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In principle, given the amino acid sequence of a protein, it is possible to compute the corresponding
three-dimensional structure. Methods for modelling structure based on this premise have been under
development for more than 40 years. For the past decade, a series of community wide experiments
(termed Critical Assessment of Structure Prediction (CASP)) have assessed the state of the art,
providing a detailed picture of what has been achieved in the field, where we are making progress, and
what major problems remain. The rigorous evaluation procedures of CASP have been accompanied
by substantial progress. Lessons from this area of computational biology suggest a set of principles for
increasing rigor in the field as a whole.
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1. INTRODUCTION
In the 1950s, work by Anfinsen & colleagues conclus-
ively showed that the information determining the
three-dimensional structure of a protein molecule is
contained in the amino acid sequence. Recognition of
this relationship rapidly led to the development of
methods for computing structure from sequence.
There were many early encouraging reports of partial
success, starting in the 1960s and continuing through
the 1970s and 1980s. And yet, during this long period,
there were very few reports of computed structures in
any way competing with those obtained experimentally.
The mismatch between apparent success and the lack
of useful applications suggested that the traditional
peer reviewed publication system is not sufficient to
ensure rigor in this area of computational biology. The
Critical Assessment of Structure Prediction (CASP)
experiments were devised as a means of addressing the
specific needs of methods evaluation in structure
modelling. CASP is one of a number of ways in
which this problem may be addressed. As discussed
later, the fundamental differences between compu-
tational and experimental biology dictate that new
procedures be adopted in the field as a whole.
2. CASP
CASP is a community wide experiment with the goal
of assessing the effectiveness of methods for modelling
protein structure. The aims are to provide detailed
information about the strengths and weaknesses of
current structure modelling methods, to identify where
progress has been made, to show where there are
tribution of 15 to a Discussion Meeting Issue ‘Bioinformatics:
lecules to systems’.
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serious bottlenecks to further progress, and to indicate
how these may eventually be removed. Key features
are:

(i) The use of bona fide blind predictions, rather
than the previous practice of reproducing
already known structures.

(ii) Participants provide models for the same set of
proteins, greatly facilitating comparison of
performance.

(iii) Predictions are made on a reasonably large set
of proteins, reducing the impact of case specific
artefacts.

(iv) There are multiple independent approaches to
evaluation, reducing bias.

(v) All models and analysis results are freely
available to all, allowing maximum use to be
made of the data.

The experiment has been conducted every 2 years
since 1994 (CASP1), with the most recent one taking
place in 2004 (CASP6). Information about soon-to-be
experimentally determined protein structures is col-
lected, and passed on to registered predictors. More
than 200 prediction teams from 24 countries partici-
pated in CASP6, providing over 30 000 predictions on
90 protein domains. Predictions are evaluated using a
battery of numerical criteria (Zemla et al. 2001) and
more importantly, are carefully examined by indepen-
dent assessors. A conference is held to discuss the
results, and a special issue of the journal Proteins is
published, with articles by the assessors and by some of
the more successful prediction teams. Details for the
5th experiment can be found in the most recent
journal issue (Moult et al. 2003). In particular, articles
by the three assessment groups (Aloy et al. 2003;
Kinch et al. 2003; Tramontano & Morea 2003)
q 2006 The Royal Society



Figure 1. CASP6 Target 266, an example of a structure
model based on a relatively close evolutionary relationship.
The best model is blue, experimental structure (PDB entry
1wdv) is green, and the available template structure (28%
sequence identity to target, 1dbu_A) is yellow. Where
template and target are similar (yellow and green superpose),
the model is accurate. Two loop regions not available in the
template (A and B) are also reasonably correct. Helices H1
and H2 have different orientations in the template and the
target, not corrected in the model. These structural features
may be related to ligand specificity differences. Refinement of
these models to rival experiment remains a central challenge,
with signs of recent progress.

Figure 2. CASP6 Target 197, an example of comparative
modelling based on a distant evolutionary relationship. The
best model is blue, and the experimental structure (1xkc) is
green. Accurately modelled regions of the beta barrel reflect
available template information. Other regions, outside the
beta barrel, have different conformations from the template,
and are not accurately modelled. These structural features are
likely related to detailed functional differences. In spite of
limited accuracy, structure assisted recognition of these
evolutionary relationships provides valuable information
about function, in this case likely involvement in RNA
editing.
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provide a detailed overview of the state of the art at
that time, and another article puts the results in the
context of previous CASPs (Venclovas et al. 2003).
The Proteins issue for the sixth experiment will appear
in early 2006. All participant registration, target
management, prediction collection and numerical
analysis are handled by the Protein Structure Predic-
tion Center (Zemla et al. 2001). The Center web site
(predictioncenter.org) provides access to details of the
experiment and all results. A second web site (www.
forcasp.org) provides a discussion forum for the CASP
community.
3. CLASSES OF STRUCTURE PREDICTION
DIFFICULTY
Early work in the structure modelling field focused on
understanding the nature of the natural protein folding
process, and on the development of physics based force
fields to determine the relative free energy of any
conformation of a polypeptide chain. These methods
were much in evidence at the first CASP, but have
largely been supplanted by more successful ‘knowledge
based’ approaches, which use the large and growing set
of experimentally determined structures and
sequences, in a variety of ways. As a consequence,
accuracy of models depends on similarity to already
known structures, and the number of related sequences
that are available. Based on this consideration,
CASP considers three classes of modelling difficulty,
discussed in the following sections.
Phil. Trans. R. Soc. B (2006)
4. COMPARATIVE MODELLING BASED ON A
CLEAR SEQUENCE RELATIONSHIP
For cases where there is an easily detectable sequence

relationship between a target protein and one or more

of known structure (a highly statistically significant

score from a BLAST search; Altschul et al. 1990), an

accurate core model (typically 2–3 Å RMS error on Ca

atoms) can be obtained by copying from the structural

template or templates (Tramontano & Morea 2003).

Copying is often non-trivial, requiring a correct

alignment of the target and template sequences.

Improvements over the CASPs have resulted in largely

correct alignments in this modelling zone. A single

template structure rarely provides a complete model.

Alternative templates may provide some additional

structural features, and short regions of chain (‘loops’)

are sometimes modelled in an approximately correct

manner. Generally, reliably building regions of the

structure not present in a template remains a challenge.

Side chain conformations are very tightly correlated

with backbone conformation (Chung & Subbiah

1995), so not surprisingly, side chain accuracy in

these approximate models is poor.

A typical CASP6 comparative model is shown in

figure 1, for Target 266, an Aeropyrum pernix homol-

ogue of the Haemophilus influenzae proline tRNA

editing enzyme (An & Musier-Forsyth 2004). For

large regions of the structure the template provides an

accurate guide, resulting in good overall quality. Two

non-template loop regions (A and B) are successfully

modelled. The largest differences between the

http://predictioncenter.org
http://www.forcasp.org
http://www.forcasp.org


Figure 3. CASP6 Target 201, an example of modelling a
previously unknown fold. The best model is blue, and the
experimental structure (1s12) is green. The helical regions
are accurately modelled, and the general features of the beta
sheet are correct, although there is an error in the order of the
strands, and the sheet is slightly mis-oriented. This quality of
model is now often obtained for small structures.
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template and the target are in two helices (H1 and H2)
flanking the active site, suggesting different substrate

specificities. The best models leave the helices in the
template orientation, so it is not possible to analyse
possible specificity differences. In general, although the
structure around active sites is usually well conserved
between proteins with the same specificity, it is often
the least conserved when the specificities differ.

While large parts of this class of model are
approximately correct, they require refinement to be
competitive with experiment, and to reproduce key
functional features. Refinement remains the principal
bottleneck to progress, and is now receiving a large

amount of attention. In spite of limitations, these
models are very useful for a variety of purposes, often
identifying which members of a protein family have the
same detailed function, and which are different
(DeWeese-Scott & Moult 2004).
5. MODELLING BASED ON MORE DISTANT
EVOLUTIONARY RELATIONSHIPS
A second class of model quality is provided by those
cases where an evolutionary relationship can be
detected with more sophisticated methods than just

BLAST. The core of these methods is alignment of a
set of sequences, so that the characteristics of protein
families may be used to detect relationships (Altschul
et al. 1997; Karplus et al. 1998; Karplus & Hu 2001;
Marti-Renom et al. 2004; Kahsay et al. 2005).
Structural information is also used in a number of

ways to enhance the detection of homologues (Sippl
1993; Bates et al. 2001; Karplus et al. 2003; McGuffin
& Jones 2003; Venclovas 2003; von Grotthuss et al.
2003; Przybylski & Rost 2004; Wrabl & Grishin
2004).
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Models based on the detection of these more distant
relationships are limited in accuracy by four factors:
identifying suitable structural templates, accuracy of
alignment of sequence onto a template, conformational
differences between the core template and target
structures, and the difficulty of modelling regions of
the target not available from a template. Nevertheless,
methodological improvements together with the
increased size of the pool of known structures and
sequences has resulted in a steady improvement in
model quality over the course of the CASP exper-
iments. Further progress will depend on two main
factors: first, effective application of template free
modelling methods to those regions not found in a
template. As outlined below, improvements in that area
make this possible. The second factor is accurate
alignment. This will likely require refinement at an all-
atom level, since the information needed to distinguish
between alternative alignments is contained in the
detailed atomic interactions.

Although these models are not highly accurate, they
nevertheless are useful for providing an overall idea of
what a structure is like, helping choose residues for
mutagenesis experiments, for example. They also often
establish evolutionary relationships to more studied
proteins, and so provide valuable approximate infor-
mation about molecular function. Figure 2 shows an
example from CASP6.
6. MODELLING OF NEW FOLDS
For proteins with folds that have not previously been
found, and those where no relationship to a protein of
known structure can be detected, a different set of
methods are needed. Traditionally, this was the area
where physics based approaches were used. These
methods are still used by a few CASP participants, but
have been largely displaced. Newer methods primarily
utilize the fact that although we are far from observing
all folds used in biology (Coulson & Moult 2002), we
probably have seen nearly all substructures (Du et al.
2003). Methods make use of these partial structure
relationships on a range of scales (Bystroff et al. 2004),
from a few residues (Rohl et al. 2004), through
secondary structure units, to super-secondary units
( Jones & McGuffin 2003). Structure fragments are
chosen on the basis of compatibility of the substructure
with the local target sequence and compatibility of
secondary structure propensity. Since the sequence/
structure relationship is rarely strong enough to
completely determine the structure of fragments
(Bystroff et al. 1996), a range of possible conformations
for each fragment are usually selected, and many
possible combinations of sub-structures considered.
Initial structures are assembled from fragments, and
approximate potentials are used to guide a confor-
mational search process, together with other infor-
mation, such as prediction of residue contacts (Aloy
et al. 2003). A large number of possible complete
structures (1000–100 000) are usually generated. The
most successful package using this strategy is Rosetta
(Rohl et al. 2004). For proteins of less than about 100
residues, these procedures may produce one or a few
approximately correct structures (4–6 Å RMSD on Ca
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atoms). Selecting the most accurate structures from the
large set of candidates is currently not a fully solved
problem, and most methods rely on clustering
procedures, selecting representative structures at the
centre of the largest clusters of generated candidates
(Skolnick et al. 2001). Reliable identification of
accurate models will require the use of refined all-
atom models. Thus, in this class of modelling too, the
development of atomic level refinement methods is
likely crucial to major progress.

In CASP1, all new fold models were close to
random. There has been steady improvement over
the CASPs, and by CASP6 most non-homology targets
less than 100 residues have models that visual
inspection shows to resemble experiment. An example
is shown in figure 3. Models for larger proteins or
domains are still rarely usefully accurate. Thus, while
there is very impressive progress for small proteins,
there is still a long way to go before all proteins can be
modelled at that level. Also, although topologically
pleasing, these models often have significant alignment
and other errors. Nevertheless, progress over the
decade of CASP has been very impressive.
7. MAJOR CURRENT CHALLENGES
Overcoming four of the current major bottlenecks—
producing close evolutionary relationship models
approaching experimental accuracy, improved align-
ments, refinement of remote evolutionary relationship
models, and reliable discrimination between possible
template free models—depends on the development of
effective all-atom structure refinement procedures. The
‘refinement’ problem has received increasing attention
in recent years (http://www.nigms.nih.gov/psi/reports/
comparative_modeling.html). At CASP6, for the first
time, there was a report of an initial model refined from
a backbone RMSD of about 2.2–1.6 Å, with many of
the core side chains correctly oriented (Schueler-
Furman et al. 2005). The same technology has been
effective in protein design (Schueler-Furman et al.
2005), and in protein–protein docking (Schueler-
Furman et al. 2005).
8. LESSONS FOR COMPUTATIONAL BIOLOGY
The practical and philosophical principles of exper-
imental science evolved over hundreds of years, and
have resulted in a system that ensures rigor and
reproducibility. Experience in computational studies
of protein structure suggests that these principles are
not sufficient for computational modelling in biology.
The fundamental difference is that modelling does not
deal directly with the real world, instead creating some
form of artificial reality. Additional steps are necessary
to firmly establish the relationship between the artificial
and real worlds. These steps are of two types. First,
proper and appropriate statistical procedures must be
used. In this respect, the computational biology field
has become increasingly technically sophisticated in
recent years. Second, care must be taken that the model
does indeed represent the real world in all relevant
respects. This latter issue has received less attention.
The procedures outlined below, if widely adopted, will
Phil. Trans. R. Soc. B (2006)
put computer modelling in biology on a par with the
experimental work.

Bona fide predictions of experimental observations.
Wherever possible, this mechanism should be used,
rather than reproduction of known facts. Implemen-
tation requires that new experimental data be available
on an appropriate time scale. CASP makes use of the
high rate of release of new experimental structures,
particularly those generated in structural genomics
(http://www.nigms.nih.gov/psi/). CAPRI, a community
protein–protein docking experiment (Janin 2005)
makes use of new structures of complexes.

Bona fide prediction on test sets derived through human
analysis. In areas where new experimental data cannot
be used, it is some times possible to generate special
test sets for bona fide prediction. This mechanism has
been applied to genome sequence analysis (Reese et al.
2000). Human annotators examine a large set of data
(genome sequence in this example), providing material
that computational methods are then tested against.

Large test sets. Where reproduction of known
information is the basis for testing, a large body of
data produces more robust evaluation. Large test sets
were rare in the early history of structure modelling.
When they were used, for example in some cases of
secondary structure prediction (Rost & Sander 1993),
the results were reliable. The LiveBench system
(Rychlewski & Fischer 2005) for evaluating protein
structure modelling successfully incorporates this
principle, encouraging participants to produce models
of all newly released experimentally structures, and so
accumulating large amounts of data.

Community agreed test sets. These can be developed in
almost all areas of biological modelling. In CASP,
participants agree to produce models of the same
proteins, making methods comparison much easier. A
more general example in the structure modelling field
are decoy sets for testing protein structure discrimi-
nation methods, developed by a number of groups
(http://dd.compbio.washington.edu/).

Independence of training and test sets. Parameterizing a
method on the same data used for its evaluation will
often lead to overestimates of accuracy, particularly
where machine learning is employed. The principle of
separate training and test sets is well established in
statistics. It is appreciated in computational biology,
but so far not always adhered to in practice.

Error estimates. In experimental science, provision of
uncertainties in any measured quantity is considered
mandatory. In computational work, including structure
modelling, this is so far rare. There are striking
exceptions, such the establishment of reliability esti-
mates for interpreting DNA gels (Ewing & Green 1998).
In this case, a reliability estimate played a critical role in
developing high throughput sequence methods.

Independent tests of accuracy. All accuracy evaluation
procedures have biases, so independent validation
should be performed whenever possible. For example,
when two unrelated methods have been developed, it is
possible to validate by comparison. The specificity of
the two methods predicts the fraction of cases where
the two methods should agree, and the sensitivity
predicts the expected fraction of all cases where at least
one method should be correct.

http://www.nigms.nih.gov/psi/reports/comparative_modeling.html
http://www.nigms.nih.gov/psi/reports/comparative_modeling.html
http://www.nigms.nih.gov/psi/
http://dd.compbio.washington.edu/
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Open results. All data associated with a method
should be released, including full evaluation details and
results, rather than just summaries. Ease of distributing
information electronically has made this a practical
procedure.

Open software. In experimental science, the principle
of providing sufficient information to reproduce results
has long been accepted and broadly adhered to. The
equivalent in computational science includes release of
software. There is considerable resistance to this, and it
has not so far been possible in CASP. The primary
reasons for non-release are protection of intellectual
property and trade secrets, the resource commitment
required to make software robust enough for distri-
bution, or the dangers of abuse (unacknowledged use,
or incorrect use leading to substandard results). These
may be legitimate concerns, but without software in
some form, it is impossible to rigorously check the
performance of a method, and there is massive
duplication of effort.

CASP is made possible by the participation of the prediction
community, the generosity of the experimental community in
making new structure information available, and the work of
the assessment teams and the organizers. Details of the large
number of people involved are available on the CASP web site
(predictioncenter.org). CASP has been supported by
grants from the National Library of Medicine (LM07085 to
K. Fidelis), NIH R13GM/DK61967 (to J.M.) and
R13GM072354 (to B. Rost).
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