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Genetic epidemiological studies strongly suggest that additive and interactive genes, each with small
effects, mediate the genetic vulnerability for schizophrenia. With the human genome working draft at
hand, candidate gene (and ultimately large-scale genome-wide) association studies are gaining renewed
interest in the effort to unravel the complex genetics of schizophrenia. In the absence of an unequivocally
established biological theory for schizophrenia, identifying candidate genes to be tested in an association
paradigm remains a challenging task. We maintain that it is possible to use animal models to map genes or
loci involved in behavioural traits that are relevant to schizophrenia. The human genes (or syntenic loci)
homologous to those identified in mice can subsequently be tested in patients with schizophrenia who
have been carefully phenotyped for traits “isomorphic” to the ones modelled in mice. If confirmed in
humans, these genes may be further analyzed in the animal model to identify their role and the biological
network they are involved in. To tackle the complex and intimidating problem of the genetics of schizo-
phrenia, it may be necessary to go from animal models to human studies and vice versa; this strategy has
been proven to be efficient in less complicated, though complex, human diseases.

Des études d’épidémiologie génétique indiquent fortement que des gènes additifs et interactifs, dont
chacun a des effets minimes, interviennent dans la vulnérabilité génétique à la schizophrénie. Comme on
dispose d’une copie de travail du génome humain, les études d’association de gènes candidats (qui devien-
dront éventuellement des études à grande échelle sur le génome au complet) suscitent un intérêt renou-
velé à l’égard de l’effort déployé pour dénouer la génétique complexe de la schizophrénie. Comme il n’y a
pas de théorie biologique sans équivoque sur la schizophrénie, l’identification de gènes candidats à analyser
dans le contexte d’un paradigme d’association demeure un grand défi. Nous soutenons qu’il est possible
d’utiliser des modèles animaux pour cartographier des gènes ou des lieux impliqués dans les caractéris-
tiques comportementales pertinentes à la schizophrénie. Les gènes humains (ou lieux synténiques) homo-
logues à ceux qu’on a identifiés dans les souris peuvent par la suite être analysés chez des patients atteints
de schizophrénie dont on a établi avec soin le phénotype de traits «isomorphes» par rapport à ceux qui
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Introduction

Family,1 twin2 and adoption studies3,4 provide over-
whelming evidence for a significant genetic role in the
pathogenesis of schizophrenia, yet no specific genes
implicated in increasing the risk for this disorder have
been identified. Although the recent sequencing of the
human genome, combined with the development of
high throughput technology, provides more potential
for scientific advancement in this field,5 new ap-
proaches to the problem of gene discovery in schizo-
phrenia may be needed. In this paper, we present an
approach that combines animal models to identify can-
didate genes relevant for schizophrenia with human
association studies to test the human homologues of
the genes identified in those animal models. We hope
that this approach to the complex genetics of schizo-
phrenia will help to identify the elusive genes that
increase the susceptibility to this disorder.

Although genetic linkage studies have been heavily
advocated and used to identify susceptibility genes in
the last 2 decades, results of genetic epidemiology stud-
ies indicate that it would be very difficult to identify
genes for schizophrenia using linkage approaches. First,
the observed familial clustering of schizophrenia can
not be explained by the transmission of 1 (or a few)
major gene(s).6–8 On the contrary, the pattern of distribu-
tion of the risk for schizophrenia in relatives of patients
with schizophrenia is consistent with an oligogenic9 or
multifactorial polygenic2,10,11 mode of transmission. Sec-
ond, it has been elegantly demonstrated that people
carrying genes predisposing to schizophrenia do not
necessarily express the disease, indicating that predis-
posing genes are not sufficient to induce a full-blown
disorder.12 Furthermore, carriers of genetic risk factors
(e.g., nonaffected relatives of those with schizophrenia
and, particularly, obligate carriers) may express a myr-
iad of abnormal behaviours and psychobiological traits,
indicating that the dichotomous phenotypic outcome
(schizophrenia v. no schizophrenia) typically used in
linkage studies is but a very gross phenotypic reflection
of the genotypic structure of schizophrenia. These traits

include schizotypal personality traits, eye-tracking
abnormalities, sensorimotor-gating deficits and other
characteristics that are mainly quantitative in nature
and would better be analyzed with quantitative genetic
trait approaches. Third, despite tremendous efforts to
identify clinical subsyndromes that are transmitted
according to a mendelian pattern (that “breed true”)
within the constellation of schizophrenia, this line of
research has not yielded satisfactory answers.7

These well-replicated observations suggest that the
genetic susceptibility to schizophrenia may be displayed
as a wide spectrum of phenotypic expressions ranging
from an apparently normal phenotype (incomplete pen-
etrance), to subtle behavioural or neurophysiological
deviances (variable expressivity), to fully expressed
schizophrenia. This contrasts with the much simpler
one-to-one relation between genes and phenotypes that
characterizes mendelian disorders. Hence, it is not sur-
prising that efforts aimed at identifying susceptibility
genes for schizophrenia using methods designed to
identify genes with major effects (i.e., mendelian disor-
ders) have not been successful. Indeed, a number of
linkage studies in schizophrenia, including genome-
wide screens,13,14 have yielded negative or inconclusive
results.15 Although some of these results are promis-
ing16,17 (see also review by Riley and McGuffin18), repli-
cating them and narrowing the linked chromosomal re-
gions to small intervals suitable for positional cloning of
the mutated gene(s) remain challenging tasks.19

The chain of events linking the causative factors
(genetic or environmental) implicated in schizophrenia
and the final pathologic state of the brain is relatively
unknown. Here, our understanding is limited to a few
hypotheses that have been suggested mainly through
the so-called pharmacological bridge (i.e., the assump-
tion that the brain neurotransmitter pathways affected
by drugs effective in reducing symptoms of schizo-
phrenia may be implicated in the pathogenesis of the
disease). Although this approach has been productive
for some disorders (e.g., dopa-sensitive dystonia20),
lessons from other disorders such as Parkinson’s dis-
ease indicate that the therapeutic pathway and the

ont été modélisés chez la souris. S’ils sont confirmés chez les êtres humains, on pourra analyser plus à fond
ces gènes dans le modèle animal pour déterminer leur rôle et le réseau biologique où ils interviennent.
Pour s’attaquer aux problèmes complexes et intimidants que pose la génétique de la schizophrénie, il peut
être nécessaire de passer des modèles animaux aux études humaines et vice versa. Cette stratégie s’est
révélée efficace dans le cas de maladies humaines moins compliquées mais tout de même complexes.



genetic causative pathway may be distinct.21,22 The most
researched hypothesis based on the pharmacological
bridge in schizophrenia is the dopamine (DA) hypoth-
esis. On the basis of the fact that DA antagonists, par-
ticularly DA receptor 2 blockers, reduce psychotic
symptoms in most patients affected with schizophre-
nia,23 it was postulated that DA dysregulation may
play a role in the pathogenesis of schizophrenia. How-
ever, although this and other observations24,25 support
the DA hypothesis of schizophrenia, other findings,
including the fact that negative symptoms are not alle-
viated by DA antagonists, suggest that DA dysregula-
tion is only a part of a more complex network of brain
dysfunction. In particular, it remains unclear whether
DA dysregulation is a necessary and sufficient event
for the development of schizophrenia or whether it is
only one of the potential routes of neurochemical alter-
ations associated with some, but not all, of the phe-
nomenological aspects of schizophrenia.

The consequence of this poor understanding of the
pathophysiology of schizophrenia is that it is difficult
to select highly relevant candidate genes for the pur-
pose of candidate gene testing. Indeed, without strong
a priori knowledge of the involvement of a specific bio-
logical pathway in the pathogenesis of a disease, the
selection of candidate genes remains a “fishing expe-
dition.” Previous research involving candidate genes
reflects these difficulties. Most association studies con-
ducted in the past 15 years have focused primarily on
genes coding for proteins involved in brain DA or sero-
tonin neurotransmission. Overall, the results emerging
from this literature are difficult to interpret because of
several limitations, both methodologic (e.g., small sam-
ple sizes, different clinical characteristics of the samples
and lack of matching between cases and controls with
regard to ethnicity) and conceptual ones (e.g., absence
of strong implication of these genes in the pathogenesis
of schizophrenia). For example, the genes for DA re-
ceptor 326–43 and for serotonin receptor 2A (5-HT2A)44–50

were very widely investigated in association studies,
but their roles in producing schizophrenia or in modi-
fying its phenotype are unclear.

Despite these difficulties, leading genetic statisticians
argue that association studies are the method of choice
to detect genes with small effects in complex disorders,
in general,51–53 and in psychiatric disorders, in particu-
lar.54 This is especially true given the wealth of genetic
information available from the recently completed
human genome sequence55,56 and the ever-growing

information on its variations.56,57 The promise of this
approach in deciphering the genetics of complex dis-
eases has been buttressed with a flurry of new statisti-
cal techniques aimed at correcting or circumventing
several of the problems associated with classical
case–control association studies.

However, to facilitate the identification of suscepti-
bility genes using association approaches in schizo-
phrenia, several questions and considerations need to
be addressed.

First, what priority should be given to the genes to be
tested? There are at least 2 answers to this question. It is
possible to use “brute force” to do high throughput
genome-wide linkage disequilibrium mapping in a
large sample of patients with schizophrenia. Although
this approach has proven to be effective for some other
complex disorders,58,59 it may represent a difficult task in
schizophrenia research because of the prohibitive num-
ber of cases and controls (i.e., parents or unrelated
subjects) that need to be collected. This comprehensive
approach may be the ideal aim in the long run, but
more attainable objectives may be achieved by focusing
on highly relevant candidate genes for schizophrenia.
However, given our limited knowledge of the patho-
genesis of schizophrenia, we need to develop new
experimental approaches to achieve this aim. We main-
tain that it is possible to use animal models to identify
highly relevant candidate genes for schizophrenia and
will illustrate this approach using prepulse inhibition
(PPI) of startle as a behaviour, which has been reported
to be deficient in patients with schizophrenia, their non-
affected relatives and patients with schizotypal person-
ality disorder.60,61 Loci or genes involved in the modu-
lation of this behaviour can be identified in mouse
models, and the human homologues of these genes
tested in patients with schizophrenia.

Second, even with highly relevant and trait-targeted
candidate genes at hand, confirming (or refuting) their
role in schizophrenia may be a daunting task. This is
because schizophrenia is believed to be a heteroge-
neous condition at both the clinical and genetic levels.
Clinical approaches aimed at reducing this heterogene-
ity may well be a cornerstone in the strategy of identi-
fying susceptibility genes in schizophrenia. We will ar-
gue that phenotyping patients with schizophrenia with
regard to marker traits that are isomorphic to traits
modelled in animals for the purpose of identifying can-
didate genes may help to decipher the genetic basis of
these traits and, thus, the genetics of schizophrenia.
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The third question is of wider scope but highly
significant for genetic research in schizophrenia and
mental disorders in general. The fact that there is a
strong genetic contribution to schizophrenia is now be-
yond doubt. The fact that no major genes are involved
in schizophrenia is becoming more widely accepted,
though a few exceptions might exist that remain to be
identified.16,62 It is therefore possible that most cases of
schizophrenia will be secondary to a multitude of addi-
tive or a few interacting genes. This raises the issue of
whether the identification of these genes will have pro-
found implications on the way we diagnose, treat and
prevent schizophrenia. In other words, what would
change in the clinic after our gene hunting (on “small
prey,” some skeptics would say) is finished? Here
again, in contrast to simple mendelian disorders, the
relative importance of genetic variants in the pathogen-
esis of the disorder may be very difficult to elucidate
for the same reasons that render linkage studies diffi-
cult in schizophrenia (i.e., low penetrance, variable ex-
pressivity). We believe that starting from animal mod-
els for targeted traits and using a system that allows
the study of individual genes, one by one, in these ani-
mal models may give us tremendous leverage to fur-
ther study the effects of the genes (identified in animals
and confirmed in humans) on different brain systems,
at different developmental stages and in different com-
binations, as allowed by breeding and introgression
techniques (as well as gene manipulation techniques).

Identifying candidate genes or loci 
in animal models

Genetic tools: the quantitative trait locus approach

It is now well recognized that tremendous advances in
mouse genetics, combined with well-developed tools of
behavioural analyses, offer unprecedented opportunities
to dissect the genes underlying complex neuronal sys-
tems and the behaviours that are mediated by these sys-
tems. The 2 major approaches used to study how genes
modulate behaviour are distinguished by whether the
starting point of the analysis is genes or behavioural
phenotypes (for review, see Tecott and Wehner63). Those
starting with gene manipulation (knock-out and knock-
in technologies) seek to determine the behavioural
changes induced by the modified expression of a target
gene. Those that begin with the behaviour currently
include 2 major methods. The first involves random

mutagenesis and identifying the deviant behavioural
phenotypes and subsequent positional cloning of the
mutation responsible for the behavioural deviations.
The second is identifying the genetic loci and genes re-
sponsible for a natural variation in a given behavioural
phenotype, a method referred to as quantitative trait lo-
cus (QTL) analysis. Although these different approaches
are complementary and may shed light on different
aspects of the genetics of traits relevant for schizophre-
nia, in this paper, we focus on the latter approach, which
we elected to use in an attempt to dissect the genetic
complexity of schizophrenia.

In contrast to simple mendelian dichotomous disor-
ders caused by rare and highly penetrant mutated
genes, complex behavioural disorders are more likely
to be caused by multiple, weakly penetrant and highly
prevalent genetic variants, which lead to a cluster of
clinical manifestations often grouped in syndromes.
Some of the manifestations of these complex disorders
may be quantitative traits and represent extremes of a
normal distribution. The method aimed at identifying
the genetic underpinnings of these quantitative traits,
quantitative trait locus (QTL) mapping, was developed
mainly in plants and livestock to enhance some of their
economically important characteristics. The basic idea
in QTL mapping is that, if 2 parental strains of animals
differ with respect to a trait, it is possible to map the
genes involved in this trait by correlating the pheno-
types and the genotypes in the progeny derived from
different crosses of these parental lines. This is possible
because alleles that differ between the 2 parental lines
will be surrounded by different segments of DNA
identical by descent.64 In our studies, we are using re-
combinant congenic lines (RCLs) of mice derived from
2 parental lines (i.e., A/J and C57BL/6J) and devel-
oped by Skamene et al as a tool to dissect the genetics
of complex disorders.65 These lines have proven suc-
cessful in linkage mapping of many complex traits, in-
cluding infectious diseases66 and cancers.67,68 RCLs are
obtained by first crossing a donor inbred parent to a re-
current inbred line to form a hybrid first-generation F1.
The resulting offspring are then back-crossed to the re-
current parent for several generations (usually 2 gener-
ations for mouse RCLs). Animals are then repeatedly
sib-mated (for at least 20 generations) to form the final
recombinant inbred line. After this breeding scheme, a
panel of congenic inbred lines with a small proportion
of the donor parent genome introduced on the recur-
rent parental genome is generated. Each of these



inbred lines contains 1 or more small regions of DNA
from a donor parent in an otherwise standard back-
ground of a recurrent parent (e.g., A/J donor on
C57BL/6J recurrent parent or C57BL/6J donor on A/J
recurrent parent). The RCL system transforms a multi-
genic trait into a series of single gene traits, where each
gene contributing to the multigenic control of the trait
can be mapped and studied separately. Most impor-
tantly, RCLs are a unique resource for correlative
phenotypic studies because they represent inbred
“immortalized” replicas of the appropriate chromo-
somal recombinations that led to the informative phe-
notypes. Hence, they are an ideal system to identify the
molecular and cellular underpinnings of target behav-
ioural traits across the lifespan of the animals.69

Deficit in prepulse inhibition: a relevant behavioural
trait for schizophrenia

Of critical importance to the concept of using animal
models to search for genes predisposing to schizophre-
nia is the choice of phenotype to be used in the animal
model and its relevance to schizophrenia. The goal is
certainly not to model schizophrenia in its entirety, a
formidable and likely impossible task. Rather, the goal
is to model a discrete physiological or neurochemical
mechanism that has relevance to the pathophysiology
of schizophrenia, has cross-species validity from hu-
man to the animal and can be objectively and reliably
measured in the animal model (for review see Swerd-
low et al70). Several traits that have been studied in pa-
tients with schizophrenia and in animals may fulfill
some of these criteria. In our studies, we have been
using prepulse inhibition of acoustic startle as such a
model. This model has been extensively studied71–76 and
has face, predictive and construct validity.77

The acoustic startle response consists of a strong
activation of antagonistic muscle groups throughout
the body in response to a sudden, relatively intense
acoustic stimulus. Prepulse inhibition (PPI) refers to an
inhibition of the startle response when a low-intensity
stimulus, the prepulse, precedes the startling stimulus
(by 30–500 ms). PPI is a form of sensorimotor gating
that is widely conserved across mammalian species
and carries the advantage that it can be measured un-
der nearly identical conditions in humans and experi-
mental animals.75 Deficits in sensorimotor gating in
schizophrenia have been demonstrated in several para-
digms including studies of habituation,73 gating of P50

event-related potentials78 and numerous independent
studies of PPI of startle.73,75,78–84 Convergence of results
from these studies support sensorimotor gating theo-
ries of schizophrenia, which suggest that impaired sen-
sory gating leads to sensory overload and cognitive
fragmentation in schizophrenia.

The relevance of PPI deficits to the clinical syndrome
of schizophrenia is supported by recent studies
demonstrating that PPI deficits in patients with schizo-
phrenia are associated with core cognitive symptoms
such as thought disorder and distractibility,85,86 with
neuropsychological measures of perseveration in the
Wisconsin Card Sorting Test87 and with measures of
illness severity (e.g., number of admissions to hospital,
chlorpromazine equivalents80,84,88 and age at onset82).
Given these correlations, it has been hypothesized ei-
ther that deficits in PPI contribute directly and mecha-
nistically to clinical symptoms in schizophrenia or that
abnormalities in the same neural circuitry are responsi-
ble for deficits in PPI and clinical symptoms of schizo-
phrenia. Importantly, PPI does not appear to be a sec-
ondary consequence of gross behavioural impairment
accompanying the schizophrenia phenotype; PPI
deficits are also observed in nonmedicated persons
with schizotypal personality disorder60,61 as well as in
nonaffected relatives of patients with schizophrenia.61

Extensive animal studies, particularly in rats, have
delineated that the neural circuitry involved in the
modulation of PPI includes limbic cortical regions such
as the medial prefrontal cortex and hippocampus, the
nucleus accumbens (ventral striatum) and globus pal-
lidus (reviewed in Swerdlow and Geyer75). These re-
gions have been implicated in the pathophysiology of
schizophrenia in morphological and in structural and
functional imaging studies. As well, neurotransmitter
systems that modulate PPI (e.g., DA, glutamate, sero-
tonin) are also potent modulators of psychotic symp-
toms.75 Thus, PPI may be a valuable mechanism to
probe neural substrates of schizophrenia and possibly
other mental disorders where it has been shown that
PPI is deficient.89–91

Some illustrative results

Detailed results of the initial step of mapping of QTLs
involved in the modulation of the acoustic startle and
PPI, using RCLs from A/J and C57BL/6J parental
lines, are now in press.92 Here, we report some illustra-
tive results and discuss them from the general perspec-
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tive of integrating results of animal and human studies
to understand the genetics of schizophrenia. 

The A/J and C57BL/6J parental lines showed signifi-
cant (p < 0.05) differences in PPI magnitude at several
prepulse intensities. All RCLs with A/J background,
whose PPI was significantly different from that of the
parental A/J line, showed an increase in this trait, ir-
respective of the intensity of the prepulse used. Con-
versely, almost all the lines with C57BL/6J back-
ground, whose PPI deviated significantly from their
parental phenotype, showed a decrease in this trait.
These observations suggest that alleles responsible for
increased PPI in the C57BL/6J parental line (compared
with the A/J line) segregated in some RCLs with A/J
background to increase their PPI compared with the
parental phenotype; conversely, alleles responsible for
decreased PPI in the A/J inbred line segregated in
some of the lines with the C57BL/6J background to de-
crease their PPI. No strain differed dramatically from
the others, suggesting that no genes with major effects
segregated in any of the lines. These results also sug-
gest that genes with major effects are unlikely to be in-
volved in the control of PPI and that genetic control of
this trait resides, instead, at a number of QTLs.

Our provisional mapping of QTLs indicates that
there are at least 7 loci involved in the modulation of
PPI across a wide range of prepulse intensities. Of
these QTLs, 4 (on chromosome [chr] 2, 3, 7 and the
proximal QTL on chr 16) appear to be associated with a
decrease in PPI in animals with the C57BL/6J genetic
background, 1 (on chr 11) with an increase in PPI in an-
imals with the C57BL/6J background and 2 (on chr 5
and distal chr 16) with an increase in PPI in animals
with the A/J background. Other QTLs (on chr 6, 14, 15,
18) were found to have effects on PPI restricted to
midrange prepulse intensities.

These data provide valuable information on homolo-
gous candidate genes and loci in humans. For this pur-
pose, we used the Mouse Genome Database (www
.informatics.jax.org/searches/linkmap_form.shtml) to
generate a mouse–human comparative map at the loci
identified in the mouse PPI experiments. Our aim was
to use this information along with other published lit-
erature on the genetics of schizophrenia to generate
testable hypotheses. We therefore selected candidate
genes in human loci syntenic (i.e., loci with conserved
genomic structure between 2 species) to the QTLs
mapped in mice according to 2 criteria. First, the
mouse gene had to be homologous (or orthologous) to

a human gene present in a locus previously linked to
schizophrenia (either a relatively high lod score or
modest lod scores but replicated in at least 2 indepen-
dent studies) or the mouse gene had to be a homologue
to a human gene that has been reported to be associ-
ated with schizophrenia in more than 3 independent
studies. Second, the mouse gene, its human homologue
or both had to have been implicated in sensory gating
regulation. Doing so, we maximize the probability of
the selected gene being a good candidate gene for
schizophrenia by bringing together 3 sources of infor-
mation: mapping in mice, functional relevance to PPI
and mapping in patients with schizophrenia.

We provide, here, 2 examples of genes, identified dur-
ing our preliminary homology map analyses, meeting
these criteria. The first is the adrenergic receptor kinase
beta 2 (Adrbk2) gene. Also known as G-protein coupled
receptor kinase 3, this kinase mediates agonist-depen-
dent phosphorylation and desensitization of β-adrener-
gic and several other G-protein coupled receptors (e.g.,
α2-adrenergic, muscarinic cholinergic, kappa opioid,
neurokinin I, corticotropin releasing factor and cannabi-
noid I receptors). Adrbk2 maps within 2 cM (centimor-
gan) of marker D5Mit338, which was associated with in-
creased PPI on the A/J genetic background. The human
homologue of this mouse gene, ADRBK2, maps to band
22q11, a locus associated with schizophrenia on the basis
of linkage and other sources of information.93–97 In addi-
tion, an important body of literature indicates that
adrenergic receptors may modulate PPI in rodents.98–100

Furthermore, the fact that tyrosine kinases are involved
in modifying the sensitivity of the receptor to its binding
molecule as a function of its previous activation (neural
plasticity at the molecular level) makes this gene a very
attractive candidate to be studied as a modulator of PPI,
a behavioural trait responsive to neuronal plasticity. The
convergence of this evidence makes this gene very inter-
esting for further investigation in schizophrenia. 

The second example is the 5-HT2A receptor gene. The
mouse 5-HT2A receptor gene maps to chr 14, 2.5 cM dis-
tal to marker D14Mit114, which is highly associated
with a decreased PPI on the C57BL/6J background.
This is one of the few genes that have been consistently
associated with schizophrenia in several studies46,48 as
well as in a large meta-analysis.45 In our own studies,50

we found that this gene is associated only with the
severe forms of schizophrenia refractory to neuroleptic
medication, forms known to present greater PPI
deficits. Finally, several studies indicate that this gene



is implicated in the modulation of PPI. It is possible
that the association observed between the 5-HT2A

receptor and schizophrenia may be mediated through
the role that this receptor plays in the modulation of
PPI. These observations generate a testable hypothesis
stipulating that schizophrenia with PPI deficits may be
the form of schizophrenia associated with genetic vari-
ants of the 5-HT2A receptor. Hypotheses suggesting that
a gene is associated with a particular subtype or char-
acteristic of schizophrenia, rather than with the dis-
order in its entirety, are becoming increasingly promi-
nent in the study of the genetics of schizophrenia.

Critical role of phenotyping

Even with plausible candidate genes at hand, the
confirmation of their involvement in schizophrenia
remains a complex task. This is mainly because of the
phenotypic heterogeneity of schizophrenia and the
lack of objective definition of the disorder.

Several approaches to reduce this phenotypic hetero-
geneity have been proposed. Among these, the stratifi-
cation of patients according to neurophysiological or
neuropsychological dimensions associated with the
clinical phenotype of schizophrenia has attracted in-
creasing interest. For example, it has been shown re-
cently that a functional polymorphism in the catechol
O-methyltransferase (COMT) gene, Val108/158 Met,
modulates performance on the Wisconsin Card Sorting
Test in normal controls, patients with schizophrenia
and their first-degree relatives.101,102 Other studies have
investigated the association between specific candidate
genes and specific traits such as event-related poten-
tials103 and eye-tracking abnormalities.104 These ap-
proaches represent a very promising avenue of re-
search because they investigate phenotypes that are
possibly closer, along the causal chain of events, to the
susceptibility genes, and because the genetics of these
traits may be accessible to study in animal models.

Another line of research, which can be broadly re-
ferred to as the “pharmacogenetics approach,” is based
on the hypothesis that patients with schizophrenia
who respond to neuroleptics and those who do not
may represent 2 groups of patients with at least par-
tially distinct pathogenesis.105–130 Candidate genes tested
within this paradigm have been mainly selected on the
basis of the so-called pharmacological bridge (i.e., the
assumption that neurochemical pathways involved in
mediating the therapeutic activity of a medication may

also be involved in the pathogenesis of the disorder);
this is particularly so in the subgroup of patients who
respond to a specific pharmacological intervention.

In the last few years, we have recruited, according to
a priori defined criteria, and comprehensively evalu-
ated 2 subgroups of patients with schizophrenia: those
who responded very well to neuroleptic medication
and had a very good long-term outcome (R, n = 43) and
those who did not respond and had very poor long-
term outcome (NR, n = 65). NR patients were signifi-
cantly younger at the onset of the first psychotic symp-
toms and had poorer premorbid functioning than R
patients. NR patients were also more frequently diag-
nosed with disorganized or undifferentiated schizo-
phrenia and spent much longer periods of their lives as
inpatients.131 First-degree relatives of NR patients were
at higher risk for schizophrenia spectrum disorders
(morbid risk [MR] 8.84) than relatives of control sub-
jects (MR 1.52, p < 0.001) and relatives of R patients (MR
2.45, p = 0.013).132 In addition, when compared with R
patients, NR patients with schizophrenia performed
significantly worse in all neuropsychological domains
that we assessed.133 Our molecular genetic studies
strongly suggest that distinguishing these 2 types of pa-
tients may be critical to identifying genes associated
with schizophrenia. Indeed, we have tested for associa-
tion between schizophrenia and several candidate
genes that we selected according to literature suggest-
ing their potential role in schizophrenia and found that
some reported positive associations are, in fact, more
pronounced in the group of nonresponding pa-
tients50,134,135 and that others are specific to responding
patients.136,137 Of particular interest to the approach com-
bining animal models and human studies, a modest but
significant excess of allele 2 of the 5-HT2A receptor gene50

was identified in the group of NR but not in the group
of R patients.137 Given the mapping of the 5-HT2A recep-
tor gene to a region that we linked to decreased PPI in
C57BL/6J mice and the fact that the gene is an impor-
tant player in the modulation of PPI,138–140 it is possible
that this association reflects a disturbance of PPI in the
patients who do not respond to neuroleptic treatment.
One of our future objectives is to test this hypothesis by
comparing patients with and without PPI deficits with
regard to polymorphisms in the 5-HT2A receptor gene.

Conclusion

After the flamboyant success of linkage analysis in
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mapping the gene for Huntington’s disease and then
subsequently cloning it, an enthusiasm for linkage
analysis infiltrated the scientific community working in
the field of genetics of complex human disorders, in
general, and of schizophrenia, in particular. However,
experience accumulated in the last 18 years suggests
that trying to decipher the genetic underpinnings of
schizophrenia using linkage analysis may result in an
echo of the grim adage from the field of neuropathol-
ogy, that “schizophrenia is the graveyard of the pathol-
ogist.” Indeed, it is becoming clear that, as in the field
of neuropathology, where a gross neuropathological
signature of schizophrenia does not exist, major genes
causing schizophrenia do not exist. In addition to clas-
sic factors of complexity related to the non-mendelian
mode of inheritance of schizophrenia, the lack of a phe-
notypic definition based on objective, reliable and re-
producible measurements is one of the major obstacles
in the way of gene discovery. Similarly, because of the
lack of a clear understanding of the pathogenesis of
schizophrenia and the biological pathways that may be
disturbed in this disorder, genetic association studies
have not yet contributed substantially to our under-
standing of the genetics of schizophrenia.

Using animal models to identify genes involved in
phenotypic traits considered to be relevant for schizo-
phrenia may be critical to paving the way for identify-
ing genes that increase the susceptibility to schizo-
phrenia. This approach can improve the selection of
candidate genes on the basis of their involvement in
specific and refined traits that can also be measured in
patients. Combined with the recent explosive increase
in genomic information, such methods may herald
the turning of the tables for genetic research in schizo-
phrenia.
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2001 Award Winners

Heinz Lehmann Award

Dr. Franco Vaccarino is the recipient of the 2001
Canadian College of Neuropsychopharmacology
(CCNP) Heinz Lehmann Award. Dr. Vaccarino is
currently a professor in the Departments of Psychi-
atry and Psychology at the University of Toronto
and vice president of research at the Centre for Ad-
diction and Mental Health. This award is designed
to recognize outstanding research achievements by
Canadian scientists in the field of neuropsy-
chopharmacology. The award, donated by Hoff-
mann-La Roche Limited, consists of $5000 and an
engraved plaque. Congratulations to Dr. Vaccarino!

Presentation: CCK modulation of mesolimbic DA
function: a model for the opposing effects of stress
on motivated behaviour

Jock Cleghorn Award

Mr. Steven Szabo is the recipient of the 2001
CCNP Jock Cleghorn Prize. Mr. Szabo is doing re-
search training in the Department of Psychiatry,
University of Florida in Gainsville, Fla. This award
is designed to recognize the best poster presenta-
tion by a research trainee at the CCNP Annual
Meeting. The award, donated by the CCNP, con-
sists of $500. Congratulations to Mr. Szabo!

Presentation: Serotonin receptor effects on nor-
ephinephrine neuron firing are mediated through
excitatory amino acid and GABA-A receptors

Innovations in Neuropsychopharmacology
Award

Dr. Harold A. Robertson is the recipient of the
2001 CCNP Innovations in Neuropsychopharma-
cology Award. Dr. Robertson is currently profes-
sor and head of the Department of Pharmacology,
Faculty of Medicine, Dalhousie University in Hal-
ifax. This award is designed to recognize out-
standing research innovations in the basic or clin-
ical fields of neuropsychopharmacology. The
award, donated by Pfizer Canada Inc., consists of
$5000 and an engraved plaque. Congratulations
to Dr. Robertson!

Presentation: The genome and the brain: towards
a neurobiology of psychiatric disorders

Young Investigator Award

Dr. Ridha Joober is the recipient of the 2001
CCNP Young Investigator Award. Dr. Joober is
currently an assistant professor in the Depart-
ment of Psychiatry and associate member in the
Department of Neurology and Neurosurgery at
McGill University. The award, donated by Bris-
tol-Myers Squibb Company, consists of a $2500
bursary plus a $2000 research grant and an en-
graved plaque. Congratulations to Dr. Joober!

Presentation: Genetics of schizophrenia: combin-
ing animal models and clinical studies


