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Mice lacking the vascular endothelial growth factor
(VEGF) receptor flt-1 (VEGFR-1) die from vascular
overgrowth, caused primarily by aberrant endothe-
lial cell division (Kearney JB, Ambler CA, Monaco KA,
Johnson N, Rapoport RG, Bautch VL: Vascular endo-
thelial growth factor receptor Flt-1 negatively regu-
lates developmental blood vessel formation by mod-
ulating endothelial cell division. Blood 2002, 99:2397–
2407). Because a second high-affinity VEGF receptor,
flk-1, produces a positive endothelial proliferation
signal, it was logical to ask whether flt-1 affects devel-
opmental blood vessel formation by modulating sig-
naling through flk-1. Differentiated embryonic stem
cell cultures lacking flt-1 (flt-1�/�) had increased
flk-1 tyrosine phosphorylation, indicating that flk-1
signaling is up-regulated in the mutant background.
The selective flk-1 inhibitor SU5416 partially rescued
the flt-1�/� mutant phenotype, and this rescue was
accompanied by a decrease in the relative amount of
flk-1 tyrosine phosphorylation. Thus reduced flk-1
signal transduction can partially compensate for the
lack of flt-1. The flt-1�/� mutant phenotype was also
partially rescued by Flt-1/Fc, a truncated flt-1 that
binds and sequesters the VEGF ligand. Taken to-
gether, these data show that down-regulation of flk-1
signaling by two different strategies partially rescues
the developmental vascular overgrowth seen in the
absence of flt-1, and they support a model whereby
flt-1 modulates the flk-1 signal at an early point in the
pathway. (Am J Pathol 2004, 164:1531–1535)

The regulation of blood vessel formation is critical both
developmentally and in the adult.1,2 In the adult, normal
processes such as wound healing and pathological pro-
cesses such as tumor expansion and metastasis require
the production of new blood vessels. We have begun to
understand how blood vessel formation is regulated at
the molecular level, and vascular endothelial growth fac-
tor (VEGF) is clearly central to this process.3 Mouse
embryos lacking even one copy of the VegfA gene die as
embryos with vascular defects, and vascular develop-
ment in differentiating embryonic stem (ES) cells is com-
promised in VegfA�/� and VegfA�/� ES cells in a dose-
dependent manner.4–6 Moreover, modestly elevated
levels of VEGF result in vascular abnormalities,7 and
large doses of VEGF compromise both vascular devel-
opment and neovascularization in adult organisms.8,9

These findings suggest that VEGF signaling must be
precisely controlled during vascularization to result in
proper vessels. The location and duration of VEGF ex-
pression provide one level of control, but other compo-
nents of the pathway are also likely to be involved in fine
tuning the signal.

Two high-affinity VEGF receptors, flk-1 and flt-1, are
candidates to mediate fine tuning of the pathway.10,11

Both receptors are membrane-spanning receptor ty-
rosine kinases that bind VEGF-A with high affinity, but
their effects on VEGF signaling are very different. Mice or
ES cells lacking flk-1 have little or no blood vessel forma-
tion, suggesting that VEGF effects on endothelial cells
are mediated through flk-1.12,13 VEGF signaling through
flk-1 produces several cellular responses, including a
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strong mitogenic signal and a survival signal for endo-
thelial cells and their precursors.14–17

In contrast, VEGF binding to flt-1 does not produce a
strong mitogenic signal, and flt-1�/� mice die at mid-
gestation with vascular overgrowth and disorganiza-
tion.18,19 We recently showed that flt-1 impacts develop-
mental blood vessel formation by negatively modulating
endothelial cell division.20 Thus it was logical to ask
whether agents that affect flk-1 signaling could rescue
the phenotypic effects of the flt-1 mutation. Our results
show that two agents, the potent flk-1 small molecule
inhibitor SU5416 and a Flt-1/Fc chimeric protein that
binds and sequesters VEGF, partially rescue the vascular
overgrowth phenotype of flt-1�/� ES cell-derived blood
vessels. Flk-1 tyrosine phosphorylation is elevated in the
flt-1 mutant blood vessels and this increase is blocked by
the flk-1 inhibitor. These results indicate that flt-1 nega-
tively modulates developmental blood vessel formation
by dampening signaling through flk-1.

Materials and Methods

Cell Culture, Differentiation, and Antibody
Staining

ES cells were maintained and differentiated as de-
scribed.20,21 SU5416 was resuspended in dimethyl sul-
foxide at a concentration of 10 mmol/L, and Flt-1/Fc (re-
combinant mouse VEGFR-1 (flt-1)/Fc; R & D Systems,
Minneapolis, MN) was resuspended in phosphate-buff-
ered saline (PBS)/0.1% bovine serum albumin at a con-
centration of 10 �g/ml. Both solutions were added to
growth medium immediately before feeding the cultures
every second day from day 5 (SU5416) or day 3 (Flt-1/
Fc). Day 8 cultures were fixed in fresh cold MeOH:ac-
etone (1:1) for 5 minutes and then processed for antibody
staining as described.20,21 All cultures were reacted with
rat anti-mouse PECAM-1 (Mec 13.3; Pharmingen B-D,
San Diego, CA) at 1:1000 dilution and then with donkey
anti-rat tetramethyl-rhodamine isothiocyanate (Jackson
Immunoresearch, West Grove, PA) at a 1:200 dilution.
Cultures were stored in PBS at 4°C. Image analysis was
as described.20,21

Protein Analysis

Cell lysates were collected from day 7 or 8 differentiated
ES cells using RIPA buffer [150 mmol/L NaCl, 50 mmol/L
Tris-HCl, pH 7.5, 1% Nonidet P-40, 0.25% Na deoxy-
cholate, 1 mmol/L Na orthovanadate, 1 mmol/L NaF, and
complete mini ethylenediaminetetraacetic acid-free pro-
tease cocktail inhibitor tablets (Boehringer Mannheim,
Indianapolis, IN)]. Flk-1 protein was immunoprecipitated
from 6 mg of total protein with 1.5 �g anti-flk polyclonal
antibody (sc-504; Santa Cruz Biotechnology, Santa Cruz,
CA) overnight at 4°C. Protein A agarose beads were
added and the lysates incubated for 2 hours at 4°C.
Immunoprecipitates were washed with RIPA buffer fol-
lowed by PBS and loaded onto a 5% polyacrylamide gel.
After transfer to polyvinylidene difluoride (Amersham, Ar-

lington Heights, IL), phosphorylated flk-1 was detected
by incubation with a monoclonal anti-pTyr antibody
(clone PY20; BD Transduction, San Jose, CA) at 1:1000,
followed by washing and detection with enhanced chemi-
luminescence (Amersham). The membrane was then
stripped and total flk-1 was detected using anti-flk-1 an-
tibody [sc-6251 at 1:100 (Santa Cruz Biotechnology) or
no. 555307 at 1:500 (B-D Pharmingen)], and enhanced
chemiluminescence detection. The signal from the upper
band was quantitated by densitometry using NIH Image,
and p-Tyr levels were normalized to flk-1 levels.

Results

Blockade of the Flk-1 Signaling Pathway
Partially Rescues the Flt-1 Mutant Vascular
Phenotype

The flk-1 signal transduction pathway was experimentally
perturbed in two distinct ways (Figure 1). First, the selec-
tive flk-1 inhibitor SU5416 was added to ES cell cultures
as they differentiated to form primitive blood vessels.
SU5416 is a small molecule inhibitor that freely traverses
the membrane and binds the ATP-binding pocket of flk-1,
preventing phosphorylation and downstream signal-
ing.22–24 As expected, control wild-type cultures incu-
bated with the inhibitor showed a severe disruption of
normal blood vessel formation (compare Figure 1, I and
J), similar to the phenotype seen when flk-1 is genetically
ablated (compare Figure 1, J and L). The vascular over-
growth seen in the flt-1�/� cultures (Figure 1A) was
partially rescued by incubation with SU5416 (Figure 1, B
and C). Quantitation of the vascular area showed dose-
dependent rescue of the overgrowth, with 1 �mol/L of
inhibitor approximating wild-type levels of vasculature
(Figure 1D). The flt-1�/� vessels also appeared the most
normal, but not completely normal, when incubated with
1 �mol/L of SU5416 (Figure 1B). Thus, perturbation of
flk-1 signaling partially rescued the flt-1 mutant vascular
phenotype.

The experiment was repeated with a second inhibitor
with a completely different mode of action. Flt-1/Fc is a
small protein that binds and sequesters the ligand
VEGF-A to prevent it from binding flk-1.25 Because vas-
cular development in ES cell cultures is VEGF-depen-
dent,6 we reasoned that modulating effective VEGF-A
levels with this inhibitor might have similar effects to
incubation with SU5416. This was the case, and wild-type
vascular development was perturbed while flt-1�/� mu-
tant vascular development was partially rescued by ad-
dition of Flt-1/Fc (Figure 1; E to G, K). Quantitation of the
vascular area also showed that this partial rescue was
dose-dependent, with 1 �g/ml of inhibitor approximating
wild-type levels of vasculature (Figure 1H). However, the
phenotypic rescue of the flt-1 mutant vessels was less
dramatic with Flt-1/Fc than with SU5416 (compare Figure
1, B and F). Thus, perturbation of the flk-1 signal trans-
duction pathway by two mechanistically distinct inhibitors
partially rescues the flt-1 mutant vasculature, suggesting
that flt-1 impinges on the flk-1 signaling pathway.
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Flk-1 Tyrosine Phosphorylation Levels Correlate
with the Vascular Phenotype in Flt-1 Mutant and
Rescued Vessels

Because flk-1 phosphorylation is one of the first biochem-
ical events associated with ligand engagement, we hy-
pothesized that flk-1 phosphorylation was normally sen-
sitive to levels of endogenous flt-1, and also that partial
rescue of the flt-1 mutant vascular phenotype would be

accompanied by a reduction in the level of flk-1 tyrosine
phosphorylation. We immunoprecipitated flk-1 from ly-
sates prepared from ES cell differentiation cultures, then
blotted with an antibody to phosphotyrosine to determine
the amount of phospho-flk. A flk-1 antibody was used to
determine total levels of flk-1, and the ratio of phospho-flk
to total flk-1 was calculated to control for variations in the
amount of flk-1 in the different cultures (Figure 2). The
doublet seen in the flk-1 lanes represents differential

Figure 1. Inhibition of flk-1 signaling partially rescues the flt-1 mutant phenotype of ES cell-derived blood vessels. ES cells were differentiated to day 8 as
described in Materials and Methods and then fixed and stained with anti-PECAM-1 to visualize blood vessels by immunofluorescence. A–C, E–G: flt-1�/� ES
differentiation cultures; I–K: �/� wild-type ES differentiation cultures; L: flk-1�/� ES differentiation culture. Treatments: A, I, and L, untreated; B, 1 �mol/L of
SU5416; C and J, 5 �mol/L of SU5416; E, 0.3 �g/ml of Flt-1/Fc; F, 0.5 �g/ml of Flt-1/Fc; G and K, 1 �g/ml of Flt-1/Fc. D and H: Quantitation of vessel area was
as described in Materials and Methods.
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glycosylation of flk-1, and only the upper form is signifi-
cantly phosphorylated.26 Thus, only the upper band was
used for quantitation. The ratio of phospho-flk to total flk
was elevated by threefold in the flt-1 mutant ES cell
differentiation cultures (Figure 2A). This finding indicates
that flt-1 normally negatively modulates flk tyrosine phos-
phorylation. Compared to control flt-1�/� cultures, flt-
1�/� mutant cultures incubated with the inhibitor
SU5416 showed a threefold decrease in the ratio of phos-
pho-flk to total flk (Figure 2B), which is consistent with the
mode of action of the inhibitor. The partial rescue of the
flt-1 mutant phenotype in the presence of relatively re-
duced amounts of phospho-flk suggests that flt-1 nor-
mally affects flk-1 signaling biochemically by modulating
flk phosphorylation during vascular development.

Discussion

Although it has been known for some time that the VEGF
receptor flt-1 negatively modulates blood vessel forma-
tion,18,27 it has not been clear how this effect is achieved
at the cellular and molecular levels. We recently showed
that flt-1 negatively modulates endothelial cell prolifera-
tion during embryonic development and in differentiating
ES cell cultures.20 Here we show that this negative mod-
ulation by flt-1 impinges on the flk-1 signaling pathway by
affecting the level of flk-1 tyrosine phosphorylation. The
data supporting this model are that two distinct modes of
perturbation of flk-1 signaling partially rescue flt-1�/�
mutant blood vessel formation, and phenotypic rescue is
accompanied by reduced levels of flk-1 tyrosine phos-
phorylation. Moreover, elevated levels of flk-1 tyrosine
phosphorylation in the flt-1 mutant blood vessels show
that the absence of flt-1 leads to up-regulation of the first
measurable parameter of flk-1 signal transduction. This
finding has implications for the molecular mechanism of
flt-1 action.

Studies in cultured cells have provided evidence for two
potential molecular models of flt-1 action. Signal transduc-
tion through the flt-1 receptor is thought to negatively regu-
late flk-1-dependent functions such as proliferation and mi-
gration.28–30 However, a mouse that has no wild-type flt-1
protein, but instead is homozygous for a mutant flt-1 that is
missing most of its cytoplasmic domain, is viable.31 This
finding suggests that the signaling capacity of flt-1 may not
be important developmentally. A soluble form of flt-1 (sflt-1)
can be produced by alternative splicing,32,33 suggesting
that one role for flt-1 involves sequestration of the VEGF
ligand by sflt-1. Our data do not rigorously distinguish be-
tween these models, but the finding that flk-1 tyrosine phos-
phorylation is elevated in the flt-1 mutant background
strongly indicates that an early step in flk-1 signal transduc-
tion is the target of flt-1 action developmentally. This is
consistent with a model whereby flt-1 acts as a sink to
modulate the amount of VEGF ligand available to bind to
flk-1. Thus in the absence of flt-1 more ligand is available
to bind flk-1, and the first step of signal transduction, recep-
tor tyrosine phosphorylation, is up-regulated. This up-regu-
lation is predicted to lead to increased signaling through all
of the numerous pathways that are affected by flk-1 signal
transduction, including proliferation, survival, migration, and
permeability.

This is the first demonstration that the vascular over-
growth seen in the absence of flt-1 can be modulated by
manipulations of the flk-1 pathway. The inability to com-
pletely rescue the flt-1 mutant phenotype with either in-
hibitor suggests that either flt-1 impinges on pathways
other than flk-1 signaling, or that the inhibitors cannot act
optimally. We favor the latter hypothesis because several
studies show that rigorous control of the amplitude and
timing of VEGF signaling in local environments is required
for proper vascular development.4,6–8 In this context, the
increased efficacy of the small molecule inhibitor in res-
cue relative to the Flt-1/Fc protein may result from depo-
sition of some endogenous VEGF into local matrix, where
it may be inaccessible for sequestration by Flt-1/Fc. Al-
ternatively, Flt-1/Fc may incompletely rescue the flt-1 mu-
tant phenotype because it is not spatially and/or tempo-
rally regulated properly. Recent studies suggest that a
VEGF gradient may be important for proper vessel for-
mation,34,35 and we have recently demonstrated that flt-1
affects vessel morphogenesis (JP Kearney et al, in press).
Thus flt-1 may normally affect presentation of VEGF in a
spatial context that is not reproduced by exogenous admin-
istration of Flt-1/Fc. In any case, the data presented here
provides further understanding of how the organism nor-
mally modulates critical parameters of blood vessel forma-
tion. Two high-affinity VEGF receptors have opposing ef-
fects on this process. Moreover, the negative modulation by
flt-1 impinges on flk-1 signaling at an early step in the
pathway, suggesting that all downstream effects of this
pathway are tightly modulated as new blood vessels form.
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