Abstract
Quantitative risk assessment provides formalized scientific input to regulatory agencies that set occupational and environmental standards for potentially toxic exposures. Current practice relies heavily on statistical extrapolation from high-dose animal studies. Human data obviate the need for interspecies extrapolation and reduce the range of high-to-low dose extrapolation. This paper proposes a framework for classifying individual epidemiologic studies as to their adequacy for use in dose-response extrapolation. The framework considers five criteria: (1) a stable positive association with an adverse health outcome; (2) high overall study quality; (3) no substantial confounding; (4) quantitative exposure assessment for individuals; (5) evidence of a dose-response relationship. With these criteria, studies can be categorized as (1) suitable to serve as a basis for extrapolation; (2) inadequate to be the basis for direct extrapolation but appropriate to use for evaluating the plausibility of animal-derived risk estimates; or (3) useful only for hazard identification, not for dose-response assessment. Methods for using studies in the first two categories are briefly described. The emphasis is not on establishing rigid rules, but rather on ensuring a consistent, reliable process that makes optimum use of available data.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Gold L. S. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science. 1990 Aug 31;249(4972):970–971. doi: 10.1126/science.2136249. [DOI] [PubMed] [Google Scholar]
- Armstrong B. Effects of measurement errors on estimates of exposure-response relationships. Recent Results Cancer Res. 1990;120:50–63. doi: 10.1007/978-3-642-84068-5_4. [DOI] [PubMed] [Google Scholar]
- Arrighi H. M., Hertz-Picciotto I. The evolving concept of the healthy worker survivor effect. Epidemiology. 1994 Mar;5(2):189–196. doi: 10.1097/00001648-199403000-00009. [DOI] [PubMed] [Google Scholar]
- Axelson O. Aspects of confounding and effect modification in the assessment of occupational cancer risk. J Toxicol Environ Health. 1980 Sep-Nov;6(5-6):1127–1131. doi: 10.1080/15287398009529933. [DOI] [PubMed] [Google Scholar]
- CORNFIELD J., HAENSZEL W. Some aspects of retrospective studies. J Chronic Dis. 1960 May;11:523–534. doi: 10.1016/0021-9681(60)90016-3. [DOI] [PubMed] [Google Scholar]
- Christoffel T., Teret S. P. Epidemiology and the law: courts and confidence intervals. Am J Public Health. 1991 Dec;81(12):1661–1666. doi: 10.2105/ajph.81.12.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson I. W., Parker J. C., Beliles R. P. Biological basis for extrapolation across mammalian species. Regul Toxicol Pharmacol. 1986 Sep;6(3):211–237. doi: 10.1016/0273-2300(86)90014-0. [DOI] [PubMed] [Google Scholar]
- Dosemeci M., Wacholder S., Lubin J. H. Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am J Epidemiol. 1990 Oct;132(4):746–748. doi: 10.1093/oxfordjournals.aje.a115716. [DOI] [PubMed] [Google Scholar]
- Flanders W. D., Khoury M. J. Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology. 1990 May;1(3):239–246. doi: 10.1097/00001648-199005000-00010. [DOI] [PubMed] [Google Scholar]
- Hearne F. T., Grose F., Pifer J. W., Friedlander B. R., Raleigh R. L. Methylene chloride mortality study: dose-response characterization and animal model comparison. J Occup Med. 1987 Mar;29(3):217–228. [PubMed] [Google Scholar]
- Hertz-Picciotto I., Gravitz N., Neutra R. How do cancer risks predicted from animal bioassays compare with the epidemiologic evidence? The case of ethylene dibromide. Risk Anal. 1988 Jun;8(2):205–214. doi: 10.1111/j.1539-6924.1988.tb01173.x. [DOI] [PubMed] [Google Scholar]
- Hertz-Picciotto I., Holtzman D. A. Issues in conducting a cancer risk assessment using epidemiologic data: arsenic as a case study. Exp Pathol. 1989;37(1-4):219–223. doi: 10.1016/s0232-1513(89)80052-0. [DOI] [PubMed] [Google Scholar]
- Hertz-Picciotto I., Neutra R. R., Collins J. F. Ethylene oxide and leukemia. JAMA. 1987 May 1;257(17):2290–2290. doi: 10.1001/jama.257.17.2290b. [DOI] [PubMed] [Google Scholar]
- Hertz-Picciotto I., Neutra R. R. Resolving discrepancies among studies: the influence of dose on effect size. Epidemiology. 1994 Mar;5(2):156–163. [PubMed] [Google Scholar]
- Hertz-Picciotto I., Smith A. H. Observations on the dose-response curve for arsenic exposure and lung cancer. Scand J Work Environ Health. 1993 Aug;19(4):217–226. doi: 10.5271/sjweh.1480. [DOI] [PubMed] [Google Scholar]
- Lubin J. H., Pottern L. M., Blot W. J., Tokudome S., Stone B. J., Fraumeni J. F., Jr Respiratory cancer among copper smelter workers: recent mortality statistics. J Occup Med. 1981 Nov;23(11):779–784. doi: 10.1097/00043764-198111000-00014. [DOI] [PubMed] [Google Scholar]
- Ott M. G., Scharnweber H. C., Langner R. R. Mortality experience of 161 employees exposed to ethylene dibromide in two production units. Br J Ind Med. 1980 May;37(2):163–168. doi: 10.1136/oem.37.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore R. E., Iyer V., Altshuler B., Pasternack B. S. Use of human data in quantitative risk assessment of carcinogens: impact on epidemiologic practice and the regulatory process. Regul Toxicol Pharmacol. 1992 Apr;15(2 Pt 1):180–221. doi: 10.1016/0273-2300(92)90049-f. [DOI] [PubMed] [Google Scholar]
- Siemiatycki J., Wacholder S., Dewar R., Wald L., Bégin D., Richardson L., Rosenman K., Gérin M. Smoking and degree of occupational exposure: are internal analyses in cohort studies likely to be confounded by smoking status? Am J Ind Med. 1988;13(1):59–69. doi: 10.1002/ajim.4700130105. [DOI] [PubMed] [Google Scholar]
- Smith A. H. Epidemiologic input to environmental risk assessment. Arch Environ Health. 1988 Mar-Apr;43(2):124–129. doi: 10.1080/00039896.1988.9935838. [DOI] [PubMed] [Google Scholar]
- Smith A. H., Hopenhayn-Rich C., Bates M. N., Goeden H. M., Hertz-Picciotto I., Duggan H. M., Wood R., Kosnett M. J., Smith M. T. Cancer risks from arsenic in drinking water. Environ Health Perspect. 1992 Jul;97:259–267. doi: 10.1289/ehp.9297259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Darby S., Fagnani F., Hubert P., Vaeth M., Weiss K. Definition and estimation of lifetime detriment from radiation exposures: principles and methods. Health Phys. 1992 Sep;63(3):259–272. doi: 10.1097/00004032-199209000-00001. [DOI] [PubMed] [Google Scholar]
- Travis C. C., White R. K. Interspecific scaling of toxicity data. Risk Anal. 1988 Mar;8(1):119–125. doi: 10.1111/j.1539-6924.1988.tb01158.x. [DOI] [PubMed] [Google Scholar]