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Approaches to describe gene regulation networks can be categorized by increasing detail, as network
parts lists, network topology models, network control logic models or dynamic models. We discuss
the current state of the art for each of these approaches. We study the relationship between different
topology models, and give examples how they can be used to infer functional annotations for genes of
unknown function. We introduce a new simple way of describing dynamic models called finite state
linear model (FSLM). We discuss the gap between the parts list and topology models on one hand,
and network logic and dynamic models, on the other hand. The first two classes of models have
reached a genome-wide scale, while for the other model classes high-throughput technologies are yet
to make a major impact.
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1. INTRODUCTION
(a) Problem statement

The results of genome sequencing and other high-
throughput technologies have given us estimates of the
complexity of molecular networks. There are tens of
thousands of elements (e.g. genes) and at least as many
connections between them, but the old question ‘How
does a (simple) cell work?’ looks ever more difficult to
answer. Moreover, what does it mean to understand a
network consisting of tens of thousands of elements?
Can a descriptive approach to biology ever provide an
answer? How can we communicate results in an ever-
increasing flood of details?
(b) Modelling molecular biology

One way of approaching these questions is by
developing models to describe complex systems like
gene networks. Such models (as models in general) are
intentional simplifications of the reality. Leaving out
some features allows one to concentrate on under-
standing particular properties of a system while
ignoring others, assuming they are less important for
the particular question in mind. Once we have
developed a satisfactory model for particular aspects
of a real world system, we can focus our study on the
properties of themodel instead of the real world system.
This should allow us to make predictions about the real
world system based on the properties of the model and
subsequently test the predictions in experiments. If the
predictions are correct the model is correct, if the
tribution of 15 to aDiscussionMeeting Issue ‘Bioinformatics:
lecules to systems’.
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predictions are wrong we have to question the model,
investigate the differences and change the model
accordingly. The change in the model reflects the
increase in knowledge of how the real system works. If
the model is rich enough to describe important aspects
of the system that we are particularly interested in, we
can claim that we have made a significant step towards
the understanding of the real world system.

(c) Simulation and reverse engineering of gene

networks

Simulations effectively mean using a model to generate
data, which can then be compared to experiments,
while reverse engineering refers to an approach where
one starts from data and tries to design a model that fits
the data (semi-) automatically using particular model-
ling methods. The model is, therefore, derived from
data and is judged by the results of simulations
compared to new experimental data. For example,
one could use a gene expression data set to construct a
particular gene network model (with a given model
class) that is consistent with the data. Inconsistencies
between simulated data generated using this model and
new data, that has not been used to construct the
model, indicate shortcomings of the model. These
inconsistencies can be used to choose between
alternative models, or to improve the model. However,
simulations or reverse engineering is possible only if we
have enough quantitative data describing the behaviour
of the system.

(d) Dilemma of lacking data in times

of high-throughput biology

The availability of large-scale data sets such as
microarray gene expression and genomic localization
q 2006 The Royal Society
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Figure 1. (a) The building blocks of the finite state linear model: binding sites are represented by triangles, control functions by
boxes and substance generators by diamonds. Dotted lines represent cases where the discrete output of one element is the input
for another element. (b, c) Switching behaviour of the binding sites. The curve (b) is typical for processes with hysteresis
characteristics of a system that does not instantly follow the forces applied to it, but reacts slowly, or does not return completely
to its original state: that is, systems whose states depend on their immediate history. The threshold for switching the states of the
binding sites in FSLM is state-dependent and results in a similar curve (c). [c] concentration of substance binding to binding site
j; assoj, dissoj, association and dissociation constants for binding site j; u, binding site not occupied; o, binding site occupied.
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data triggered the search for suitable approaches to
model complex biological systems. However, currently
it seems not feasible to simulate even relatively simple
cells like baker’s yeast or fission yeast accurately.
Despite being two of the best-studied organisms the
function of about one-third of all yeast genes is still
unknown. And even for many of the better-known
genes there is still not enough data available to exactly
know all changes in concentration and activation
patterns to simulate core processes that have been
studied for decades, like the cell cycle. Models have
been built to explore the fundamentals of the cell cycle
for yeast (Tyson et al. 2002). However, these models
describe only the behaviour of a few genes, while
genome-wide gene expression studies (microarrays)
show that hundreds of genes are changing their
expression levels during the cell cycle (Spellman et al.
1998; Rustici et al. 2004). More recently significant
improvements in the understanding of genome wide
dynamics of the cell cycle have been made (de
Lichtenberg et al. 2005), nevertheless we are not yet
able to simulate the cell cycle quantitatively.

(e) Finite state linear model

To illustrate the points discussed above, let us
introduce a ‘toy example’ for modelling gene regulatory
networks, which we call the finite state linear model
(FSLM). It has a control component based on discrete
states (e.g. gene is ‘on’ or ‘off’), and an environment of
substances changing their concentrations continuously.
Time is continuous: the state of the network directly
determines the concentration change rates, while the
state is in turn affected by the concentrations
themselves.

(i) Definition of the FSLM
Different classes of molecules, like mRNA or proteins,
are not distinguished in the FSLM, they are all
represented by substances. The FSLM comprises
several such abstract substances, and three types of
Phil. Trans. R. Soc. B (2006)
network elements: binding sites, control functions and
substance generators (figure 1a). The binding sites in the
FLSM correspond to DNA binding sites for transcrip-
tion factors in the promoter regions of genes. A
biological promoter corresponds to a control function
connected to one or several binding sites in the FSLM.
A combination of binding site(s), control function(s)
and a substance generator in the FSLM corresponds to
a biological gene (figure 1a). A gene network consists of
several such genes, which influence each other via the
substances they produce (figures 2 and 3). Here we will
briefly describe the simpler binary version of the
FSLM, which allows only two possible states for the
binding sites and substance generators. A description
of the multilevel model, where this restriction is lifted,
and a more mathematically thorough definition can be
found in Brazma & Schlitt (2003).
(ii) The binary version of the FSLM
In the environment there are n different substances, each
corresponding to a particular substance generator. These
substances can bind to binding sites. Each binding site
can be bound by one particular substance. A binding
site can be in one of two states, bound or unbound. The
binding of a substance to a binding site bj depends on
the association constant assoj and the dissociation constant
dissoj of the binding site (0!dissoj!assoj). If the
concentration of the binding substance is equal to, or
greater than, its association constant then the binding
site is bound. If the substance concentration falls below
the dissociation constant then the binding site is not
bound by the substance anymore and it switches to the
unbound state. The biochemical equivalents of the
association and dissociation constants in FSLM are
affinity constants. The difference between the associ-
ation constant assoj corresponding dissociation constant
dissoj leads to hysteresis characteristics (figure 1b) for the
switching between the states of a binding site (see for
example Tyson & Novak 2001). The concentration
threshold for the switch between the states of the
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Figure 3. A network consisting of two genes and four binding sites. (a) The control functions of both genes have two inputs each.
One input is from a binding site for its own substance, thus each gene is autoregulated by a negative feedback loop. Gene 1 has an
additional negative feedback on gene 2, while gene 2 has an additional positive feedback on gene 1. (b) Result of the simulation of
this network in FSLM. a1 association constant of binding site 1, d1 is the corresponding dissociation constant; a2, d2, a3, d3, a4,
d4 correspondingly; l Boolean ‘not’, & Boolean ‘and’.
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Figure 2. Example for the dynamics of a simple network: (a) in this negative feedback loop the substance generator produces a
substance which acts as a repressor of its own control function. (b) Environment change graph recording the changes in repressor
concentration during time. From the initial concentration the repressor accumulates with rate rC until the association constant
of the binding site brep is reached at time t1. Then the substance generator is switched off and the repressor degrades with rate rK

until the dissociation constant is reached at time t2. The substance generator then produces the repressor until the association
constant is reached again (l means Boolean ‘not’).
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binding site depends on the state of the binding site

itself. Using discrete states to represent the binding sites

means we approximate the binding equilibrium with a

simpler step function.

The states of a set of binding sites comprise the input

vector of a control function F. This control function is a

Boolean function. Depending on the input state vector

the control function computes an output state (on or

off ). A substance generator S changes the concentration

of a substance in time in a linear fashion. The

concentration can either increase with rate rC or

decrease with rate rK (rK!0!rC), corresponding to

substance production and degradation, respectively.

The output state of a control function determines the

activity of a substance generator, i.e. whether the

concentration of a particular substance is increasing or

decreasing.
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(iii) Dynamics of the FSLM
The dynamics of the FSLM can be illustrated by

modelling a negative feedback loop involving a single

gene (figure 2). At the start, the substance concen-

tration is low, the binding site is unbound, the

substance generator is active and, therefore, the

substance is produced with rate rC. Its concentration

increases until it reaches the association constant of the

binding site. The binding site switches to the bound

state, which in turn leads to the inactivation of the

substance generator, and the substance concentration

decreases with rate rK until it reaches the dissociation

constant of the binding site. Consequently, the binding

site switches to the unbound state, the substance is

generated again, its concentration increases and the

process repeats itself. Figure 3 shows the behaviour of a

gene network consisting of two genes, demonstrating
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that a very simple network of just two genes can exhibit
a non-trivial behaviour.

FSLM can be used to build complex models for
instance to simulate the life cycle of phage l (figure 4).
Our simulations of phage l show that the FSLMmodel
allows two different kinds of behaviours, which
correspond to lytic or lysogenic behaviour.

(iv) What do we need to describe a biological system with
FSLM?
These very simple examples of gene networks illustrate
the modelling process of biological systems in a
nutshell. However, can this be applied to networks
consisting of thousands of genes? To begin with, we
need to have a list of the parts involved in the system to
be modelled; next we need to know the topology of the
network: which substances, binding sites and control
functions are connected to each other. We also need to
know the control functions, and we need to know the
appropriate binding constants and rate constants.

In our example, the information required about the
biological system is relatively trivial, but when the
network size increases, the lack of detailed biological
information becomes a major bottleneck for its model-
ling. So, what can we do if we do not have sufficient
information to build large-scale dynamic models?
Instead of building the full dynamic model, we can
start with compiling the parts lists, next describing the
connections (the topology), then the control logics and
eventually the dynamics (Schlitt & Brazma 2005).
2. CLASSIFICATION OF EXISTING MODELLING
APPROACHES—FOUR LEVELS OF HIERARCHI-
CAL DESCRIPTION
(a) Parts lists

Simple parts lists (of genes, transcription factors,
promoters, binding sites, .) are useful means for
assessing the network complexity and for comparing
different organisms. Such parts lists are results of
genome sequencing and annotation projects, and
although gene identification and annotation are not a
trivial exercise, parts list give a good first impression of
the complexity of an organism.

For example, we can compare the parts lists for two
very different yeasts—Saccharomyces cerevisiae and
Schizosaccharomyces pombe (table 1). Note that although
they have roughly the same number of genes, evolu-
tionary they are as far from each other as for instance
from human. Despite similar genome size there are
obvious differences in genome organization (Goffeau
et al. 1996;Wood et al. 2002). The intergenic sequences
in S. pombe are on average larger than in S. cerevisiae,
and about 43% of all genes in S. pombe contain introns
compared to only 5% in S. cerevisiae. Introns allow
alternative splicing; therefore the complexity of the
proteome of S. pombe might be higher than that of
S. cerevisiae. Sequence data in combination with
functional information, based on genome annotation
or expression data, allows identifying conserved
sequences in putative promoter regions which might
be potential binding sites for transcription factors.
A striking result of the cell cycle study in S. pombe is to
find that the presence or absence of consensus binding
Phil. Trans. R. Soc. B (2006)
sites in the promoter regions corresponds to the cyclic
expression pattern of the genes (Rustici et al. 2004).
Genes with a peak expression at similar cell cycle stage
share similar sets of consensus binding sites. Although
facing large error margins, we can get a first impression
of the complexity of the gene expression in different
organisms by comparing their repertoire and location of
consensus binding sites for transcription factors.

However, the computational identification of con-
sensus binding sites does not automatically lead to the
identification of the binding factors.

(b) Topological network models

Large screens using chromatin immunoprecipitation in
conjunction with genomic microarrays (ChIP-on-chip
technology) have been used to identify the genomic
localization of transcription factors (Lee et al. 2002).
Once we know the transcription factor binding sites, we
can describe the gene transcription regulatory networks
using graph-based methods. Such topological
models—graphs describing the connections between
the parts—have been used for various biological data
sets ranging from protein–protein interactions net-
works to coexpression networks. In general, data sets
used for topological models have one important
limitation. While hundreds of organisms have been
fully sequenced and many genes are identified relatively
reliably, the data sets underlying most topological
models are much less complete. For example, only a
fraction of all protein–protein interactions in yeast have
been tested, for various reasons: one needs to perform
6000!6000/2 yeast-2-hybrid experiments plus con-
trols, and not all proteins are likely to be expressed as
desired. This problem is made even worse by the nature
of the data; most large-scale experiments show high
noise levels. And whereas the genome sequence is
independent of particular growth conditions and might
even be conserved in fossils, data like protein–protein
interactions and transcription factor localizations are
condition-dependent. Therefore, we have to work with
incomplete data for a limited set of conditions.

(i) Comparison of yeast networks
In the following, we would like to illustrate the
knowledge we can obtain from of studying the network
topology by giving an example of how to use the
topology to compare and combine information from
various high-throughput data sets for gene networks in
S. cerevisiae.

If we want to understand the gene regulation
network, all types of information have to be integrated
and analysed in combination. In particular, we combine
three different data sets using a graph-based approach,
two are based on experimental data: chromatin
immunoprecipitation experiments for transcription
factors (ChIP network; Lee et al. 2002) and microarray
experiments on single gene deletion mutants (mutant
network; Hughes et al. 2000); the third is based on the
computational analysis of transcription factor binding
sites (in-silico network; Pilpel et al. 2001). In the graph
representation of the data, the nodes correspond to
genes and an arc connects two genes, if the first gene has
a particular (asymmetric) relationship to the second
one (Schlitt & Brazma 2002). Thus in the ChIP
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Figure 4. Description of phage l using the elements of FSLM. Phage l is a bacteriovirus that can infect Escherichia coli cells
(Ptashne 1992). Depending on the growth conditions it either integrates into the host genome and stays dormant (lysogenic), or
causes production of new phage particles and lysis of the host cell, to allow infecting neighbouring cells. The decision for one or
the other alternative (lysis versus lysogeny) is made by the so-called lambda switch, which is based on competitive binding of two
transcription factors to overlapping regions in the genome of phage l. If the repressor is bound, the phage stays dormant, if the
repressor is degraded and the activator can bind, new virus particles are being made. In the FSLM model for phage l the
substance generators highlighted in grey produce substances, which bind to binding sites on the left (the connections have been
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terminator sites tL1, tL2, tR1 and tR2. The substance generators connected to them are only active if n is bound to the respective
binding sites. The substance ‘Struc’ represents the structural proteins of the phage particles. The shaded grey boxes indicate the
number of different states that the corresponding control functions can have. A simulation of phage l using this model leads to
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negative feedback loop involving the binding site OR3. In the lytic mode, cI and cII are not produced, but the other substance
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The inset describes the effect of the stress response of the host cell using elements not yet implemented in the FSLM simulator.
For a more detailed description of the model see Brazma & Schlitt (2003). Summary of l gene functions: cI, l repressor; cII, cIII,
establishment of lysogeny; N, Q, anti-terminators for early and delayed early genes; O, P, origin recognition in DNA replication;
int, integration and excision of phage DNA; xis, excision of phage DNA; R, S, host lysis; OR, operator sites; P, promoters; T,
terminators (see Ptashne 1992).
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Table 2. Comparison of three different networks for
S. cerevisiae.

ChIP
network

in-silico
network

mutant
network

source genes 106 38 170
genes 2363 5581 4046
connections 4358 23 446 12 205
size of largest component 2403 5583 4095
size of second largest

component
11 — 2

Table 1. Comparison of some genomic features of Schizo-
saccharomyces pombe and Saccharomyces cerevisiae.

S. pombe S. cerevisiae

genome size w14 Mb w13 Mb
number of chromosomes 3 16
number of predicted genes w4900 w5800
number of predicted introns w4700 w300
proportion of protein-coding

sequences of genome
60% 70%
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network, an arc A/Bmeans that the gene A codes for a
transcription factor that binds to the promoter of gene
B, in the in-silico network it means that the predicted
binding site of A has amatch in the promoter of B, while
in the mutant network it means that the mutation of A
will change the expression level of B (Schlitt et al. 2003).

We call genes with outgoing connections source genes;
for each source gene we define the target set as the set of
all genes with incoming connections from that
particular source gene. These networks differ in size,
the in-silico network has the smallest number of source
genes, but the ChIP network has the smallest number
of target genes (table 2). This discrepancy might be due
to over prediction of binding sites in case of the in-silico
network, but it is likely that in the ChIP network not all
potential binding sites are identified, because only a
fraction of sites might have been occupied under the
particular experimental conditions applied. Note that
all three networks depend on various thresholds applied
to the continuous experimental data. Since the criteria
used to choose these thresholds are rather subjective,
only trends in the properties of these networks are
meaningful, rather than the exact sizes. All three
networks consist of one major connected component;
almost all genes are part of it. The degree distributions
for the mutant network and the ChIP network resemble
roughly a power-law, whereas in the in-silico network
nodes with a very small number of connections are
underrepresented (figure 5).

Comparison of yeast networks
The intersection of the in-silico network with the
mutant network and the ChIP network is sparse, 34
connections can be found in all three of them. In
protein–protein interaction networks, too, a relatively
small number of interactions are reported by several
experiments, and these interactions are more reliable
than most of the data (von Mering et al. 2002). The
same is true for the networks examined here: the genes
Phil. Trans. R. Soc. B (2006)
connected in all three networks are functionally related.
Among the 40 genes shared by all networks is STE12,
which encodes a transcription factor and is part of the
mating response, as are the five genes connected to it
(figure 6). A guilt-by-association approach based on
the network connectivity can, therefore, be used to
identify possible biological functions for uncharacter-
ized genes. See for example connections from SWI5, a
transcription factor that controls cell cycle-specific
transcription of SIC1 and YKL185W (ASH1); all
genes connected to SWI5 are annotated to be involved
in cell growth and maintenance (SIC1, CHS1, CCW6
(PIR1), YKL185W (ASH1)), or lack a biological
process annotation in SGD (YGR086C (PIL1),
YLR049C, YDR055W (PST1), YLR194C,
YPL158C). Therefore, we can hypothesize that the
latter genes are also involved in maintenance/cell
growth related processes under the control of SWI5p.
This hypothesis is in agreement with several previous
publications (Spellman et al. 1998; Jung & Levin 1999;
Doolin et al. 2001).

Neighbourhood comparison
To combine these networks in a meaningful way we use
statistical methods to compare target sets of all source
genes (Schlitt et al. 2003). We ask for which source
genes studied by two different techniques the target sets
overlap more than expected by chance (figure 7). The
target sets in the ChIP network match well with the
target sets in the in-silico network for 14 out of 26
transcription factors examined by both techniques
(figure 8). The effect of 2 (out of 7) transcription
factor deletions on the expression pattern is in
correspondence with their genomic localization
according to the in-silico network—similar results
were obtained by Palin et al. (2002). The ChIP network
and the mutant network have 14 transcription factors
in common. Only the genomic localization (ChIP
network) of the 6 transcription factors MBP1p,
ARG80p, YAP1p, SWI5p, STE12p and GCN4p
corresponds well with the changes in gene expression
(mutant network) observed in the respective deletion
mutants (figure 8).

Indirect effects
Note that we do not expect perfect coincidence among
the three networks. For instance, the mutant network
can be expected to have additional relationships,
because regulatory or signalling cascades link some
genes. The physical interaction networks, on the other
hand, do not necessarily tell us anything about the
effect of connected genes, except that there is evidence
that the first gene encodes a transcription factor which
binds to the putative promoter of the second gene.

As described above for some transcription factors we
found a correspondence between the localization of a
transcription factor and the set of genes affected by its
deletion. We analysed how often the effects seen in the
mutant network can be explained by indirect connec-
tions via one additional factor in the ChIP network
(figure 9a). Some subnetworks resemble the single
input motif (figure 9b) described by Lee et al. (2002)
and Milo et al. (2002), with additional connections
from the mutant network. For instance, some of effects
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of the deletion ofGLN3, involved in nitrogen catabolite
repression (NCR)-sensitive transcription regulation,
may be due to indirect effects via GCN4 in the Dgln3
mutant (figure 9c); and the effects of deleting RTG1 on
HIS4, ADE3, ADE4, ADE13 and ADE17 may be due
to indirect effects via BAS1 (figure 9d ). In a similar
fashion, the effect of the YAP1 deletion on ENB1
(YOL158C) may be due to indirect effects via YAP6 in
Phil. Trans. R. Soc. B (2006)
the Dyap1 mutant (figure 9e). At the same time the
deletion of YAP1 may influence the expression level of
FET4 via the transcription factors YAP6, ROX1, or
both (figure 9e). However, these regulatory interactions
may be intriguingly interlinked, as is the case for the cell
cycle regulators MBP1, SWI4, SWI6 and NDD1
(figure 9f ). This subnetwork seems to consist of a
combination of several single input motifs.



Figure 7. Illustration of the target set comparison. (a) In the ChIP network transcription factors are connected to their target
genes (regulation set); in themutant network the deleted genes are linked to all genes with differential expression in this particular
mutant background (effectual set). (b) Some transcription factors are present in both networks (ChIP and mutant network); we
can, therefore, compare the genomic localization (regulation set) with the expression changes in the mutant cell (effectual set).
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These examples illustrate that graph representation is
a useful tool to examine general properties of large
functional genomics data sets. Not only can it be used to
examine the properties of single data sets, for example in
the form of protein–protein interaction networks, but it
is also useful to compare and integrate various large-
scale data sets. It can be used to distinguish between
noise and signals in these data sets, and it can also be
used to derive functional predictions, which can be
evaluated by wet lab experiments (Schlitt et al. 2003;
Lee et al. 2004; Kemmeren et al. 2005).
source genes shared by several networks, in brackets number
of source genes with significantly similar target sets in the
different networks (*SWI5, YAP1, MBP1, ARG80, **GCN4,
STE12, ***ABF1, BAS1, GAL4, HAP4, LEU3, MBP1,
MCM1, RAP1, REB1, SWI6, YAP1, ZAP1). (b) Number of
connections shared by the networks.
(c) Control logics: analysing the rules behind

the network

Once we know the topology of the network, the next
step is to address the rules of interaction between the
different elements in the network. For instance, if a
promoter consists of only one binding site for a
transcription factor, we need to know whether this
factor acts as an activator or as a repressor. If more than
one transcription factor binds to a promoter, we need
to know not only what each factor does, but also how
these factors interact (figure 10). In FSLM the control
logics corresponds to the rules expressed by the control
functions. Biological studies show that at least some
promoters consist of elements comprising Boolean
behaviour (Louis & Becskei 2002). The group of
Davidson analysed the Endo16 promoter of sea urchin
in detail and were able to express the interactions
between various functional elements in the promoter by
a set of rules which allow predicting the gene activity.
A large part of those rules are Boolean functions, such
as AND, OR, XOR, NOT (Yuh et al. 1998). Later the
same group extended their work to describe the
Phil. Trans. R. Soc. B (2006)
interactions between a large set of genes in sea urchin
(Davidson et al. 2002).

In a different approach, instead of using discrete
states to represent the gene activity and Boolean
functions to describe the logics, we could use continu-
ous values g to represent the gene activity, andweightsw
to represent the interaction between genes. Thus, the
activity of gene i canbe calculated as theweighted sumof
the activity of all n genes

gi Z
Xn

j

wijgj :

There are situations where neither Boolean rules nor
linear functions are powerful enough to express the
control logics: transcription factors might bind compe-
titively; if one factor is bound the other one is excluded,
as is the case for example in the lambda switch between
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lysis and lysogeny. In other cases, transcription factors
have to form homodimers or heterodimers to be fully
functional. It might be that factors have to bind
sequentially or act synergistically. In these situations it
might be necessary to use mathematical functions that
allowmore flexibility than Boolean functions to express
the control functions correctly. It remains an open
question what the minimum repertoire of logic func-
tions is to describe all these processes.

A powerful approach to test our understanding gene
regulatory networks is to modify existing networks or to
build new networks from scratch in an approach called
synthetic biology. Several small systems have been
designed and tested in vivo in Escherichia coli, yeast
and other organisms, see for example work by Becskei
& Serrano (2000), Gardner et al. (2000), Kobayashi
et al. (2004), and the reviews by Ball (2004) and Kaern
et al. (2003).

Once we know the parts list of a network, its
topology and the control logics, we can try to expand
the model to capture dynamic changes during time.
(d) Dynamics: how does it all work in real time?

(i) Dynamic models
Various dynamic models for gene regulatory networks
have been proposed and studied. In general, these
models fall into three categories: Boolean network-
based models (Liang et al. 1998; Szallasi & Liang 1998;
Akutsu et al. 1999), dynamic systems described
by differential or difference equations (Chen et al.
1999; D’Haeseleer et al. 1999; Holter et al. 2001; Tyson
et al. 2002) and hybrid models (Thieffry et al. 1993;
Mendoza et al. 1999; Akutsu et al. 2000; Smolen et al.
2000b). They can be subclassified using a classification
suggested by Greller & Somogyi (2002):
Phil. T
Dichotomies for framing our thinking on how to best

represent a particular biological network problem

include the following distinguishing attributes: quan-

titative versus qualitative measurements; logical versus

ordinal variables (e.g. Boolean versus abundances);

deterministic versus probabilistic state transitions (e.g.

differential equations versus hidden Markov); deter-

ministic versus statistical overall system description

(e.g. vector field versus Bayesian belief network

probability distributions); continuous versus discrete

state (e.g. continuous intensities or concentrations

versus low, medium and high); nonlinear versus linear

elementary interactions and state update rules (e.g.

multiplicatives, sigmoids or non-monitonics versus

linear ramps); high-dimensional versus low-dimen-

sional (e.g. [100 s of variables versus /100

variables); stochasticity present and profound versus

absent or present as nuisance noise (e.g. probabilistic

state transitions versus small amplitude errors);

measurement error substantially corrupting and obfus-

cating versus negligible distortion.
Each of these models has its advantages and
drawbacks, we will discuss some of them briefly here.
(ii) Boolean networks—state spaces and attractors
Already at the end of the 1960s Stuart Kauffman
studied Boolean networks as a model for gene
regulatory networks (Kauffman 1969). Boolean
rans. R. Soc. B (2006)
networks are based on the assumption that binary
on/off switches functioning in discrete time-steps can
describe important aspects of gene regulation. In
synchronous Boolean network models, one of the
simplest dynamic models, all genes switch states
simultaneously (figure 11). We can introduce the
concept of the state of the network defined as an
n-tuple of 0s and 1s describing which genes in the
network are (or are not) expressed at a particular
moment (figure 11b). As time progresses, the network
navigates through the ‘state space’, switching from one
state to another, as shown in figure 11d. For a network
of n genes, in total there are 2n different states. We can
follow the succession of states with time and thus
identify attractors: these are states or series of states
that once reached will not be left anymore. The small
example network in figure 11 has two attractors: one
attractor is a single state (0, 0, 1), and the second
attractor consists of two alternating states (1, 0, 1) and
(0, 1, 0). Kauffman (2002) hypothesized that attrac-
tors correspond to particular cell types, and based on
different assumptions about the network (e.g. the
average number of connections per gene and particu-
lar properties of the control logic) estimated the
number of cell types which correspond well to the
observations.

Boolean models offer only a rather crude represen-
tation of real world gene networks. For example, even if
we generalize these models to more than two discrete
states they cannot describe continuous changes in the
cell.
(iii) Difference and differential equation models—dilemma
between oversimplification and sensitivity to many
parameters
Continuous changes can be described using difference
equations or differential equations (Chen et al. 1999;
Hatzimanikatis 1999; von Dassow et al. 2000; Maki
et al. 2001; Wahde & Hertz 2001).

The basic difference equation model is of the form

XiðtCDtÞZ
X

j

WijXjðtÞ;

where Xi(tCDt) is the expression level of gene i at time
tCDt, and Wij indicates how much the level of gene j
influences gene i. For each gene, one can add extra
terms indicating the influence of additional substances,
for instance drugs, and a constant bias term to capture
the activation level of the gene in the absence of any
other regulatory inputs. The formula then becomes

XiðtCDtÞZ
X

j

WijXjðtÞCKiDiðtÞCCi CTi ;

where Di(t) is the concentration of drug i at time t, Ki is
the influence of the drug i on gene i,Ci is a constant bias
factor for each gene and Ti indicates the difference in
bias between different tissues (D’Haeseleer et al. 1999).

Differential equation models are similar to difference
equation models, but follow concentration changes
continuously, modelling the time-difference between
two time-steps in infinitely small increases.

Dynamic networks models have been reviewed
intensively (Smolen et al. 2000a; Brazhnik et al. 2002;
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de Jong 2002; van Someren et al. 2002). One of the
largest transcription network models using differential
equations we are aware of is a model for early
development of Drosophila by von Dassow et al.
(2000) (5 genes, 13 differential equations, 48
parameters).

(iv) Reverse engineering
The methods chosen for reverse engineering depend
crucially on the kind of modelling technique used.
Dynamic models contain many parameters, and
detailed experimental data is required to work out the
parameters. Quantitative models are obviously more
demanding that qualitative models. There are
approaches to perform reverse engineering for dynamic
models. Tegner et al. (2003) proposed an approach for
the reverse engineering of dynamic gene networks
based on integrating genetic perturbations. They
identified ‘[.] the network topology by analysing the
steady-state changes in gene expression resulting from
the systematic perturbation of a particular node in the
network.’ (Tegner et al. 2003). However, they only
apply their approach to simulated data and to a
comparatively small biological system consisting of
only five genes.

(v) Hybrid models
Models based on differential equations cannot easily
describe the discrete aspects of gene regulation, such as
the binding of a transcription factor to the DNA, which
is essentially an on/off event. It is not straightforward to
describe non-additive logics in gene regulation (for
instance, competitive events).

Models trying to combine the discrete and continu-
ous components have therefore been proposed, for
instance (Mendoza et al. 1999; Akutsu et al. 2000;
Smolen et al. 2000b). Thieffry & Thomas (1998)
describe a combined model for the qualitative descrip-
tion of gene regulatory networks (Thomas 1991). They
introduce a notion of gene state and image, the last
effectively representing the substance produced by the
respective gene. There is a time delay between the
Phil. Trans. R. Soc. B (2006)
change of the gene state and the change of the image
state. By introducing several levels of gene activity and
thresholds for switching the gene states they go beyond
binary models, but they do not make continuous
changes possible.

The FSLM we introduced in the beginning
combines advantages of Boolean networks such as
simplicity and low-computational cost, with the
advantages of continuous models, such as continuous
representation of concentrations and time in a simple
and structured way.
3. OUTLOOK
How far are we from being able to build realistic cell
models? As the result of genome projects we are now
building gene network parts lists on genome scale,
though we do not know howmany important categories
in these parts lists are missing (e.g. different types of
micro RNAs). Mechanisms like RNA interference,
regulated degradation of mRNAs and proteins, chemi-
cal modifications of key molecules and others might
play a larger role than anticipated in current models,
other processes might still be unknown. High-through-
put technologies are providing us with some
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information on genome scale for model organisms such

as yeasts. Then again, important processes, such as

spatial effects, are still poorly understood. But this is

where the impact of high-throughput technologies

largely stops, though there have been attempts to use

high-throughput datasets to study the combinatorial

control logics (Wang et al. 2005). As far as dynamic

models are concerned the existing models typically

cover only few genes. The question ‘Is real time

simulation on genome scale possible at all?’ is still

open. Probably the answer largely depends on the

modularity properties of the real world gene networks,

and their robustness (stability against changes of

various network parameters and initial conditions). If

the networks are modular, it might be possible to build

genome scale networks as sets of smaller modules. If

the exact values of parameters and molecular concen-

trations are not crucial, it might be possible to simulate

the cell in terms of some more abstract states than

substance concentrations. In any case, finding the right

language for describing the models is a prerequisite for

success.

The project is funded by the European Commission by the
TEMBLOR and DIAMONDS grants under the RTD
programme ‘Quality of Life and Management of Living
Resources’. We would like to thank Jurg Bahler, Katja
Kivinen, Gabriela Rustici, and Jaak Vilo for their contri-
butions. T.S. is a British Antarctic Survey/European Bioinfor-
matics Institute/St Edmund’s College Research Fellow.
REFERENCES
Akutsu, T., Miyano, S. & Kuhara, S. 1999 Identification of

genetic networks from a small number of gene expression

patterns under the Boolean network model. Pac. Symp.

Biocomput., 17–28.

Akutsu, T., Miyano, S. & Kuhara, S. 2000 Algorithms for

inferring qualitative models of biological networks. Pac.

Symp. Biocomput., 293–304.

Ball, P. 2004 Synthetic biology: starting from scratch. Nature

431, 624–626. (doi:10.1038/431624a)
Phil. Trans. R. Soc. B (2006)
Becskei, A. & Serrano, L. 2000 Engineering stability in gene

networks by autoregulation. Nature 405, 590–593.

(doi:10.1038/35014651)

Brazhnik, P., de la Fuente, A. & Mendes, P. 2002 Gene

networks: how to put the function in genomics. Trends

Biotechnol. 20, 467–472. (doi:10.1016/S0167-7799(02)

02053-X)

Brazma, A. & Schlitt, T. 2003 Reverse engineering of gene

regulatory networks: a finite state linear model. Genome

Biol. 4, P5. (doi:10.1186/gb-2003-4-6-p5)

Chen, T., He, H. L. & Church, G. M. 1999 Modeling gene

expression with differential equations. Pac. Symp. Biocom-

put., 29–40.

Davidson, E. H. et al. 2002 A genomic regulatory network for

development. Science 295, 1669–1678. (doi:10.1126/

science.1069883)

de Jong, H. 2002 Modeling and simulation of genetic

regulatory systems: a literature review. J. Comput. Biol. 9,

67–103. (doi:10.1089/10665270252833208)

de Lichtenberg, U., Jensen, L. J., Brunak, S. & Bork, P. 2005

Dynamic complex formation during the yeast cell cycle.

Science 307, 724–727. (doi:10.1126/science.1105103)

D’Haeseleer, P., Wen, X., Fuhrman, S. & Somogyi, R. 1999

Linear modeling of mRNA expression levels during

CNS development and injury. Pac. Symp. Biocomput.,

41–52.

Doolin, M. T., Johnson, A. L., Johnston, L. H. & Butler, G.

2001Overlapping and distinct roles of the duplicated yeast

transcription factors Ace2p and Swi5p.Mol. Microbiol. 40,

422–432. (doi:10.1046/j.1365-2958.2001.02388.x)

Gardner, T. S., Cantor, C. R. & Collins, J. J. 2000

Construction of a genetic toggle switch in Escherichia

coli. Nature 403, 339–342. (doi:10.1038/35002131)

Goffeau, A. et al. 1996 Life with 6000 genes. Science 274,

563–567. (doi:10.1126/science.274.5287.546)

Greller, L. D. & Somogyi, R. 2002 Reverse engineers map the

molecular switching yards. Trends Biotechnol. 20, 445–447.

(doi:10.1016/S0167-7799(02)02051-6)

Hatzimanikatis, V. 1999 Nonlinear metabolic control anal-

ysis. Metab. Eng. 1, 75–87. (doi:10.1006/mben.1998.

0108)

Ho, Y., Mason, S., Kobayashi, R., Hoekstra, M. & Andrews,

B. 1997 Role of the casein kinase I isoform, Hrr25, and the

cell cycle-regulatory transcription factor, SBF, in the

http://dx.doi.org/doi:10.1038/431624a
http://dx.doi.org/doi:10.1038/35014651
http://dx.doi.org/doi:10.1016/S0167-7799(02)02053-X
http://dx.doi.org/doi:10.1016/S0167-7799(02)02053-X
http://dx.doi.org/doi:10.1186/gb-2003-4-6-p5
http://dx.doi.org/doi:10.1126/science.1069883
http://dx.doi.org/doi:10.1126/science.1069883
http://dx.doi.org/doi:10.1089/10665270252833208
http://dx.doi.org/doi:10.1126/science.1105103
http://dx.doi.org/doi:10.1046/j.1365-2958.2001.02388.x
http://dx.doi.org/doi:10.1038/35002131
http://dx.doi.org/doi:10.1126/science.274.5287.546
http://dx.doi.org/doi:10.1016/S0167-7799(02)02051-6
http://dx.doi.org/doi:10.1006/mben.1998.0108
http://dx.doi.org/doi:10.1006/mben.1998.0108


494 T. Schlitt & A. Brazma Network modelling in molecular biology
transcriptional response to DNA damage in Saccharomyces

cerevisiae. Proc. Natl Acad. Sci. USA 94, 581–586. (doi:10.

1073/pnas.94.2.581)

Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V. &

Banavar, J. R. 2001 Dynamic modeling of gene expression

data. Proc. Natl Acad. Sci. USA 98, 1693–1698. (doi:10.

1073/pnas.98.4.1693)

Hughes, T. R. et al. 2000 Functional discovery via a

compendium of expression profiles. Cell 102, 109–126.

(doi:10.1016/S0092-8674(00)00015-5)

Jung, U. S. & Levin, D. E. 1999 Genome-wide analysis of

gene expression regulated by the yeast cell wall integrity

signalling pathway. Mol. Microbiol. 34, 1049–1057.

(doi:10.1046/j.1365-2958.1999.01667.x)

Kaern, M., Blake, W. J. & Collins, J. J. 2003 The

engineering of gene regulatory networks. Annu. Rev.
Biomed. Eng. 5, 179–206. (doi:10.1146/annurev.bioeng.

5.040202.121553)

Kauffman, S. 1969 Homeostasis and differentiation in

random genetic control networks. Nature 224, 177–178.
Kauffman, S. A. 2002 Investigations. USA: Oxford University

Press Inc.

Kemmeren, P., Kockelkorn, T. T., Bijma, T., Donders, R. &

Holstege, F. C. 2005 Predicting gene function through

systematic analysis and quality assessment of high-

throughput data. Bioinformatics 21, 1644–1652. (doi:10.
1093/bioinformatics/bti103)

Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner,

T. S., Cantor, C. R. & Collins, J. J. 2004 Programmable

cells: interfacing natural and engineered gene networks.

Proc. Natl Acad. Sci. USA 101, 8414–8419. (doi:10.1073/

pnas.0402940101)

Lee, T. I. et al. 2002 Transcriptional regulatory networks in

Saccharomyces cerevisiae. Science 298, 799–804. (doi:10.

1126/science.1075090)

Lee, I., Date, S. V., Adai, A. T. & Marcotte, E. M. 2004

A probabilistic functional network of yeast genes. Science
306, 1555–1558. (doi:10.1126/science.1099511)

Liang, S., Fuhrman, S. & Somogyi, R. 1998 Reveal, a general

reverse engineering algorithm for inference of genetic

network architectures. Pac. Symp. Biocomput., 18–29.
Louis, M. & Becskei, A. 2002 Binary and graded responses in

gene networks. Sci. STKE 2002, E33.

Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S. &

Eguchi, Y. 2001Development of a system for the inference

of large scale genetic networks. Pac. Symp. Biocomput.,

446–458.

Mendoza, L., Thieffry, D. & Alvarez-Buylla, E. R. 1999

Genetic control of flower morphogenesis in Arabidopsis
thaliana: a logical analysis. Bioinformatics 15, 593–606.

(doi:10.1093/bioinformatics/15.7.593)

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii,

D. & Alon, U. 2002 Network motifs: simple building

blocks of complex networks. Science 298, 824–827.

(doi:10.1126/science.298.5594.824)

Palin, K., Ukkonen, E., Brazma, A. & Vilo, J. 2002

Correlating gene promoters and expression in gene

disruption experiments. Bioinformatics 18, S172–S180.
Pilpel, Y., Sudarsanam, P. & Church, G. M. 2001 Identifying

regulatory networks by combinatorial analysis of promoter

elements. Nat. Genet. 29, 153–159. (doi:10.1038/ng724)
Ptashne, M. 1992 A genetic switch—phage lambda and higher

organisms. Oxford: Cell Press & Blackwell Science.

Rustici, G. et al. 2004 Periodic gene expression program of

the fission yeast cell cycle. Nat. Genet. 36, 809–817.

(doi:10.1038/ng1377)

Schlitt, T. & Brazma, A. 2002 Learning about gene regulatory

networks from gene deletion experiments. Comp. Funct.

Genomics 3, 499–503. (doi:10.1002/cfg.220)
Phil. Trans. R. Soc. B (2006)
Schlitt, T. & Brazma, A. 2005 Modelling gene networks
at different organisational levels. FEBS Lett. 579,
1859–1866. (doi:10.1016/j.febslet.2005.01.073)

Schlitt, T., Palin, K., Rung, J., Dietmann, S., Lappe, M.,
Ukkonen, E. & Brazma, A. 2003 From gene networks to
gene function. Genome Res. 13, 2568–2576. (doi:10.1101/
gr.1111403)

Smolen, P., Baxter, D. A. & Byrne, J. H. 2000aMathematical
modeling of gene networks. Neuron 26, 567–580. (doi:10.
1016/S0896-6273(00)81194-0)

Smolen, P., Baxter, D. A. & Byrne, J. H. 2000b Modeling
transcriptional control in gene networks–methods, recent
results, and future directions. Bull. Math. Biol. 62,
247–292. (doi:10.1006/bulm.1999.0155)

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R.,
Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. &
Futcher, B. 1998 Comprehensive identification of
cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol. Biol. Cell 9,
3273–3297.

Szallasi, Z. & Liang, S. 1998 Modeling the normal and
neoplastic cell cycle with ‘realistic Boolean genetic
networks’: their application for understanding carcino-
genesis and assessing therapeutic strategies. Pac. Symp.
Biocomput., 66–76.

Tegner, J., Yeung, M. K., Hasty, J. & Collins, J. J. 2003
Reverse engineering gene networks: integrating genetic
perturbations with dynamical modeling. Proc. Natl
Acad. Sci. USA 100, 5944–5949. (doi:10.1073/pnas.
0933416100)

Thieffry, D. & Thomas, R. 1998 Qualitative analysis of gene
networks. Pac. Symp. Biocomput., 77–88.

Thieffry, D., Colet, M. & Thomas, R. 1993 Formalization of
regulatory networks: a logical method and its automation.
Math. Model Sci. Comput. 55, 144–151.

Thomas, R. 1991 Regulatory networks seen as asynchronous
automata: a logical description. J. Theor. Biol. 153, 1–23.

Tyson, J. J. & Novak, B. 2001 Regulation of the eukaryotic
cell cycle: molecular antagonism, hysteresis, and irrevers-
ible transitions. J. Theor. Biol. 210, 249–263. (doi:10.
1006/jtbi.2001.2293)

Tyson, J. J., Csikasz-Nagy, A. & Novak, B. 2002 The
dynamics of cell cycle regulation. Bioessays 24,
1095–1109. (doi:10.1002/bies.10191)

van Someren, E. P., Wessels, L. F., Backer, E. & Reinders,
M. J. 2002 Genetic network modeling. Pharmacogenomics
3, 507–525. (doi:10.1517/14622416.3.4.507)

von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M.
2000 The segment polarity network is a robust develop-
mental module. Nature 406, 188–192. (doi:10.1038/
35018085)

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver,
S. G., Fields, S. & Bork, P. 2002 Comparative assessment
of large-scale data sets of protein–protein interactions.
Nature 417, 399–403. (doi:10.1038/nature750)

Wahde, M. & Hertz, J. 2001 Modeling genetic regulatory
dynamics in neural development. J. Comput. Biol. 8,
429–442. (doi:10.1089/106652701752236223)

Wang, W., Cherry, J. M., Nochomovitz, Y., Jolly, E., Botstein,
D. & Li, H. 2005 Inference of combinatorial regulation in
yeast transcriptional networks: a case study of sporulation.
Proc. Natl Acad. Sci. USA 102, 1998–2003. (doi:10.1073/
pnas.0405537102)

Wood, V. et al. 2002 The genome sequence of Schizosacchar-
omyces pombe. Nature 415, 871–880. (doi:10.1038/
nature724)

Yuh, C. H., Bolouri, H. & Davidson, E. H. 1998 Genomic
cis-regulatory logic: experimental and computational
analysis of a sea urchin gene. Science 279, 1896–1902.
(doi:10.1126/science.279.5358.1896)

http://dx.doi.org/doi:10.1073/pnas.94.2.581
http://dx.doi.org/doi:10.1073/pnas.94.2.581
http://dx.doi.org/doi:10.1073/pnas.98.4.1693
http://dx.doi.org/doi:10.1073/pnas.98.4.1693
http://dx.doi.org/doi:10.1016/S0092-8674(00)00015-5
http://dx.doi.org/doi:10.1046/j.1365-2958.1999.01667.x
http://dx.doi.org/doi:10.1146/annurev.bioeng.5.040202.121553
http://dx.doi.org/doi:10.1146/annurev.bioeng.5.040202.121553
http://dx.doi.org/doi:10.1093/bioinformatics/bti103
http://dx.doi.org/doi:10.1093/bioinformatics/bti103
http://dx.doi.org/doi:10.1073/pnas.0402940101
http://dx.doi.org/doi:10.1073/pnas.0402940101
http://dx.doi.org/doi:10.1126/science.1075090
http://dx.doi.org/doi:10.1126/science.1075090
http://dx.doi.org/doi:10.1126/science.1099511
http://dx.doi.org/doi:10.1093/bioinformatics/15.7.593
http://dx.doi.org/doi:10.1126/science.298.5594.824
http://dx.doi.org/doi:10.1038/ng724
http://dx.doi.org/doi:10.1038/ng1377
http://dx.doi.org/doi:10.1002/cfg.220
http://dx.doi.org/doi:10.1016/j.febslet.2005.01.073
http://dx.doi.org/doi:10.1101/gr.1111403
http://dx.doi.org/doi:10.1101/gr.1111403
http://dx.doi.org/doi:10.1016/S0896-6273(00)81194-0
http://dx.doi.org/doi:10.1016/S0896-6273(00)81194-0
http://dx.doi.org/doi:10.1006/bulm.1999.0155
http://dx.doi.org/doi:10.1073/pnas.0933416100
http://dx.doi.org/doi:10.1073/pnas.0933416100
http://dx.doi.org/doi:10.1006/jtbi.2001.2293
http://dx.doi.org/doi:10.1006/jtbi.2001.2293
http://dx.doi.org/doi:10.1002/bies.10191
http://dx.doi.org/doi:10.1517/14622416.3.4.507
http://dx.doi.org/doi:10.1038/35018085
http://dx.doi.org/doi:10.1038/35018085
http://dx.doi.org/doi:10.1038/nature750
http://dx.doi.org/doi:10.1089/106652701752236223
http://dx.doi.org/doi:10.1073/pnas.0405537102
http://dx.doi.org/doi:10.1073/pnas.0405537102
http://dx.doi.org/doi:10.1038/nature724
http://dx.doi.org/doi:10.1038/nature724
http://dx.doi.org/doi:10.1126/science.279.5358.1896

	Modelling in molecular biology: describing transcription regulatory networks at different scales
	Introduction
	Problem statement
	Modelling molecular biology
	Simulation and reverse engineering of gene networks
	Dilemma of lacking data in times of high-throughput biology
	Finite state linear model
	Definition of the FSLM
	The binary version of the FSLM
	Dynamics of the FSLM
	What do we need to describe a biological system with FSLM?

	Classification of existing modelling approaches-four levels of hierarchical description
	Parts lists
	Topological network models
	Comparison of yeast networks
	Control logics: analysing the rules behind the network
	Dynamics: how does it all work in real time?
	Dynamic models
	Boolean networks-state spaces and attractors
	Difference and differential equation models-dilemma between oversimplification and sensitivity to many parameters
	Reverse engineering
	Hybrid models

	Outlook
	The project is funded by the European Commission by the TEMBLOR and DIAMONDS grants under the RTD programme ‘Quality of Life and Management of Living Resources’. We would like to thank Jurg Bahler, Katja Kivinen, Gabriela Rustici, and Jaak Vilo for the...
	References


