Genome Analysis of a Novel Shiga Toxin 1 (Stx1)-Converting Phage Which Is Closely Related to Stx2-Converting Phages but Not to Other Stx1-Converting Phages

Toshio Sato,^{1,2}* Takeshi Shimizu,^{1,2} Masahisa Watarai,¹† Midori Kobayashi,¹ Shigeyuki Kano,^{1,2} Takashi Hamabata,^{1,2} Yoshifumi Takeda,³‡ and Shinji Yamasaki^{1,2,4}

Research Institute, International Medical Center of Japan, Shinjuku, Tokyo 162-8655,¹ Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575,² National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640,³ and Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Osaka 591-8531,⁴ Japan

Received 28 February 2003/Accepted 18 April 2003

Two Stx-converting phages, designated $Stx1\phi$ and $Stx2\phi$ -II, were isolated from an *Escherichia coli* O157:H7 strain, Morioka V526, and their entire nucleotide sequences were determined. The genomes of both phages were similar except for the *stx* gene-flanking regions. Comparing these phages to other known Stx-converting phages, we concluded that $Stx1\phi$ is a novel Stx1-converting phage closely related to Stx2-converting phages so far reported.

Infection with enterohemorrhagic *Escherichia coli* (EHEC) causes severe illnesses including hemorrhagic colitis, hemolytic-uremic syndrome, and encephalosis (13). Such critical illnesses are due to Shiga toxin (Stx) produced by EHEC. EHEC produces two types of Stx, namely Stx1, which is identical to Shiga toxin produced by *Shigella dysenteriae* type 1 (17), and Stx2, which has immunological properties that are different from those of Stx1 but biological properties that are similar to those of Stx1 (22). Both of these Stxs are encoded by *stx* genes in the genome of the lysogenic bacteriophage (Stx phage) of EHEC (12, 16).

The fact that the expression of *stx* genes is linked to Stx phage induction (1, 11) is clinically quite important because DNA-damaging drugs such as quinolones, which induce an SOS response in bacteria, are supposed to enhance Stx production as well as Stx phage release from EHEC (4, 23). In fact, several studies on the effects of antibiotics on EHEC infection have been published (2, 19, 20). Thus, a need to analyze the nature or structure of Stx-converting phages has led to several studies on genome analysis of some Stx-converting phages (7, 9, 10, 14, 21). We also isolated three Stx-converting phages from EHEC strains collected in Japan, i.e., Stx1 φ , Stx2 φ -I, and Stx2 φ -II (18), and we determined their complete DNA sequences. In this paper, we report the genomic analysis of Stx1 φ and Stx2 φ -II, both derived from a single EHEC strain, Morioka V526.

Phage isolation and DNA sequence determination. Isolation of Stx-converting phages from the EHEC Morioka V526

strain, preparation of the restriction map, and subcloning were performed as described previously (18). DNA sequencing was done by using the Dye Terminator kit (Applied Biosystems, Norwalk, Conn.) and 377PRISM autosequencer (Applied Biosystems) with synthetic oligonucleotides as primers. It was found that the genome size of $5tx1\phi$ was 59,866 bp, while that of $5tx2\phi$ -II was 62,706 bp. As shown in Fig. 1, although these two phages carry different *stx* genes, their genomic structures were quite homologous. The 2.8-kb size difference was attributed mainly to the *Bam*HI-*Xho*I fragment-containing *stx* gene (Fig. 1). Also, insertion sequence IS*1203* v (6) was found in this region in $5tx2\phi$ -II (Fig. 1).

Comparison to other reported Stx-converting phages. The genomic structures of $Stx1\phi$ and $Stx2\phi$ -II were compared to those of other Stx-converting phages so far reported. It was found that they were quite similar to those of other known Stx2-converting phages, except for the *stx*-flanking regions (Fig. 1 and Table 1), but not to those of other Stx1-converting phages such as VT1-Sakai and H19B (Fig. 2).

ORF analysis. Open reading frames (ORFs) that showed significant homologies to the genes registered in DDBJ or that consisted of more than 80 amino acid residues were picked up. This definition enabled us to identify 167 putative ORFs in Stx1¢ and 170 putative ORFs in Stx2¢-II (for detailed ORF information, please refer to DDBJ). The ORFs that show homology to any genes in other Stx-converting phages or bacterium-associated genes were picked up and are listed in Table 1. ORFs of Stx1 ϕ and Stx2 ϕ -II were also almost completely identical, reflecting the high DNA sequence homology between these two phages. The exception was the stx-flanking regions including four ORFs, B69, B73, B74, and b70 in Stx1, which are identical to or almost the same as the corresponding ORFs of VT1-Sakai (Table 1). This region might be characteristic of Stx1-converting pages, since H19B (10) also has a homology in the corresponding region at the DNA level (data not shown). ORFs B4, B5, and B30 of Stx16 are not identical to the corresponding ORFs of Stx26-II due to frameshift mu-

^{*} Corresponding author. Mailing address: Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan. Phone: 81-3-3202-7181, ext. 2837. Fax: 81-3-3202-7364. E-mail: tsato@ri.imcj.go.jp.

[†] Present address: Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro-shi, Hokkaido 080-8555, Japan.

[‡] Present address: Jissen Women's University, Hino, Tokyo 191-8510, Japan.

v. Vertical lines on the two lower bars indicate XhoI sites (solid lines) and BamHI sites (broken lines). (B) Comparison of ORFs of Stx24-II and Stx14. The predicted ORFs are illustrated; shown on the top of the figure in kilobases (kb). Homology percentages are given above and below the second line of the figure. The asterisk indicates 0% homology, which is due to IS1203 in any Stx2-converting phage(s) described in Table 1. Shaded boxes are ORFs characteristic of Stx1-converting phages, and dotted boxes are ORFs nearly identical to those of any Stx2-converting phage(s). the boxes above and below the horizontal lines are ORFs with rightward and leftward transcription directions, respectively. Open boxes are ORFs identical to the corresponding ORFs

		% Identity	(aa)						(00100	(774) 04				35 (174)								73 (69)		89 (74)	88 (77)		84 (209) 55 (385)	35 (62)						95 (102)	97 (177)	93 (46)	90 (01) 96 (60)	98 (226) 00 (261)	97 (138)	98 (89)
		Dacorristion	Description						Colloren olaho 1 /D ahain	сопаден агрна 1 (1) спани				Dhaga lamhda Lom								E. coli K-12 Gef		Bacteriophage C3208 enterohemolysin 2	Enterohemolysin-associated protein		<i>E. coli</i> AntB <i>F. coli</i> K-12 nutative transnosase	E. coli YdaQ						Bacteriophage C3208 enterohemolysin 2	Enterohemolysin-associated protein	Phage lambda orf61	Phage lambda ort63 Phage lambda orf60	Phage lambda exonuclease	Finage lambda Gam	Phage lambda Kil
		akai	Label							H0003																	H0070	6900H		H0060					HUU66 H0065	H0064	H0063 H0062	H0061	H0059	H0058
		VT1-S	% Identity (aa)							92 (129)																	(573)	47 (74)		84 (44)					79 (140) 94 (73)	100 (93)	98 (63) 93 (62)	97 (225) 00 (221)	95 (98)	96 (89)
of Stx1¢ and Stx2¢-II	ORFs in ^a :	ıkai	Label	H0130	H0131 H0132	H0132	H0134	H0135	H0136 H0137	H0138	H0139	H0140 H0141	H0142	H0143	H0145	H0146	H0147 H0148	H0149	H0150	H0151 H0152	701011	H0153			H0156 H0158	H0159	H0160 H0071	H0072	H0074	H0075	H0076	H0077	DUU/0	OPCOR.	H0080	H0081	H0083 H0083	H0084	0800H	H0087
	omologous (VT2-S	% Identity (aa)	100 (714)	<u>100 (335)</u> 100 (162)	100 (227)	100 (162)	100 (223)	<u>100 (216)</u> 00 (645)	100 (129)	100 (93)	<u>100 (567)</u> 100 (422)	100 (75)	100 (205) 100 (244)	100 (133)	100 (218)	<u>100 (148)</u> 100 (83)	<u>100 (421)</u>	100 (2,806)	$\frac{100(62)}{100(114)}$	100 (249)	100 (70)	92 (130) 99 (122)	100 (94)	99 (219) 98 (94)	98 (73)	<u>100 (209)</u> 100 (444)	100 (99)	<u>100 (103)</u>	100 (207)	100 (95)	100(72)	<u>100 (115)</u>	100 (116)	<u>100 (25/)</u> 100 (73)	100 (93)	<u>100 (63)</u> 100 (62)	100 (226)	100 (201) 100 (98)	100 (89)
	Ξ	^	Label	L0114	L0115 L0116	L0116	L011/ L0118	L0119	L0120	L0122	L0123	L0124 1 0125	L0126	L012/ 1 0128	L0129	L0130	L0131	L0132	L0134	L0135		L0137	L0139		L0140	L0141	L0142 L0061	L0062	L0063	L0065	L0066	L0067	LUUUG		L0141	L0070	L0071 L0072	L0073	L0075	L0076
E 1. ORF		933V	% Identity (aa)	100 (714)	<u>100 (335)</u> 100 (162)	100 (227)	100 (162) 100 (162)	100 (223)	100 (216)	100 (129)	100 (93)	100(567) 100(422)	100 (75)	<u>100 (205)</u>	100 (133)	100 (218)	$\frac{100(148)}{100(83)}$	100(421)	99 (2,806)	$\frac{100(62)}{100(114)}$	98 (72)	100 (70)	100(156)	85 (84)	98 (219)	91 (73)	99 (209) 100 (444)	100 (99)	<u>100 (103)</u>	100 (207)	100 (95)	$\frac{100(72)}{100(05)}$	100 (115)	100 (116)	<u>100 (257)</u> 79 (73)	100 (93)	98 (63) 93 (62)	99 (226) 100 (221)	97 (98)	97 (89)
TABI		Orien-	tation ^b	$\land \land$	$\wedge \wedge$	∧ /	∧ ∧	. ^	∧ /	\	\wedge	^ ^	Λ.	^ /	\ Λ	Λ	^ /	\	\wedge	$\land \land$	/ /	V	V A	Λ Λ	VV	V V	VV	V	V١	/ \	V	V١	/ /	Λ '	V V	V	V V	V	VV	V
		Gene	Celle											lom								gef		ehly2			antB int	ydaQ						ehly2				exo	gam	kil
			aa	568 714	335 404	404	162	223	216	129	93	567	15	CU2	133	218	148	421	2,576	111	249	20	126	94	219	13	209	66	103	207	95	. 12	155	116	12	93	62	226	138	89
	Π-Ψ	п-ф	Stop	1255 3399	4564 5802	5802	6758	7305	7955	10160	10488	12408	13966	15414 15414	16245	16995	17444	18981	26742	27902	29395	28446	28892	30015	30177	30453	30722	33280	33650	34298	34925	35214	35651	36567	36761	37081	37537	37716	39184	39555
	242	WIC .	Start	-452 1255	3557 4588	4588	8080 0220	6634	7305	9771	10207	10705	13739	139/2	15844	16339	17454	17716	19012	27714	28646	28658	29362	29735	29946 30456	30674	31351	33579	33961	34921	35212	35432	36118	36217	36982	37362	37725	38396	39600	39824
			ORF	C C	83	52	58	30	CII	C12	C18	CI9	C21	222	C24	C25	C27	52	C30	537 1	C38	c33	C34 C30	640	c35	c37	C38 C30	c40	c41	543 743	c44	c45	c47	C47	c48 c50	c51	C23	c54	cc3	c58
	% Identity	between Stv1A and	a ^e Stx2φ-II ^a (aa)	68 <u>100 (568)</u> 14 <u>100 (714)</u>	35 <u>100 (335)</u> 77 <u>100 (162)</u>	27 100 (227)	29 100 (129) 62 100 (162)	23 100 (223)	16 100 (216) 45 100 (645)	29 100 (129)	93 100 (93)	67 <u>100 (567)</u> 22 100 (422)	75 100 (75)	00 100 (202)	33 100 (133)	18 100 (218)	48 <u>100 (148)</u> 83 100 (83)	$21 \frac{100 (62)}{100 (421)}$	06 99 (2,565)	62 <u>100 (62)</u> 14 <u>100 (114)</u>	49 100 (249)	70 100 (70)	56 <u>100 (156)</u> 22 100 (122)	94 100 (94)	19 <u>100 (219)</u> 94 100 (94)	73 100 (73)	09 <u>100 (209)</u> 44 100 (444)	99 100 (99)	03 <u>100 (103)</u> 21 <u>100 (121)</u>	07 100 (207)	95 100 (95)	$\begin{array}{c} 72 \\ 05 \\ 100 \\ 100 \\ 05 \\ 100 \\ 05 \\ 05 \\$	55 100 (155)	16 100 (116)	73 100 (73) 73 100 (73)	93 100 (93)	63 <u>100 (63)</u> 62 <u>100 (62)</u>	26 100 (226)	01 100 (201) 38 100 (138)	89 100 (89)
			op a:	255 51 399 7.	564 3. 121 1.	301 2.	240 L 757 1(304 27	954 2. 188 6/	129 U	187	107 77 4	202	2 7 11 3 2 7 7	247 247	994 2	2 143 20 1-	980 4, 104	131 2,80	902 82	395 -	146	892 748 1	119	287 77 287	153	122 17 2/ 17	580	1 T T T T T T T T T T T T T T T T T T T	208 - 1 208 - 20	325	214	51 1: 51 1:	567 1	191 2. 197	180	513	716 2.	1.1	555
	Stv1.4	φ τ γις	rt St	52 11 55 33	57 4: 88 51	18 58 57	20 20 20	33 75	04 51 05	70 101 X	06 104	04 12 ⁴ 14 136	38 135	70 15/	43 162	38 169	97 17 ² 53 177	15 185	11 274	14 275 26 275	46 293	58 284	62 288 80 295	35 30(46 292 56 301	74 304	51 30. 319	79 332	61 33(26 34(21 342	12 349	32 352	41 JJ-	17 365	64 55 82 367	62 37(64 37. 25 375	96 37.	00 391	24 395
			F Sta	$^{+}_{12}$	35. 45 <u>5</u>	51.5	.90 120) (000	2 73(+ 22	9 1020	0 1070 1240	2 137.	5 139 1 146'	5 158	5 163.	8 169 1745	177.	1 190	8 277	9 286	3 286	1 293(7035	1 297.	304	306	313.	335	1 3391	3492	1 352	354	7 361	8 362	3698 3698	373(1015 1 2775	1 3839	396(398.
			OR	B0 B1	B3	B5 D7	9 g	BI	B1	BI	B16	R2 R	BZ	д Å	BZ	B2(B2 B2	B3(B3)	B3	B33 P32	B3(b33	b34 R4(A	b35 h36	b37	b38 h3G	p40	140 140 140	4 64 64	b4	544 546	£ ₹	B4(047 D5C	b51	b53	b54	15d	b5t

3968 NOTES

-Continued
4
TABLE

$ \begin{array}{c} 100 (54) \\ 99 (122) \end{array} $	42 (127)	71 (212) 69 (71)	96 (98) 98 (299)	99 (413)			43 (148)	32 (158) 98 (58)	82 (104) 82 (241)		90 (203) 78 (50)	100 (315)	100 (89)	(00(89))	59 (61) 67 (656)	91 (648)	100 (296)	100 (108)	79 (148)	$\begin{array}{c} 91 \ (81) \\ 100 \ (71) \end{array}$	95 (71)	96 (177) 94 (189)	84 (133)	(10) 7/ 96 (97)	~		-
_		m																_									10-0
Phage lambda CIII Phage lambda Ea10	Phage HK97 N	Phage lambda CI Salmonella enterica serovar Typhimuri	bacteriophage ST64T Cro Phage HK022 CII Phage HK022 O	Phage HK022 P			Bacteriophage 21 NinB	DNA adenine methyltransferase Bacteriophage P22 NinE	Phage P22 Ant Phage HK022 Roi		Phage lambda Nin G Phage lambda Nin H	Q StxA1 subunit	StxB1 subunit StxA2 subunit	StxB2 subunit	S. dysenteriae hypothetical protein	S. sommer bacteriophage 7888	hypothetical protein IS <i>1203</i> v ORFb	IS1203 v ORFa	S. sonnei bacteriophage 7888	hypothetical protein S. dysenteriae hypothetical protein S. sonnei bacteriophage 7888 S	S. dysenteriae S	<i>S. sonnei</i> bacteriophage 7888 R <i>S. sonnei</i> bacteriophage Ant	S. sonnei bacteriophage 7888 Rz	Phage lambda KZI Phage lambda Bor)		
10057 10056	10054	H0052 H0051	10050 10049	10048	10045	H0044	10042 10042	10041 10040		10039	10037 10036	10035 10034	10033		C2001	70001	10021	H0020	10030	10029		H0028 H0027	10026				
(0088 <u>100 (54)</u> F (0089 <u>98 (122)</u> F	10091 47 (90) F	1 I I I I I I I I I I I I I I I I I I I	H (86) 06 9000 H (98) 14	[0099 F	0100 0101 98 (92) F	10102 98 (71) H	10102 100 (78) F 10104 99 (148) F	[0105 100 (175) F [0106 100 (58) F	0108	100 (135) H	0109 100 (201) F 0110 100 (54) F	0111 <u>100 (157)</u> H <u>100 (315)</u> H	0117 100 (89) F	0113	$\frac{100\ (107)}{100\ (648)}$	1 (0+0) 001 CITO	$(0116 \ 100 \ (296)^d$ F	$(0117 99 \ (108)^d $ F	100 (81) F	(0121 100 (71) F		[0122 <u>100 (177)</u> F [0123 <u>100 (189)</u> F	[0124 <u>96 (153)</u> F	0126 98 (01)		0127 0128 0129	
	191 191	анн 162а	н н (б)	⊞ ⊛©]	EE aa		с Ш : с 89 і	E E	– 12) ^d H			H (L)	H p\0	H ((н 	1	H p(90	(8) ^d H		H ()	1	нн Н	H :	1 1 1 1 1	i Seci		
100 (5/ 100 (12	100 (9(99 (2) 100 (7)	<u>100 (98</u>	100 (4 100 (1	100 (85 100 (92	100 (7		98 (17 100 (58	100 (22		96 (2) 100 (5/	97 (1:	100 (31	100 (89	08 (41	1) 00	100 (29	100 (1(81 (13	100 (7)		100 (1) 100 (18	100 (1:	100 (9.	100 (8)	100 (20 100 (38 100 (13	-
L0077 L0078	L0080	L0085 L0086	L0087 L0088	L0089	1.0001	orf 6^c	L0093	11°	L0096		L0097 L0098	L0099	I 0103	L0104	1 0105	TUIN		JEC JEC	L0106	L0107		L0108 L0109	L0110	L0110 L0111	01101	L0112 L0113	1
98 (54) 98 (122)	41 (127)		98 (98)		100 (92)	97 (71)	99 (181) 99 (181)	98 (175) 85 (27)	88 (242) ^d		96 (201) 100 (54)	97 (157)	100/310)d	$100(89)^d$	01 (648)	(0+0) TC		100 (50)	79 (148)	100 (71)		$\frac{100\ (177)}{100\ (189)}$	100 (154)	<u>100 (97)</u>	100 (81)	<u>100 (268)</u> 100 (568)	
$\vee \vee \vee$	$\vee \vee \vee$	/ V /	$\wedge \wedge$	$\land \lor$	$\wedge \wedge$. ^ /	ΛΛ.	$\wedge \wedge$	$\land \land$	\wedge	ΛΛ	$\wedge \wedge$	$\wedge \wedge$		V /	\	V	V /	\land	Λ		$\wedge \wedge$	\wedge	ΛV	\wedge	$\land \land$,
cIII ea10	Ν	cl cro	$_{O}^{cll}$	Ρ			ninB	dam ninE	ant roi		ninG ninH	$\begin{array}{c} Q \\ stxA_1 \end{array}$	$stxB_1$	$stxB_{2}$	z vih C	culk				S	I	R ant	R_Z	bor			
54 122	00 114 172	231 231 71	98 214	483 138	92 92	12.00	00 181	60 60	244 242		201 54	157	310	89	634	100	296	108	148 148	71		$177 \\ 189$	154	10 10	81	268	
39667 39904 40455	40765	42789 43775	44213 45029	46709 44855	46978 47327	47675	4/922	48849 49028	50037 50834		51439 51630	52057	53800	54081	26477	7/+00	56279	57166	58446	58738		59276 60116	60734	c/ 9009	61412	62274 1255	į
39831 40272	41109 412287	43484 43560	43917 44385	45258 45271	46709 47049	47460	47780	48322 48846	49303 50106		50834 51466	51584	52841	53812	24568	000+0	57169	57492	58000	58523		58743 59547	50270	51059	51167	51468 52255	
c59 c60	c01 c62	C64	C58 C58	C60	C61 C62	C63	525 265	, , 690	C69 C69		220 C20	C72	223	C45	CTS		c73	c74 090	32	C82		82 83 87 83	C85	5 8 8 8	C87	88	
<u>100 (54)</u> 100 (122)	100 (144) 100 (144)	<u>100 (1/3)</u> 100 (231) 100 (71)	<u>100 (98)</u> 92 (194)	$\frac{100}{100}$ (483)	<u>100 (89)</u> 100 (92)	100 (71)	100 (80) 100 (181)	98 (175) 100 (58)			96 (201) 100 (54)	97 (157)			807570)	(010) 60		100 (50)	82 (136)	100 (71)		$\frac{100\ (177)}{100\ (189)}$	100 (154)	<u>100 (61)</u> 100 (97)	100 (81)	<u>100 (268)</u> 100 (568)	
54 122	00 114 271	231 231 71	98 299	483 119	89 92	12	00 181	58 58		147	201 54	$\frac{157}{315}$	89		107 648	040		20	139 139	96	1	$177 \\ 189$	154	10	81	268 568	0
39667 39904	40765 40765	41/00 42789 43775	44213 45284	46710 44913	46979 47328	47676	4/925	48850 49023		49427	50194 50385	50812 52266	52545		52606	700000		55210	52605	55898		56436 57276	57894	57926 57926	58572	59434 1255	Ì
39831 40272	40/00 41109 42287	43484 43560 43560	43917 44385	45259 45272	46710 47050	47461	4/081 47781	48323 48847		48984	49589 50221	50339	52276		52929	00000		55140	55186	55608		55903 56707	57430	58219 58219	58327	58628 59415	
b59 b60	001 b62	b64 B58	B59 B60	B61 b66	B62 B63	B64	B66	B67 B68		B69	B70 B71	B72 B73	B74		b70 B75	C a		D70	B79	B80		B81 B82	B83	b79 b79	B85	B80 B87	7.1.1

^a Homologous ORF(s) of Stx20-II, 933W (14), VT2-Sakai (7) and VT1-Sakai (21) compared with each ORF of Stx10 are shown as % identity in amino acid residues indicated. Identities higher than 95% are shown b > in buld, and ORFs which are identical to the corresponding ORF in Stx10 are underlined.
 ^b >, rightward transcription; <, leftward transcription in Fig. 1.
 ^c This ORF was reported in reference 3.
 ^d Comparison with Stx20-II.
 ^e a, amino acids.

3970 NOTES

FIG. 2. Comparison of $Stx1\phi$ with other related Stx1-converting phages. The open bars represent portions homologous to $Stx1\phi$, while the different portions of each Stx1-converting phage are cross-hatched. (A) Comparison between $Stx1\phi$ and VT1-Sakai phages; (B) comparison between $Stx1\phi$ and H19B phages. The DNA sequence of VT1-Sakai phage was modified from that reported by Yokoyama et al. (21) for convenience. Note that most regions of $Stx1\phi$ were not homologous to Stx1-converting phages, except for the stx_1 -flanking region.

tations (data not shown). From these data, we conclude that $Stx1\phi$ is closely related to other Stx2-converting phages even at the ORF level.

It is noteworthy that there are several ORFs homologous to those of *Shigella sonnei* phage 7888 (15) and *S. dysenteriae* (8) in the *stx*-flanking regions of $Stx1\phi$ and $Stx2\phi$ -II (Table 1). Recently, an Stx-converting phage was isolated from Stx1-producing *S. sonnei* (L. Beutin, E. Strauch, and I. Fischer, Letter, Lancet **353**:1498, 1999). Treatment with mitomycin C increases Stx production and induces Stx phage from some EHEC (5) and *S. sonnei* (Beutin et al., letter) bacteria. It has been a focus of discussion whether Stx-converting phages in EHEC are derived from *Shigella* species. Our data rather support that Stxconverting phages might be derived from, or at least related to, *Shigella* species.

Nucleotide sequence accession numbers. The entire nucleotide sequences of $Stx1\phi$ and $Stx2\phi$ -II were submitted to DDBJ under accession numbers AP005153 and AP005154, respectively.

We thank G. Balakrish Nair for critical reading of the manuscript. This work was supported by the Organization for Pharmaceutical Safety and Research.

This work formed a part of the Ph.D. thesis of T. Sato.

REFERENCES

- Fuchs, S., I. Muhldorfer, A. Donohue-Rolfe, M. Kerenyi, L. Emody, R. Alexiev, P. Nenkov, and J. Hacher. 1999. Influence of RecA on *in vivo* virulence and Shiga toxin 2 production in *Escherichia coli* pathogens. Microb. Pathog. 27:13–23.
- Grif, K., M. P. Dierich, H. Karch, and F. Allerberger. 1998. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic *Escherichia coli* O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 17:761–766.
- Karch, H., H. Schmidt, C. Janetzki-Mittmann, J. Scheef, and M. Kroeger. 1999. Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol. Gen. Genet. 262: 600–607.
- Kimmit, P. T., C. R. Harwood, and M. R. Barer. 2000. Toxin gene expression by Shiga toxin-producing *Escherichia coli*: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6:458–465.
- Kohler, B., H. Karch, and H. Schmidt. 2000. Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from *Escherichia coli* strains. Microbiology 146:1085–1090.

- Kusumoto, M., Y. Nishiya, Y. Kawamura, and K. Shinagawa. 1999. Identification of an insertion sequence, IS1203 variant, in a Shiga toxin 2 gene of *Escherichia coli* O157:H7. J. Biosci. Bioeng. 87:93–96.
- Makino, K., K. Yokoyama, Y. Kubota, C. H. Yutsudo, S. Kitamura, K. Kurokawa, K. Ishii, M. Hattori, I. Tatsuno, H. Abe, T. Iida, K. Yamamoto, M. Onishi, T. Hayashi, T. Yasunaga, T. Honda, C. Sasakawa, and H. Shinagawa. 1999. Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic *Escherichia coli* 0157:H7 derived from the Sakai outbreak. Genes Genet. Syst. 74:227–239.
- McDonough, M. A., and J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in *Shigella dysenteriae* 1. Mol. Microbiol. 34:1058–1069.
- Miyamoto, H., W. Nakai, N. Yajima, A. Fujibayashi, T. Higuchi, K. Sato, and A. Matsushiro. 1999. Sequence analysis of Stx2-converting phage VT2-Sa shows a great divergence in early regulation and replication regions. DNA Res. 6:235–240.
- Neely, M. N., and D. I. Friedman. 1998. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223:105–113.
- Neely, M. N., and D. I. Friedman. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28:1255–1267.
- O'Brien, A. D., J. W. Newland, S. F. Miller, R. K. Holmes, H. W. Smith, and S. B. Formal. 1984. Shiga-like toxin-converting phages form *Escherichia coli* strains that cause hemorrhagic colitis or infantile diarrhea. Science 226:694– 696.
- Paton, J. C., and A. W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing *Escherichia coli* infections. Clin. Microbiol. Rev. 11:450–479.
- Plunkett, G. I., D. J. Rose, T. J. Durfee, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from *Escherichia coli* O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:1767–1778.
- Strauch, E., R. Lurz, and L. Beutin. 2001. Characterization of a Shiga toxin-encoding temperate bacteriophage of *Shigella sonnei*. Infect. Immun. 69:7588–7595.
- Strockbine, N. A., L. R. M. Marques, J. W. Newland, H. W. Smith, R. K. Holmes, and A. D. O'Brien. 1986. Two toxin-converting phages from *Escherichia coli* O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun. 53:135–140.
- Takao, T., T. Tanabe, Y.-M. Hong, Y. Shimonishi, H. Kurazono, T. Yutsudo, C. Sasakawa, M. Yoshikawa, and Y. Takeda. 1988. Identity of molecular structure of Shiga-like toxin I (VT1) from *Escherichia coli* O157:H7 with that of Shiga toxin. Microb. Pathog. 5:357–369.
- Watarai, M., T. Sato, M. Kobayashi, T. Shimizu, S. Yamasaki, T. Tobe, C. Sasakawa, and Y. Takeda. 1998. Identification and characterization of a newly isolated Shiga toxin 2-converting phage from Shiga toxin-producing *Escherichia coli*. Infect. Immun. 66:4100–4107.
- Wong, C. C., S. Jelacic, R. L. Harbeeb, and S. L. Watkins. 2000. The risk of the hemolytic-uremic syndrome after antibiotic treatment of *Escherichia coli* O157:H7 infections. N. Engl. J. Med. 342:1930–1936.
- 20. Yoh, M., E. K. Frimpong, and T. Honda. 1997. Effect of antimicrobial agents,

especially fosfomycin, on the production and release of vero toxin by enterohaemorrhagic *Escherichia coli* O157:H7. FEMS Immunol. Med. Microbiol. **19:**57–64.

21. Yokoyama, K., K. Makino, Y. Kubota, M. Watanabe, S. Kimura, C. H. Yutsudo, K. Kurokawa, K. Ishii, M. Hattori, I. Tatsuno, H. Abe, M. Yoh, T. Iida, M. Ohnishi, T. Hayashi, T. Yasunaga, T. Honda, C. Sasakawa, and H. Shinagawa. 2000. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic *Escherichia coli*

O157:H7 strain derived from the Sakai outbreak. Gene 258:127-139.

- Yutsudo, T., N. Nakabayashi, T. Hirayama, and Y. Takeda. 1987. Purification and some properties of a vero toxin from *Escherichia coli* O157:H7 that is immunologically unrelated to Shiga toxin. Microb. Pathog. 3:21–30.
- Zhang, X., A. D. McDaniel, L. E. Wolf, G. T. Keusch, M. K. Waldor, and D. K. A. Acheson. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181:664– 670.