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Introduction

Ecological analyses are subject to
diverse, subtle, and strong biases when
they are used to make inferences about
individual effect parameters.'-" But not
all risk factor effects are manifest directly
upon individuals. Infectious-disease risk
factor effects are commonly manifest
upon or during a contact between individu-
als. The infectious status of the person
contacted and, indirectly, the risk factors
in the person contacted are thus impor-
tant determinants of the rates at which
individuals with any particular set of risk
factors get infected. This makes the
outcome of exposure in one individual
dependent upon the outcome of exposure
in others. It also makes the population
dynamics of infectious disease highly
nonlinear.

We argue that the analytic frame-
work used by researchers who have
discussed the ecological fallacy"-13 is inap-
propriate in the case of infectious diseases
because that framework implies dynamic
linearity of disease development in a
population. Dynamic linearity occurs when
the rate of disease development in one
group is independent of how many indi-
viduals there are in other groups. When
the assumption of dynamic linearity does
not hold, statistics estimated using models
that assume dynamic linearity do not
accurately reflect the effect of exposures
at either the individual or the population
level. More specifically, when nonlinear
population processes generate depen-
dence of outcomes between individuals,
neither regression coefficients from eco-

logical studies nor risk differences from
individual studies reflect how much change
in disease levels can be expected from a

given change in exposure levels.

Ecological- and Individual-
Level Data

Let us first consider the usual form of
data gathered from individuals that can be
aggregated into ecological data. Such data
specify the exposures and diseases of
individuals. Usually individuals are repre-
sented by rows of data, and their exposure
and disease variables are represented by
columns. One of the individual variables
may be the study site in which the subject
resides.

For our discussion, we consider only
a single dichotomous exposure variable
and a single dichotomous outcome vari-
able. That eliminates the possibility of
nonlinear relationships between quantita-
tive exposure levels and disease frequency.
It also eliminates the need to specify
multivariate model forms such as additive
or multiplicative models. When variables
are continuous rather than dichotomous
and when different forms of multivariate
relationships are specified, a whole new
set of issues arises in the relationships
between ecological- and individual-level
analyses, which we wish to avoid.

We use k to specify the site in which
subjects reside. The symbol r+k is used to
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Disease Dynamics

represent the proportion of subjects at
site k with the disease. The + indicates
that this value represents the sum across
both exposed and unexposed individuals.
Within any population, the proportion
with the outcome can be further divided
by exposure status: rok represents the
proportion of unexposed subjects at site k
that have the disease, and rlk represents
the proportion of exposed subjects with
the disease. We use Pk to represent the
proportion of subjects at site k that are
exposed.

Components ofthe Ecological
Regression

Greenland and Morgenstem ana-
lyzed how the association of exposure to
disease at the individual level is related to
the regression of exposure on disease at
the ecological level, given the type of data
specified above.4 Consider a linear regres-
sion of the average disease level on the
average exposure level in communities.
The model of the fitted relationships
between exposure and disease is

r+k = a + bPk (1)

Greenland and Morgenstem demon-
strated that for dichotomous exposure
and outcome variables, the ecological
regression coefficient, b, can be divided
into three components: individual effects,
confounding, and effect modification.4
Mathematically, the three components
are as follows:

b=E(1k- rk)-rCOV(Pk, rOk)b =E(r~) + svar(Pk) (2)

cov([Pk-E(pk)pk,[rlk -r0k])
var(pk)

The first component of the ecological
regression parameter is the expected
value of the risk difference at the indi-
vidual level. This risk difference could be
due to cause, confounding, or biases
acting at the individual level. It is gener-
ally presumed that the portion of the risk
difference at the individual level due to
cause would be the best parameter to use
in predicting how much disease results
from the exposure of a specified number
of individuals. But this is true only for
dynamically linear systems and not for
infectious diseases.

The second component is present
when the background rate in the unex-
posed subjects is associated with the level
of exposure in the population. Thus, the
second component represents confound-
ing. It is generally presumed that such

confounding arises because some third
variable causing the disease is more
frequent in populations that have a higher
level of the exposure of interest. But in the
case of infectious diseases, we will see that
this second component arises even when
there are no other causes of the disease
and therefore no confounding variables.

The third component is present
when the risk difference in a population is
associated with the level of exposure in a
population. Thus, the third component
represents effect modification. A major
point in the Greenland and Morgenstem
paper is that the ecological fallacy arises
not only from confounding but also from
effect modification.4 As with confounding,
it is often presumed that a third variable,
which varies across populations in parallel
with the frequency of exposures in those
populations, accounts for this third compo-
nent of the ecological regression coeffi-
cient. We will again demonstrate, how-
ever, that for infectious diseases, no third
variable is needed to get an association of
the risk difference and the proportion
exposed.

Equation (2) assumes no misclassifi-
cation. Brenner et al. demonstrate that
unbiased misclassification that decreases
the strength of association at the indi-
vidual level will increase the strength of
association in an ecological analysis.3
Thus, unbiased misclassification will gen-
erate a significant difference in the associa-
tion between exposure and disease at the
individual and the ecological levels.

One commits an ecological fallacy if
one assumes that the ecological effect b
reflects the individual effect rik - rok
when, in fact, b is significantly determined
by the second and third components in
equation (2) orb is increased and rlk- rok
is decreased by unbiased misclassification.
Another type of fallacy arises, however,
when one assumes that the individual-
level effect r - rok is the effect of interest
when, as in the infecitous disease example
that follows, it is not.

An Infectious Disease Ewmple
A dengue fever study in which both

individual- and ecological-level associa-
tions between exposure and disease were
assessed illustrates the phenomenon on
which we will concentrate. Dengue fever
is a virus infection transmitted only by
Aedes mosquitoes. Koopman et al.14
studied 50 individuals under age 29 from
each of 70 villages in Mexico with regard
to their dengue antibody levels and
dengue risk factors. Only one individual

per household was studied. The study was
carried out during an annual inter-
epidemic period after 5 years ofepidemics
that had followed 25 years without infec-
tion.

Exposure classification of individuals
was made on the basis of whether Aedes
aegypti larvae were found in the house-
hold. Infection history was dichotomously
classified using a complement fixation
antibody assay of sera. At the ecological
or village level, the frequency of Aedes
larvae per household ranged from 0% to
69%. The proportion of individuals in-
fected in the different communities ranged
from 0% to 90%. These broad ranges of
exposure and outcome frequencies do not
represent a situation with high risk of
coming to an erroneous conclusion about
individual effects because of the ecologi-
cal fallacy.10'1'

The ecological analysis was per-
formed with BMDPLR.15 This routine
essentially replaces all individual-level
exposure variables with the ecological-
level exposure variables and then carries
out a logistic regression. The odds ratio of
a 0% larva level vs a 100% larva level was
12.7, with a 95% confidence interval from
8.3 to 17.8. The individual-level analysis
was performed with a pooled Mantel-
Haenszel odds ratio across the different
communities. There was no significant
heterogeneity of odds ratios across com-
munities. The pooled Mantel-Haenszel
odds ratio across different communities
was 1.1, with a 95% confidence interval
from 0.81 to 1.48.

The Aedes mosquitoes identified in
the above study are the only genus of
mosquito transmitting dengue in Mexico.
These mosquitoes breed mainly around
houses, and there is generally strong
clustering of infection by household.16 If
one concluded from the lack of an
individual-level association that the eco-
logical association of household infesta-
tion with infection was an artifact, one
would have missed a most important
cause ofdengue infection-namely, house-
hold infestation withAedes.

Transmission dynamics, confound-
ing, and exposure misclassification could
each contribute to the dramatic difference
in the individual and ecological measures
of association we observed. Confounding
would have to be greater at the ecological
level than at the individual level. It thus
seems unlikely that confounding could
account for the dramatic differences ob-
served. On the other hand, exposure
misclassification is significant because we
are characterizing exposure by using an
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nity, and (4) the level of exposure is
constant over the period of the epidemic.

The proportion of the population
infected at the end of such an SIR
epidemic-that is, the cumulative risk of
infection (CR) at the end of the epidemic
process-has been analyzed theoretically
and found to be independent of whether
there is a noncontagious latent period of
infection.17 That proportion can be ex-
pressed in the following transcendental
equation:

0 0.5 1 1.5 2 2.5

Basic Reproduction Ratio

FIGURE 1-Theoretically derived cumulative risks during an !
("susceptible-infectIous-recoverlng") epidemic
of the basic reproduction ratio.

interepidemic level of exposure perhaps
some years after an infection was experi-
enced during an epidemic year.

Transmission decreases the indi-
vidual-level effects and increases the
ecological effects as follows: transmission
from infected individuals with household
mosquitoes to individuals without house-
hold mosquitoes raises the rate of infec-
tion in unexposed individuals. This effect
is amplified through continuing chains of
infection. The more exposed individuals
there are in a community, the more the
rate of infection in the unexposed popula-
tion will be raised by this secondary
transmission and the smaller the indi-
vidual-level association will be. At the
ecological level, however, all of this
secondary transmission will amplify the
effect of increasing exposure levels in a

community.
In terms of equation (2), this second-

ary transmission will raise the background
rate of infection in the unexposed popula-
tion and thus contribute to the second
component on the right-hand side of the
equation. As circulation of infection in-
creases, the proportion ofinfected mosqui-
toes will rise, and therefore a given
exposure to household mosquitoes will
increase in risk. Thus, the third compo-

nent of equation (2) will also make a

significant contribution to the difference
between the ecological and the individual
effect. Note that this increasing infection
rate of mosquitoes will also increase the
risk of mosquito exposure outside of the
household. This amplifies the difference
between individual and ecological levels
that is attributable to the second compo-

nent on the right.
(2). Although equ
linear regression

regression, the qi
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Quantitatve A
Transmission J
Individul and
Associations

In the real-i
above, confoundir
are possible explk
gence in individu;
associations. To
transmission dyna
we now present re

model in which
introduced that co
ing or effect mod
classification is 10(

Consider an '
which individuals s

then become cont
tious, I), and finall
through an immu
nates their contaj
recovery (R). To
not need the al
considering an ins

We just consider a

which (1) all indivi
equally susceptibli
epidemic, (2) all i
within their villah
are large both in
relationship to tht
that introduce inf

3 3.5 4 in which Ro, the basic reproduction ratio,
equals the number of secondary cases

generated by an infected individual over

the entire course of that person's infec-
SIR tion. In the global equation presented in
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value between exposed and unexposed
individuals. The relationship between Ro
and CR in equation (3) is presented

-hand side of equation graphically in Figure 1. Note in this curve
ation (2) is relevant to that the value Ro = 1 represents a

rather than to logistic threshold below which there is no sus-

ualitative phenomenon tained transmission, and that at an Ro of 3
ill apply. to 4, the maximum effect has been almost

achieved so that, as exposure is increased

lodels of beyond this level, little additional effect is

observed.
E!ffects on Let us relate this to our dengue

IEcological example. Ro is the number of dengue
infections that an infected individual
generates over the course of his or her

ife situation discussed infection. Its value depends on the num-

ig and misclassification ber of mosquitoes that bite that infected
anations for the diver- individual, the proportion of those mosqui-
al- and ecological-level toes that survive until they become infec-
isolate the effects of tious, and the number of other individuals
mics on this divergence, to whom those mosquitoes before they
sults from a theoretical die. Ro will increase as the number of
no third variables are mosquitoes increases.
ould generate confound- Villages with few mosquitoes will fall
lification and in which below the Ro threshold of 1, and there will
)% accurate. be no sustained dengue transmission.
SIR infection process in Consequently, there will be no association
start out susceptible (S), between Aedes aegypti larva in the house-
:agious to others (infec- hold and dengue infection in those vil-
ly control their infection lages. Individuals with Aedes larvae on

ne response that elimi- their household premises may be more

giousness and leads to exposed to Aedes aegypti bites than indi-
make our point, we do viduals living at sites without such larvae,
dded complication of but they would not be more exposed to
ect vector in our model. dengue because the mosquitoes would be
simple SIR infection in uninfected.
iduals in each village are In the villages that have enough
e at the beginning of an mosquitoes to get the basic reproduction
idividuals mix randomly number above 4 or 5, there will again be

Ye, (3) the populations little association between the presence of
absolute terms and in mosquito larvae in the house and the risk

e number of individuals of infection. When circulation of dengue
ection into the commu- infection is high in the community, all
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those who do not have larvae in the house
will have been bitten frequently by mosqui-
toes that were born from larvae in their
neighbors' house or in the market or at
work or school. Consequently, exposure
at the household level will again fail to
distinguish risk levels because everyone
has a very high risk level of being bitten by
an infected mosquito.

If most villages fall at the high or low
end of mosquito levels, dichotomizing the
mosquito levels would make for an almost
perfect correlation between infection level
and mosquito level at the ecological level.
At the individual level within these ex-
treme communities, however, no associa-
tion would be seen between exposure and
infection.

Even in those villages that do not fall
into these extremes of exposure, we
expect a stronger association between
exposure and disease in an ecological
analysis than in an individual analysis. To
demonstrate this, we constructed a com-
partmental model for the transmission of
an SIR infection in which all individuals
were classified as exposed or unexposed,
independently of their infection status.

There are several different ways that
an exposure can affect infection risk. It
can (1) alter the biologically based suscep-
tibility of the uninfected individual in the
contact, (2) alter the contagiousness of
the infected person in the contact through
a biological action that increases the
number of organisms that person ex-
cretes, (3) change the number or viability
of organisms transmitted between indi-
viduals even when susceptibility or conta-
giousness is not biologically altered, (4)
increase the number of contacts made by
individuals, or (5) alter those persons
whom an individual contacts even though
the number of contacts that individual
makes is not altered. The only effect we
included in our model was the fourth: to
increase the number of contacts. The
mathematical formulation of the model or
its implementation using STELLA II
software (High Performance Systems,
Lyme, NH) can be obtained from Dr
Koopman.

We set model parameter values such
that when no one in the population is
exposed, the basic reproduction ratio is
just less than 1 and exposure increases the
number of contacts an individual has by
10%. We then varied the proportion of
the exposed population in a series of
simulations. The resulting proportion of
the overall population that is infected at
the end of the epidemic and the relative
risk of infection between exposed and

c 0.14
._

" 0.12
w

w 0.1

co 0.08

0
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FIGURE 2-Simulated infection levels, risk differences, and risk ratios as a
function of the proportion of the population that Is exposed.

unexposed individuals are shown in Fig-
ure 2.

The top line in this figure represents
the ratio of infection risk at the end of the
epidemic in exposed and unexposed indi-
viduals at progressive levels of exposure in
the population. This risk ratio starts off at
the level of the rate ratio and decreases as
the exposure level increases. The diver-
gence in the quantitative values of risks
and rates with increasing risks accounts
for this falloff.

In contrast to the small differences
between exposed and unexposed groups
within populations, there are much larger
differences in risk between populations.
We see that as the exposed fraction of the
population goes from 0.2 to 1.0, the
infected fraction goes from 0 to 0.14.
Given this increase in infection, the
extrapolated increase in infection risk
between a population with no exposure
and one with complete exposure would be
(0.14/0.8) = 17.5%. An ecological regres-
sion would thus detect a risk difference of
0.175. At the individual level, the risk
differences would range from 0 when less
than 20% of the population is exposed to
0.013 when almost 100% of the popula-
tion is exposed.

These simulation results demon-
strate that even if there were no third
variable effects, no misclassification of
exposure or disease, and no extreme
populations in the study (i.e., those in
which almost no one got infected or those
in which almost everyone got infected),

transmission phenomena still could have
generated the degree of difference be-
tween individual- and ecological-level as-
sociations observed in the dengue study
discussed earlier.

The Nature ofModels Leading to
Efmneous Atribuion of
Individual Effects

The individual effects models that
have been used to explain or justify the
ecological fallacy are all models in which
disease is generated by population pro-
cesses that are linearly dynamic, with
subsequent independence between the
outcomes experienced by different indi-
viduals.1-13 Greenland and Robins recog-
nize that infectious and behavioral out-
comes are excluded from such analyses,11
but other authors do not acknowledge this
limitation.

This deficiency in the analyses of the
ecological fallacy derives from a failure to
distinguish the nonlinearity of disease
dynamics from the nonlinearity of expo-
sure-disease relationships. These are two
very different phenomena. Most epidemi-
ologists and biostatisticians never con-
sider that their analyses make assump-
tions relevant to the dynamic processes at
the population level. They incorrectly
presume that assumptions about the distri-
butions and relationships between vari-
ables are sufficient for their analytic
purposes.
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Dynamically Linear
Well Unexposed Individuals Diseased Unexposed Individuals

Disease Flow in Unexposed Individuals

Well Exposed Individuals Diseased Exposed Individuals
Disease Flow in Exposed Individuals

Dynamically Non-linear
Well Unexposed Individuals Diseased Unexposed Individuals

Disease Flow in Unexposed Individuals

Well Exposed Individuals \--/ Diseased Exposed Individuals
Disease Flow in Exposed Individuals

FIGURE 3-An illustration of linear and nonlinear dynamic systems.

Let us now elaborate on how trans-
mission phenomena generate nonlinear
dynamics at the population level. A
dynamically linear system is illustrated on
the top of Figure 3. Individuals flow
through the arrow pipe from the well state
to the diseased state. The spigot that
controls the number of individuals flowing
per unit of time is a function only of how
many well individuals there are to begin
with. The differential equations describ-
ing these flows will only have first-degree
terms, and so the system is dynamically
linear. The situation at the bottom of
Figure 3 corresponds to a transmission
model. The number of individuals flowing
from the well to the diseased state
depends on the proportion of contacted
individuals who are in the infected state.
The differential equations describing the
flow will have second-degree terms, and
so the dynamics will be nonlinear.

The underlying assumption of linear
dynamics is not explicitly expressed in any
of the models presented in prior work
discussing the analysis of ecological
data. 1-13 That is to be expected, since the
traditions of epidemiological inquiry de-
rive from the analysis of data expressing
exposure-disease relationships rather than
dynamic processes. But in every case, an
implicit assumption is evident that the
outcomes in any study subject are indepen-
dent of the outcomes in other study
subjects. That means that population
dynamics are linear. The implicit nature

of such assumptions as opposed to an
explicit statement of assumptions ampli-
fies the risk from unsound assumptions.

As Halloran and Struchiner point
out,18 this basic difference between dy-
namically linear and nonlinear models
was described more than 75 years ago by
Sir Ronald Ross.19 Unlike the usual
epidemiologist of today, this physician
epidemiologist regularly constructed dy-
namic models of the disease processes in
which he was interested. He divided what
we would now call events into "indepen-
dent happenings" corresponding to dy-
namically linear models and "dependent
happenings" corresponding to nonlinear
models. Since Ross' time, the quantitative
theory behind the methods of epidemiol-
ogy have been developed mostly within
the context of noncontagious diseases so
that independent happenings have be-
come an implicit assumption that is
sometimes not recognized.

Implicationsfor Detecting
Transmission Modes and
Transmission Risk Factors

We have demonstrated how transmis-
sion dynamics in a randomly mixing
population can obscure the effect of a risk
factor for transmission when an individual-
level analysis with the underlying assump-
tions of dynamic linearity is undertaken.
Recently we demonstrated an additional

mechanism whereby transmission dynam-
ics can obscure the effects of risk factors
for transmission.20 That mechanism in-
volves nonrandom patterns of contact.
Since our model simulation here assumed
a proportionate mixing process with ran-
dom contacts, it assumed away this other
mechanism.

There is a third way in which a focus
on classical individual effect measures
obscures the detection of risk factor
effects. Such effect measures lead us to
focus on only those risk factor effects that
can be measured in the study subject at
risk of developing infection. Risk factor
effects 2 and 5 specified in the section on
quantitative models of transmission ef-
fects above do not relate to exposures
measured in the individuals at risk, but
rather to characteristics of the individuals
with whom they have contact. Those
characteristics influence contagiousness
and contact patterns, which are absolutely
central to transmission dynamics.

The evaluation of vaccines is subject
to all the pitfalls we have just outlined.
The failure to assess contagiousness ef-
fects may be especially important. Some
vaccines, like the Salk polio vaccine, may
not significantly decrease the rate of
infection in the vaccinated. They can,
however, decrease the excretion of organ-
isms in subsequently infected individuals
and stop the circulation of the agent. If
these effects on contagiousness are ne-
glected in vaccine evaluations, we may
make the wrong decisions regarding new
vaccines like the proposed rotavirus and
human immunodeficiency virus vaccines.21

The transmission dynamic effects
elucidated in this paper and those due to
contact patterns2 are a major reason why
there is still so much ignorance in epidemi-
ology about modes of transmission. We
have not evaluated in the field the relative
importance of the different modes of
transmission (direct skin-to-skin contact,
indirect contact, airborne spread, or large
droplet spread) for any of the major
pathogens causing respiratory infections.
What we do know for a few of these
infections, like rhinoviruses, derive from
experiments. Some of these experiments
indicate that transmission might be con-
trollable,22 but they have not resolved
whether interruption of direct hand-to-
hand contact or airborne transmission will
be the more efficient control strategy.23r24

Experiments that do not correspond
to natural conditions cannot define public
health strategies. To define the contribu-
tions of different modes of transmission to
overall transmission dynamics will require
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the development of new epidemiological
study designs that overcome the difficul-
ties we have outlined. That implies the use
of ecological data and ecological models.
Let us now discuss how that might proceed.

Implica nsfor Stdy Design
The major implication for study

design of the ideas presented here is that
contact patterns need to be measured in
epidemiological studies of infectious dis-
eases. The data collected need to reflect
individual contact episodes or general
exposure frequencies to different popula-
tions. If causally predictive effect esti-
mates are to be made from such data, the
analysis needs to employ models that
parameterize causal effects upon or within
contacts. A separate implication is that
study designs that maximize the contrasts
in what type of individuals are contacted
will maximize the detection of effects that
are manifest through those contacts.

For sexually transmitted infections,
the appropriate ecological level at which
data should be gathered is that of a sexual
partnership. The pattern of such partner-
ships then needs to be modeled at an even
higher ecological level. We suggest that
contact patterns can feasibly be measured
by means of sample designs in which
statistical target population includes the
majority of the partners of study subjects.
The data to be collected include indi-
vidual risk and infection characteristics of
the study subjects, characteristics of part-
ners that are perceptible to the study
subject, and characteristics of partner-
ships that could theoretically be reported
by either partner. We are currently devel-
oping appropriate statistics for these types
of data. It is important to note that such
data cannot be adequately conceptualized
in terms of separate cases having several
variable values determined for them. That
is to say, such data cannot be fit into the
standard framework for ecological data
that we presented earlier in this paper.
This usual conceptualization of an epide-
miological data set is inadequate because
it does not define what classes of individu-
als are in contact with each other and it
has no place for data that are specific to a
contact with a particular type of indi-
vidual.

For non-sexually transmitted infec-
tions, the study designs most capable of
describing differential contact patterns
are cross-population studies. These in-
volve different sets of individuals who
might be assumed to have contact within
but not across populations. The example

and simulations presented here suggest
that cross-population analyses could have
considerably more power to detect effects
of risk factors on transmission than could
analyses that examine effects within sepa-
rate populations and then combine them.
This runs counter to the usual epidemio-
logical wisdom that it is always best to
stratify comparisons within the most nar-
row and homogeneous population groups.

To go beyond detection of effects
and begin to measure how risk factors
affect contacts between individuals or the
outcomes of those contacts, just designing
cross-populatiQn studies will be insuffi-
cient. Models that parameterize those
effects will have to be used in the analysis.

Summary and Conclusions
Infectious diseases and social behav-

iors have a characteristic that is inconsis-
tent with the assumptions of most statisti-
cal analyses in epidemiology. That
characteristic is that the outcome in one
individual influences the outcomes and
alters the risk factor effects in other
individuals. When dependence between
outcomes is generated by a risk factor
affecting transmission rather than a risk
factor acting directly on the exposed
individual, neither the risk difference
determined from individual data nor the
ecological regression coefficient reflect
causal parameters in the processes gener-
ating infection or behaviors. Thus, it is
meaningless to say that one or the other of
them is more correct.

When a risk factor affects transmis-
sion, exposure effect statistics should
estimate parameters reflecting the effects
of exposure on the existence or the
outcome of contacts that could transmit
infection. They should reflect either the
rate at which different types of individuals
contact each other or the probability of
transmission between infected and suscep-
tible individuals in those contacts. These
contact rates and transmission probabili-
ties are the basic parameters of transmis-
sion models. Transmission models should
thus be used in the analysis of data meant
to examine the relationships between risk
factors for transmission and infection
levels.

More generally, we could state that
for any epidemiological analysis, a key
step is to define the individual, social, or
ecological context within which causes are
acting. Then one should collect data
relevant to that level of action and analyze
the data, using models that parameterize
the causal action at the appropriate level.

Disease Dynamics

To estimate risk factor effects, one
would prefer statistics that have well-
known variance characteristics and that
can be shown theoretically to converge
upon the underlying parameter of inter-
est. Estimators with these characteristics
are not widely available for the estimation
of transmission parameters. They are
available only for limited situations, such
as when infection is studied in families.25
The development of comparable proce-
dures for the analysis of ecological data
where the groupings involve larger popu-
lations is needed. In the meantime, to
develop a practical science of transmis-
sion system analysis capable of assessing
modes of transmission and estimating the
contagiousness and susceptibility effects
of risk factors and vaccines, we will have
to use estimation procedures for the
parameters of transmission models that
have less desirable characteristics.

The guiding principle to avoid error
that comes from our focus does not relate
to grouping rules, as in the case of Susser's
approach.1 Rather, it is that models used
in analysis should correspond as closely as
possible to the dynamic processes generat-
ing the data. In the case of infectious
diseases, this means that transmission
models should be used. This maximizes
the usefulness of parameters estimated
because those parameters have predictive
significance when applied in the models
used to estimate them. O
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