally developed
for the prediction of globular protein structures to
derive a method for predicting integral membrane
protein structures. The method uses the ‘variphobicity’
(evolutionarily variable and hydrophobic) faces of
transmembrane helices to predict the structure and
was successfully applied to two protein family sequence
alignments (bacteriorhodopsin and rhodopsin).

Nikiforovich et al. (2001) developed a modelling
approach which was a combination of helical packing,
based on the bacteriorhodopsin template, and selection
of low-energy conformers for loops that are closest to
the known X-ray structure of bacteriorhodopsin. Using
this method, the authors were able to accurately
reproduce the bacteriorhodopsin structure.

Fleishman & Ben-Tal (2002) used data on residue
environment preferences to predict the likely arrange-
ment of transmembrane helices, and this method was
used to predict successfully the native structure of
transmembrane protein glycophorin A. In the same
year, Ledesma et al. (2002) produced a model for
uncoupling protein 1 (UCP1), using a computational
docking method, and in 2003, Chen & Chen used a
Monte Carlo method for protein folding and success-
fully predicted the seven helix bundle structure of
rhodopsin I.

Pellegrini-Calace et al. (2003) developed a method
(FILM) for predicting small membrane protein struc-
tures based on a method previously developed for
predicting tertiary structure of globular proteins. The



470 N. Hurwitz and others Predicting transmembrane protein structure
method is based on the assembly of super-secondary
structural fragments taken from a library of proteins
with known structure, using a standard simulated
annealing algorithm. The method was applied to small
membrane proteins of known structure and was able to
predict at reasonable accuracy level the helix topology
and the conformation of a number of these proteins.
We give a brief outline here of the FILM method.
8. FILM: MEMBRANE POTENTIAL DEFINITION
At the core of the FILM method was a simple approach
to modelling the physicochemical constraints of the
lipid bilayer. Globular protein structure prediction is
simplified by the assumption that the water which
surrounds the folding protein is essentially isotropic.
Indeed, many successful globular protein prediction
methods treat the effects of the solvent as an implicit
term, e.g. by altering the dielectric constant in an
application of Coulomb’s Law.

The lipid bilayer (see figure 1) clearly cannot be
treated as an isotropic environment, and so some
means is needed to model its effects in a realistic way.
Although in theory the lipid bilayer could be incorpor-
ated in atomic detail in a molecular dynamic simulation
(e.g. Heller et al. 1993), this would require far too
much computational power, and so FILM makes use of
a very simplistic model of the bilayer properties in the
form of membrane potentials.

Membrane potentials (MPs) were defined by a
statistical analysis carried out on a set of 640
transmembrane helices, belonging to 133 membrane
proteins extracted from the SWISSPROT database
(Bairoch & Apweiler 1996) and having an experimen-
tally defined topology at the very least. We would have
preferred to limit our analysis to transmembrane
proteins of known three-dimensional structure, but
there are currently insufficient structures to allow this.

The membrane bilayer was modelled as an infinite
slab 60 Å in thickness made of a 30 Å core and a 15 Å
interface at both periplasmic and cytoplasmic sides.
The z-axis was taken as the direction perpendicular to
the Cartesian plane formed by the bilayer surface.
A simplifying assumption here is that we assume that
membrane physicochemical properties are variable
only along the z-axis and are constant across each
plane parallel to the membrane surface. The core
region was then divided along the z-axis into 21 ‘layers’
with a layer thickness of 1.5 Å (corresponding to the
translation per residue of a right-handed a-helix), with
zZ0 being right at the centre of the membrane.
Arbitrarily, we defined the cytoplasmic direction as
being in the negative z-direction.

The relative frequencies of occurrence for each
naturally occurring amino acid within each layer of the
core region were calculated by analysing the sequences
of the 640 transmembrane helices, giving a total dataset
of 17 162 residues. The midpoint of each helix was
considered to be positioned at the middle of the
membrane (zZ0), and sequence positions (0, ., n)
were transformed into z-coordinates (z) as follows:

zZ
cðiK1

2
hÞ

h
;
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where i is the position number, h is the helix length and
c is the membrane core thickness.

Periplasmic and cytoplasmic interfaces were divided
into three layers each, with a larger step size of 3 Å, as
we assume that the backbone is more likely to be
extended at that level (the observed span per a-carbon
in an extended polypeptide is ca 3.6 Å). The three
amino acids leading into both ends of the trans-
membrane helices were considered in calculating the
frequencies of occurrence within the interface layers
(sequence positions again have been transformed as
above).

Finally, the inverse Boltzmann equation was applied
so that, given an amino acid type a at a specified
z-coordinate (z) inside of the slab, its membrane
propensity (MP) was calculated according the
equation:

MPðzÞZKRT ln
f aðzÞ

f ðzÞ
;

where fa(z) is the observed relative frequency of
occurrence of amino acid type a at z, f(z) is the
observed relative frequency of occurrence of all
amino acids found at z, and RT is taken to be
0.582 kcal molK1.

As an example, figure 4 shows the calculated bilayer
potentials for the charged amino acids. The main
features of the potentials concur with what is expected
from our knowledge of amino acids and their
occurrence in transmembrane segments. The well-
known positive inside rule (von Heijne 1992) shows
itself in the clear preference for the positively charged
residues to be located at z-coordinates between K25
and K18, which correspond to the cytoplasmic facing
helix cap regions. Other trends, such as the preference
for aromatic residues to be located close to the polar
head groups, also show up in their respective potentials.
9. FILM: PREDICTION METHOD
(a) Energy function

In addition to the membrane potentials, further terms
are needed in the complete potential function. FILM
was based on the FRAGFOLD method used for
globular protein folding (Jones 1997) and so the core
of the used objective function is a set of pairwise
potentials of mean force representing both short range
and long range interresidue interactions. These poten-
tials were determined by a statistical analysis of highly
resolved protein X-ray crystal structures and again the
application of the inverse Boltzmann equation, along
with a solvation potential (Esolv).

In FILM, the solvation energy is set to zero at the
membrane core and smoothed at interfaces by a factor
SF as follows:

SF Z
jzjKL

UKL
;

where z is any interface z-coordinates (i.e. 15 Å!jzj!
30 Å), L is the positive lowest interface z-coordinate

(15 Å) and U is the positive higher one (30 Å). In this
way, the traditional ‘water’ solvation potential has no
effect within the bilayer, but does have an effect outside
of the membrane environment.
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Figure 5. (a) FILM model for glycophorin A (predicted
transmembrane helix from T93 to I118); (b) superposition of
FILM model with NMR model (RMSDZ3.6 Å); (c) FILM
model of subunit C of the F1Fo ATPase (predicted
transmembrane helices from E2 to R41 and from L48 to
A77); (d ) superposition of FILM model with NMR model
(RMSDZ4.2 Å); (e) FILM model of major fd coat protein
(predicted transmembrane helix from W49 to T69 and
predicted amphipathic helix from A32 to A41); and
( f ) superposition of FILM model with NMR model
(RMSDZ4.8 Å).
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All other terms in the FILM potential function (e.g.
hydrogen bonding and steric terms) are the same as
currently used by FRAGFOLD. The total potential
value is obtained by summing the membrane potentials
(Emem) and then added to the other potential terms
with an appropriate weight, e.g.

Etot Z aEshort-range CbElong-range CcEsolv CdEmem

CeEsteric C fEhbond;

a–f are the adjustable weights.
FILM was tested on a number of small trans-

membrane proteins. The requirement that targets be
relatively small and have both known three-dimen-
sional structure and known transmembrane topology
limits the number of available targets to a small
handful. Figure 5 shows the results of applying FILM
to three such targets (glycophorin A, subunit C of the
F1Fo ATPase and major fd coat protein). In all cases,
FILM produced a final model with the correct topology
and a reasonable approximation of the chain confor-
mation (RMSDs between 3.6 and 4.8 Å). Unfortu-
nately, there are almost no other targets available on
which the method could be tested, and the lack of
suitable small transmembrane targets is a critical
Phil. Trans. R. Soc. B (2006)
restriction in testing and developing methods for
folding transmembrane proteins. Although FILM
appears to be a useful method, further benchmarking
will be needed on newly solved targets before its
performance can be accurately assessed.
10. FURTHER DEVELOPMENT OF
THE FILM METHOD
Although the FILM method appears to be effective in
predicting the fold and topological arrangement of
small transmembrane proteins, the method was not
able to predict the conformations of larger trans-
membrane proteins. The main limitation of FILM is
that the potential function is not able to reproduce the
compactness of transmembrane bundles. Trans-
membrane helix bundles are usually not optimally
compact, although neighbouring helices are closely
packed. Bacteriorhodopsin, for example, is an
elongated two-layer bundle of seven helices and not a
compact bundle with a circular cross-section. We have
been trying to improve the prediction of these large
bundles by incorporating the prediction of lipid
exposure from variphobicity analysis into the FILM
potential function.

In order to develop better potential functions for
folding larger multihelical transmembrane proteins, we
have recently started making use of a set of decoy
structures. Decoy sets have been widely used to validate
and optimize potential functions for folding globular
proteins (e.g. Park & Levitt 1996), and a number of
globular protein decoy sets can be downloaded from
the Decoys ‘R’ US web site (http://dd.stanford.edu/).
To date, however, no decoy sets have been developed
for evaluating potential functions designed to fold
transmembrane proteins.

We employed the polyhedral modelling approach of
Taylor et al. (1994) to make a set of challenging decoy
sets for transmembrane protein scoring functions. The
approach is briefly summarized in figure 6. Firstly, for a
given topology (number of transmembrane helices and
direction with respect to inside/outside phasing) all
possible windings are generated on a hexagonal close-
packed lattice. Windings which violate topological
rules (e.g. short crossing loops) are then eliminated
and the remaining windings are transformed into
regularized three-dimensional coordinates firstly by
generating a ‘stick model’ of the structure where each
helix is represented by a single vector. These vectors are
rotated slightly to allow for helix packing and then an
alpha-carbon trace is generated by alternating rounds
of distance geometry and real space refinement.

Figure 7 shows the results of applying one of our
simplified scoring functions to the decoys generated for
bacteriorhodopsin and rhodopsin. The scoring func-
tion is the same as previously described for the FILM
method, with the addition of a weighted term for
variphobicity as defined by Taylor et al. (1994). As can
be seen, this simple scoring function is reasonably
effective in assessing the quality of the transmembrane
models. In the case of bacteriorhodopsin, the best
generated model (6 Å RMSD from native) has the
lowest pseudo-energy sum out of all the decoys. One
slight problem is that the model in fact scores slightly

http://dd.stanford.edu/


Figure 6. An outline of the decoy generation procedure using a polyhedral model of transmembrane helix bundles (Taylor et al.
1994). In the first step, different tracings are generated through a hexagonal close packed lattice (packed cylinder model).
Tracings that violate obvious structural constraints (e.g. loops too short to make a particular connection) are eliminated. Given a
tracing through the lattice, helix axes are generated taking into account the normal packing angles between helices in close
packed helix bundles. Finally, using these axes, alpha-carbon coordinates are generated by means of distance geometry and real-
space refinement.
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better than the crystal structure in this case, which
underlines the fact that the scoring function is still not
fully accounting for all aspects of protein stability in
a bilayer. In the case of rhodopsin, the crystal structure
enjoys a much more pronounced gap between its own
energy and that of the next closest decoy structure.
However, in this case, the best model is not the model
which produces the lowest pseudo-energy sum,
though the lowest energy model is close to the native
(7 Å RMSD) and the model with lowest RMSD is the
next best.
(b)
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Figure 7. Validation results for FILM2 potential function
applied to decoy sets based on (a) bacteriorhodopsin and (b)
rhodopsin.
11. CLASSIFYING TRANSMEMBRANE PROTEINS
USING PREDICTED STRUCTURAL FEATURES
Over the past 15 years there has been a great deal of
progress in the classification of proteins both by
sequence (Sonnhammer et al. 1997; Mulder 2005)
and by structure (Murzin et al. 1995; Orengo et al.
1997). In both cases, improvements have been driven
by the rapid explosion in sizes of both sequence and
structure data banks, and these improvements have led
to better and more comprehensive annotations of
genome sequences.

With the limited available structural data for
transmembrane proteins and the large fraction of
transmembrane families for which there is little or no
functional information, it is not surprising that
annotations for membrane-associated genome
sequences are relatively sparse. Automatic sequence
clustering techniques have a particular problem with
transmembrane proteins because of the sequence
constraints on the transmembrane helices. Put simply,
Phil. Trans. R. Soc. B (2006)
one transmembrane protein sequence looks very
similar to many others. Nevertheless, basic sequence
analysis techniques are a good starting point. Liu &
Engelman (2002) have classified polytopic membrane



Table 1. Calculated transmembrane helix variphobicity scores for the five bacteriorhodopsin-like sequences, the seven opsin
sequences and a sphingosine-1-phosphate receptor.

TM1 TM2 TM3 TM4 TM5 TM6 TM7

BACA_HALS1 0.42 0.32 0.02 0.31 0.35 0.23 0.31
BACH_HALSP 0.20 0.24 K0.01 0.30 0.37 0.28 0.20
BACH_HALSS 0.28 0.24 K0.01 0.30 0.33 0.28 0.20
BACR_HALHA 0.37 0.33 0.04 0.30 0.40 0.25 0.29
BACS_HALHA 0.21 0.22 0.05 0.27 0.32 0.19 0.19
EDG1_HUMAN 0.29 0.01 0.30 0.64 0.67 0.43 0.22
OPS1_CALVI 0.72 0.05 0.18 0.46 0.06 0.50 K0.12
OPS2_DROME 0.70 0.09 0.22 0.40 0.14 0.53 K0.11
OPS3_DROME 0.68 0.12 0.19 0.17 0.49 0.50 0.08
OPS4_DROME 0.57 0.06 0.06 0.32 0.48 0.51 0.00
OPSB_HUMAN 0.61 0.06 0.19 0.31 0.27 0.43 0.03
OPSD_BOVIN 0.83 0.10 0.20 0.23 0.36 0.67 K0.07
OPSG_HUMAN 0.67 0.04 0.28 0.30 0.54 0.52 K0.12
OPSR_HUMAN 0.66 0.04 0.27 0.27 0.54 0.54 K0.05
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proteins in 26 genomes, according to their number of

transmembrane helices and sequence similarities,

into 637 families. Classification based on similarity of

amino acid sequences can be very informative when

very significant sequence similarity exists; however, it is

known that the impact of amino-acid sequence

similarity on protein evolutionary or functional

relationships is rather limited in the cases when the

similarity between sequences is low. Moreover, we

know from globular protein domains that sequence

comparisons fail to identify many of the relationships

that emerge from the comparison of protein structures.

With little prospect of vast numbers of trans-

membrane structures being solved experimentally

over the next few years, we have to focus on predicted
structural features to improve existing transmembrane

classifications. The aim of some of our recent work on

transmembrane protein sequence analysis has therefore

been to classify proteins according to their predicted

structural features, i.e. residue and helix orientation, as

opposed to classifying them by sequence similarity

alone. Examining predicted transmembrane topology

is one very crude way in which uncharacterized

transmembrane proteins can be grouped into mean-

ingful families using structural clues (e.g. Jones 1997).

However, we are already very aware that trans-

membrane proteins of identical topology can have

dissimilar folds (e.g. the case of bacteriorhopsin and

rhodopsin), and should therefore not be clustered into

the same superfamily.

The aim of some of our recent work on trans-

membrane protein sequence analysis has been to

classify proteins using a greater variety of predicted

structural features. For example, by classifying mem-

brane proteins according to their packing and orien-

tation of their helices we hope to be able to improve on

the classifications carried out to date, which have been

based just on sequence and topology.

One powerful structural feature we have been

examining is again the variphobicity signal which can

be deduced from a multiple sequence alignment, and

this has been found to provide a strong signal which can

be used to correctly segregate transmembrane sequence

clusters that would otherwise be grouped together.
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As an example of using variphobicity analysis
to distinguish topologically similar families of trans-
membrane proteins, we set up a simple experiment to
see whether we can correctly cluster a mixture of
bacteriorhodopsin and rhodopsin-like protein sequences
using variphobicity alone. Of course, a great deal of
work remains to be done in constructing an optimal
clustering method based around variphobicity scoring,
but we show here an example which is intended to serve
as a minimal proof of principle.

As a first step, the MEMSAT method ( Jones et al.
1994) was used to predict the topology of each protein
along with the transmembrane segment locations and
lengths. As expected, all of the proteins were predicted
to have the same overall topology (seven trans-
membrane segments with the N-terminus on the
outside). For each of the transmembrane segments,
we calculated a measure of variphobicity (Taylor et al.
1994). As discussed by Taylor et al., transmembrane
segments having a high variphobicity score suggests
that the helix has a high lipid exposure, whereas a low
score suggests that the helix is not likely to be exposed
to lipid (and is consequently like to be packed into the
core of the protein).

Table 1 shows the resulting variphobicity scores for
the seven transmembrane segments in each of the
target proteins. Five of the proteins (BAC1_HALS1,
BACH_HALSP, BACH_HALSS, BACR_HALHA,
BACS_HALHA) come from the bacteriorhodopsin
family, eight from the family of opsins and one from a
distant member of the GPCR superfamily (sphingosine
1-phosphate receptor; EDG1_HUMAN). For each
pair of proteins we derive a metric of similarity by
calculating the (Pearson) correlation coefficient for the
variphobicity scores. Our expectation is that proteins
with the same approximate ranking of variphobicity
across their transmembrane helices are more likely to
share a common folding pattern. A distance matrix was
formed by subtracting each pairwise correlation
coefficient from 2.0, and then weighted pair group
clustering was used to cluster the proteins. Figure 8
shows the results of this clustering in the form of a
dendrogram.

The results obtained are very close to the results that
would be obtained from clustering these proteins by



BACA_HALS1

BACH_HALSP

BACS_HALHA

BACH_HALSS

EDG1_HUMAN

OPSB_HUMAN

OPSD_BOVIN

OPS3_DROME

OPSG_HUMAN

OPSR_HUMAN

OPS4_DROME

OPS1_CALVI

OPS2_DROME

BACR_HALHA

0.27 0.45 0.63 0.82 1.00

Figure 8. Dendrogram of the sequences shown in table 1
based solely on the pairwise correlation coefficients of the
variphobicity scores.
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sequence similarity. However, in this case, the proteins
are represented merely by a vector of seven variphobi-
city values and the similarity by a crude calculation of
correlation. Based just on these variphobicity patterns,
the proteins form three distinct clusters (with
EDG1_HUMAN forming a singleton group) suggesting
that the relative variphobicity of the transmembrane
segments is indeed a useful ‘fingerprint’ for a
structurally similar family of transmembrane proteins.

We expect that a robust method for clustering
transmembrane proteins of unknown structure will
need to take into account a number of different
features. For example, the lengths and physicochemical
characteristics of connecting loops might be very
informative. With the right combination of features it
should be possible to get a clearer picture of the as yet
uncharacterized transmembrane proteins found in
completed genomes than can be obtained by using
sequence similarity alone.
12. CONCLUSIONS
Despite a significant amount of progress in recent years
in the prediction of globular protein structure from
amino acid sequence, particularly in the areas of fold
recognition and distant homology modelling, technol-
ogy for the prediction of transmembrane protein
structure is clearly lagging some way behind. In this
paper we have described a number of recently
developed methods for transmembrane protein struc-
ture prediction which we hope will eventually form
parts of a ‘pipeline’ for automatically building
structural models for all of the transmembrane proteins
in a genome.
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The main bottleneck to progress in improving
transmembrane modelling methods is clearly the lack
of experimentally determined structures for integral
membrane proteins. This not only limits our ability to
calculate reliable statistics for our knowledge-based
approaches, but also limits our ability to test them.
A common feature of all the methods discussed in this
paper is that they have been designed to extract
maximum value from what little experimental data is
available. Were there to be a lot more available
structural data then we would have made different
decisions in the design of our algorithms.

Although there has clearly been some progress in
increasing the efficiency of structure determination for
membrane proteins, it is apparent that the lack of data
will be the limiting factor for some considerable time to
come. However, we prefer to look on this as a challenge
for bioinformatics rather than an explanation for
failure. The true value of bioinformatics has always
been in maximizing the potential for exploitation of
limited amounts of data, and the structural character-
ization of membrane proteins has to be seen as a perfect
example of doing just this. We hope, therefore, that this
paper will at the very least serve as a rallying call to both
the experimental and bioinformatics community to
develop imaginative new approaches to predicting the
structure of transmembrane proteins which effectively
and efficiently combine theory with experimental data.
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