
[32P]2-iodo-N6-methyl-(N)-methanocarba-20-deoxyadenosine-30,50-
bisphosphate ([32P]MRS2500), a novel radioligand for
quantification of native P2Y1 receptors

*,1Dayle Houston, 2,3Michihiro Ohno, 1Robert A. Nicholas, 2Kenneth A. Jacobson
& 1T. Kendall Harden

1Department of Pharmacology, University of North Carolina School of Medicine, CB# 7365 Chapel Hill, NC, 27599, U.S.A.
and 2Molecular Recognition Section, LBC National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, MD 20892-0810, U.S.A.

1 Analysis of the P2Y family of nucleotide-activated G-protein-coupled receptors has been
compromised by the lack of selective high-affinity, high-specific-radioactivity radioligands. We have
pursued quantification of the P2Y1 receptor through the development of a series of selective P2Y1

receptor antagonists.

2 Recently, we synthesized 2-iodo-N6-methyl-(N)-methanocarba-20-deoxyadenosine 30,50-bisphos-
phate (MRS2500), a selective, competitive antagonist that exhibits a Ki of 0.8 nM in competition-
binding assays with [3H]MRS2279. A 30-monophosphate precursor molecule, MRS2608, was
radiolabeled at the 50 position with 32P using polynucleotide kinase and [g32P]ATP to yield
[32P]MRS2500.

3 [32P]MRS2500 bound selectively to Sf9 insect cell membranes expressing the human P2Y1 receptor
(Sf9-P2Y1), but did not detectably bind membranes expressing other P2Y receptors. P2Y1 receptor
binding to [32P]MRS2500 was saturable with a KD of 1.2 nM. Agonists and antagonists of the P2Y1

receptor inhibited [32P]MRS2500 binding in Sf9-P2Y1 membranes with values in agreement with those
observed in functional assays of the P2Y1 receptor.

4 A high-affinity binding site for [32P]MRS2500 (KD¼ 0.33 nM) was identified in rat brain, which
exhibited the pharmacological selectivity of the P2Y1 receptor. Distribution of this binding site varied
among rat tissues, with the highest amount of binding appearing in lung, liver, and brain. Among
brain regions, distribution of the [32P]MRS2500 binding site varied by six-fold, with the highest and
lowest amounts of sites detected in cerebellum and cortex, respectively.

5 Taken together, these data illustrate the synthesis and characterization of a novel P2Y1 receptor
radioligand and its utility for examining P2Y1 receptor expression in native mammalian tissues.
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Introduction

Extracellular nucleotides signal through two classes of

membrane-bound receptors to mediate a multiplicity of

intracellular responses. The P2X receptors are ligand-gated

ion channels and are primarily activated by ATP. The P2Y

receptors are seven-transmembrane-spanning G-protein-

coupled receptors, and are activated by adenine and uridine

nucleotides. The P2Y receptor family consists of eight

members that can be subclassified based on selectivity of G

protein coupling and sequence homology. P2Y1, P2Y2, P2Y4,

P2Y6, and P2Y11 receptors couple to the Gaq class of guanine

nucleotide-binding proteins, which signal downstream to

trigger inositol lipid hydrolysis and subsequent mobilization

of intracellular calcium. The P2Y11 receptor also couples to the

Gas family of G proteins to stimulate adenylyl cyclase. The

P2Y12, P2Y13, and P2Y14 receptors exhibit high sequence

homology and couple to the Gai family of G proteins,

resulting in inhibition of adenylyl cyclase activity (Burnstock,

1996; Burnstock & Knight, 2004).

The P2Y1 receptor is preferentially activated by ADP, while

ATP is a weak partial agonist, and UTP and UDP are inactive

(Schachter et al., 1996; Leon et al., 1997; Palmer et al., 1998).

This receptor plays an essential role in ADP-promoted platelet

aggregation by triggering shape change and an initial,

reversible phase of aggregation (Jantzen et al., 1999). P2Y1

receptor mRNA has been detected in numerous tissues

(Janssens et al., 1996; Leon et al., 1996); however, a direct

study of this receptor and its related physiology historically

has been difficult due to the lack of a reliable radioligand-

binding assay.
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We have developed a series of competitive antagonists

that selectively inhibit P2Y1 receptor-promoted signaling.

Adenosine derivatives with phosphate groups at the 50 and

20 or 30 positions of the ribose ring were initially identified

as selective, competitive antagonists (Boyer et al., 1996).

Structure–activity studies for adenosine bisphosphate deriva-

tives substituted at various positions of the adenine and ribose

rings along with molecular modeling and site-directed muta-

genesis have led to the development of non-nucleotide-

antagonists that are highly selective for the P2Y1 receptor,

exhibit low nanomolar potency for inhibiting downstream

receptor signaling, and display limited susceptibility to

metabolism by surface-localized nucleotide hydrolyzing

enzymes (Jiang et al., 1997; Boyer et al., 1998; 2002; Camaioni

et al., 1998; Moro et al., 1998; Nandanan et al., 1999; 2000;

Kim et al., 2000; 2001; 2002). One of these molecules, 2-chloro-

N6-methyl-(N)-methanocarba-20-deoxyadenosine-30,50-bisphos-
phate ([3H]MRS2279), was developed into an antagonist

radioligand for the P2Y1 receptor by a multi-step radio-

synthetic scheme (Waldo et al., 2002). While the development

of a radioligand-binding assay using this molecule provides a

reliable tool for quantification of recombinant P2Y1 receptors

and screening of new P2Y1 receptor ligands, its low specific

activity (89Cimmol�1) and intermediate affinity for the P2Y1

receptor (KD: 8 nM) limit its general application for broadly

quantifying P2Y1 receptors in native mammalian tissues.

Recently, 2-iodo-N6-methyl-(N)-methanocarba-20-deoxyade-
nosine-30,50-bisphosphate (MRS2500) was synthesized as a com-

petitive P2Y1 receptor antagonist that inhibited [3H]MRS2279

binding with an affinity (Ki¼ 0.79 nM) 10 times greater than

MRS2279 (Kim et al., 2003). We have chosen this molecule as

a template to develop a higher-affinity, high-specific-

radioactivity antagonist radioligand for the P2Y1 receptor.

MRS2500 was synthesized in radioactive form by the facile,

single-step kinase-catalyzed phosphorylation of a precursor

molecule to yield [32P]MRS2500 with a theoretical specific

activity of 9120Cimmol�1. In this study, we describe the

synthesis of this novel radioligand, the development of a high-

specific-activity radioligand-binding assay for the P2Y1

receptor, and the quantification of P2Y1 receptors in various

tissues of the adult rat.

Methods

Animals

Adult male Harlan Sprague–Dawley rats weighing 300–400 g

were group housed and maintained on a 12 : 12 h light : dark

cycle with access to food and water ad libitum. Animals were

killed by decapitation by a trained laboratory animal

technician. All procedures were carried out in accordance with

the guidelines of the University of North Carolina Institutional

Animal Care and Use Committee.

Precursor for synthesis of MRS2500

The general synthetic approach for 2-iodo-N6-methyl-(N)-

methanocarba-20-deoxyadenosine-30-monophosphate, MRS2608,

a precursor of MRS2500, was described (Kim et al., 2003). The

detailed synthesis will be published separately.

Enzymatic synthesis of [32P]MRS2500 from MRS2608

MRS2608 (50 nmol, 5ml of a 10mM solution in Tris, pH 7.5)

was combined with 1.5 ml of 10� reaction buffer (500mM Tris-

HCl, 100mM MgCl2, 50mM dithiothreitol, 1mM spermidine,

and 1mM EDTA, pH 7.5), 1mCi of [g32P]ATP

(7 ml, 0.16 nmol, 150mCiml�1), and 2ml (20U) of 30-phospha-
tase-free polynucleotide kinase. The sample was mixed by

pipetting and the kinase-catalyzed reaction was incubated

at 371C for 1 h. The entire reaction volume was then injected

onto a Luna 5m C18(2) column (4.6� 250mm) at a flow rate

of 1mlmin�1 in a mobile phase of 5% acetonitrile/95% 0.1M

triethylammonium acetate (5% A/95% B). The column was

washed for 30min in 5% A/95% B to remove free [g32P]ATP,

and [32P]MRS2500 was eluted using a linear gradient of 5%

A/95% B to 60% A/40% B over 50min. [32P]MRS2500 eluted

at 48min, that is, 18min after the start of the gradient

(approximately 75% A/25% B). The precursor molecule,

MRS2608, which was detected by UV (275 nM) eluted at

50min. Fractions of 1ml were collected during purification,

and radioactivity in each fraction was quantified by liquid

scintillation counting of a 5ml aliquot of each fraction.

[32P]MRS2500 has been purified by this procedure approxi-

mately 10 times, with a typical yield of approximately 20%.

[32P]MRS2500 was stored at �201C until use.

P2Y1 receptor expression in Sf9 insect cells

Sf9 insect cell membranes expressing recombinant P2Y

receptors were prepared as described in detail previously

(Waldo et al., 2002). Briefly, recombinant baculoviruses

encoding epitope-tagged constructs of the human P2Y1,

P2Y2, or P2Y12 receptors, or an avian P2Y receptor (Boyer

et al., 1997) were constructed using established protocols.

Suspension cultures of Sf9 cells were infected with recombi-

nant baculoviruses, and plasma membranes were prepared

from uninfected (wild type) or infected cells after cell lysis and

high-speed centrifugation. The membranes were frozen in

aliquots at �801C.

Preparation of membranes from rat tissues

Adult male Harlan Sprague–Dawley rats were killed and

organs were harvested and placed in 5ml homogenization

buffer (20mM Hepes, pH 7.5, 145mM NaCl, 5mM MgCl2) per

gram wet weight tissue. Whole organs or combined brain

regions from groups of 2–6 rats were homogenized with a

Polytron tissue disrupter for 45–60 s. Homogenized samples

were centrifuged at 35,000� g for 10min. The resulting pellets

were resuspended in 3ml homogenization buffer per gram wet

weight tissue and centrifugation was repeated two times. Final

resuspensions were in homogenization buffer plus 5% glycerol

and the samples were stored at �801C. Protein concentrations

were determined using the BCA protein assay.

Radioligand-binding assay

Membranes were typically incubated with 0.1–0.25 nM

[32P]MRS2500 in assay buffer (20mM Hepes, 145mM NaCl,

5mM MgCl2, pH 7.5) in a 25ml reaction volume in

12� 75mm2 conical polypropylene tubes. Saturation-binding

isotherms were generated at concentrations of [32P]MRS2500
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ranging from 0.01 to 6 nM in a total volume of 20 ml.
Incubations were from 15 to 45min in an ice-water bath and

were terminated by the addition of 3.5ml of ice-cold assay

buffer followed by vacuum filtration over Whatman GF/A

glass microfiber filters. The filters were washed with 7ml ice

cold assay buffer and radioactivity on each filter was

quantified by liquid scintillation counting. Specific binding

was defined as total [32P]MRS2500 bound minus binding

occurring in the presence of 10 or 100 mM MRS2179.

Materials

30-phosphatase-free polynucleotide kinase was from Roche

Diagnostics Corp., Indianapolis, IN, U.S.A. MRS2179 was

from Tocris-Cookson, Inc., Ellisville, MO, U.S.A. [g32P]ATP

was from Perkin-Elmer, Inc., Boston, MA, U.S.A. All other

drugs were from Sigma-Aldrich Corp., St Louis, MO, U.S.A.

The Luna 5m C18(2) HPLC column was from Phenomenex,

Inc., Torrence, CA, U.S.A.

Data analysis

All experiments were carried out in duplicate or triplicate

assays and were carried out at least three times or on samples

from three individual animals. Data were analyzed using

GraphPad Prism (GraphPad Software, San Diego, CA,

U.S.A.). Data are presented as the mean7s.e.m. from

combined multiple experiments or in some cases as a data set

from a typical experiment.

Results

Structure–activity relationships for a series of synthetic

adenine nucleotide analogs have led to the development of a

class of non-nucleotide adenosine bisphosphate derivatives

that selectively inhibit the P2Y1 receptor (Boyer et al., 1998;

Moro et al., 1998; Nandanan et al., 1999; Kim et al., 2002;

2003). The replacement of the ribose ring of adenosine 30,50-
bisphosphate with a Northern-constrained cyclopentane struc-

ture and other modifications of the adenine base, including

an N6-methyl addition, have yielded molecules that are

highly selective for P2Y1 over other P2Y, P2X, and adenosine

receptors. These non-nucleotide molecules are also presumed

to circumvent the problem of nonspecific binding to the

large number of other nucleotide-binding proteins present in

mammalian cells. Recently, one of these molecules MRS2500,

was found to interact with the P2Y1 receptor with subnano-

molar affinity. This molecule was selected as the template for

development of a high-specific-activity, 32P-labeled radioligand

to quantify endogenous P2Y1 receptors in mammalian tissues.

Synthesis of [32P]MRS2500

MRS2500 inhibited binding of the P2Y1 receptor radioligand

[3H]MRS2279 with a Ki value of 0.79 nM, and inhibited

2MeSADP-promoted inositol phosphate accumulation with a

calculated KB value of 1.74 nM (Kim et al., 2003). A precursor

to MRS2500 was generated with the goal of synthesizing a

high-specific-activity radioligand. The precursor molecule,

MRS2608, contains a phosphate group at the 30-position and

a hydroxyl group at the 50-position, which potentially allows

phosphorylation by polynucleotide kinase using [g32P]ATP as

the 50-phosphate donor.

Reaction conditions for polynucleotide kinase-catalyzed

radiophosphorylation were optimized using unlabeled ATP

and adenosine-30-monophosphate (A30MP) as the phosphate

acceptor. The extent of phosphorylation was quantified using

ion exchange chromatography. Since polynucleotide kinase is

known to exhibit small amounts of 30-phosphatase activity,

reactions were carried out with a mutant form of the enzyme

containing a C-terminal deletion that results in ablation of

its 30-phosphatase activity (Wang & Shuman, 2002). Lack of

30-phosphatase activity was confirmed using A30MP as

substrate (data not shown). A30MP was stable in the presence

of 30-phosphatase-free polynucleotide kinase in the absence

of ATP at 371C for up to 24 h; incubation of A30MP with

unmodified polynucleotide kinase under identical conditions

resulted in the appearance of a small amount of adenosine

(data not shown).

Reaction conditions that resulted in optimal phosphoryla-

tion of A30MP were applied to 32P-phosphorylate MRS2608 to

generate [32P]MRS2500 (Figure 1). Approximately 20% of the

added [32P] radioactivity was routinely recovered in a single

peak that eluted from the reversed-phase column with a

retention time of 48min. The retention time of the radioactive

product corresponded to the retention time of purified,

unlabeled MRS2500 (Kim et al., 2003) under the same mobile

phase conditions. Contamination of purified [32P]MRS2500

with the precursor molecule MRS2608 was less than 1% in

multiple purification procedures.

Selectivity of [32P]MR2500 for the P2Y1 receptor

To determine selectivity of the novel radioligand for the P2Y1

receptor, [32P]MRS2500 binding was evaluated in membranes

from wild-type Sf9 (Sf9-wt) insect cells or Sf9 insect cells

expressing human P2Y1 (Sf9-P2Y1), P2Y2 (Sf9-P2Y2), or P2Y12

(Sf9-P2Y12) receptors or the avian P2Y receptor (Sf9-P2Ya)

(Boyer et al., 1997). As shown in Figure 2, [32P]MRS2500

binding in Sf9-P2Y1 membranes was 15-fold higher than

binding observed in Sf9-wt membranes, and was inhibited by

90% in the presence of the P2Y1-selective antagonist

MRS2179 (10 mM). In contrast, [32P]MRS2500 binding in

Sf9-P2Y2, Sf9-P2Y12, and Sf9-P2Ya membranes was essentially

identical to that observed in Sf9-wt membranes and was not

Figure 1 Synthesis of [32P]MRS2500. MRS2608 (5 ml of a 10mM

solution) was combined with 1.5ml of 10� reaction buffer, 1mCi of
[g32P]ATP (7 ml, 0.16 nmol, 150mCiml�1), and 2 ml (20U) of 30-
phosphatase-free polynucleotide kinase. The sample was mixed by
pipetting and incubated at 371C for 1 h. The entire reaction volume
was then injected onto a Luna 5m C18(2) column for purification
under mobile phase conditions as described in Methods.
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affected by MRS2179. These results indicate that

[32P]MRS2500 binds specifically to P2Y1 receptors but not

to other P2Y receptors in Sf9 membranes.

High-affinity binding of [32P]MRS2500 to the P2Y1

receptor

Optimal conditions for radioligand binding were determined in

preliminary experiments. Specific binding occurring at 41C was

at least as great as that observed at room temperature (data

not shown), and therefore all subsequent binding analyses were

carried out at 41C. Time-course experiments revealed rapid

association of [32P]MRS2500 such that steady-state binding

occurred within 2min at 41C. Prebound radioligand disso-

ciated rapidly upon addition of a saturating concentration

of MRS2179 (10 mM), with half of the bound radioligand

dissociating within approximately 90 s.

Saturation-binding analysis was performed to determine the

affinity of [32P]MRS2500 for the recombinant human P2Y1

receptor expressed in Sf9 membranes (Figure 3). Saturation-

binding isotherms exhibited one-site binding kinetics with a KD

of 1.170.35 nM (n¼ 3) and an average Bmax of 4.872.2 pmol

receptormg�1 protein in three experiments from a single

membrane preparation.

Pharmacological selectivity of [32P]MRS2500 binding

The capacity of several agonists and antagonists of the P2Y1

receptor and other P2Y receptors to compete with

[32P]MRS2500 for binding was investigated in Sf9-P2Y1

membranes. Owing to the high specific activity of

[32P]MRS2500, competition curves could be generated with

minimal amounts of protein (250–500 ng), limiting the altera-

tion of added nucleotides by membrane-bound nucleotide-

metabolizing enzymes. Agonists known to bind to the P2Y1

receptor inhibited binding of [32P]MRS2500 in a concentra-

tion-dependent manner (Figure 4a). The rank order of potency

observed was 2MeSADP42MeSATP4ADP4ATPgS4
ADPbS4ATP. This order was in agreement with the predicted

potencies for the P2Y1 receptor based on previous observa-

tions of agonist-promoted P2Y1 receptor second-messenger

signaling in cells continuously superfused with drug-containing

medium (Palmer et al., 1998). Moreover, Ki values (Table 1)

were in excellent agreement with values determined in

competition assays with [3H]MRS2279, and the human P2Y1

receptor purified to homogeneity (Waldo & Harden, 2004).

The P2Y1 receptor is known to bind adenine nucleotides

specifically and is not activated by UTP or UDP; accordingly,

uridine nucleotides did not compete with [32P]MRS2500 for

binding to the P2Y1 receptor.

P2Y1 receptor antagonists were also investigated for their

capacity to compete with [32P]MRS2500 for binding to the

P2Y1 receptor. MRS2179, MRS2279 and MRS2500 inhibited

[32P]MRS2500 binding with Ki values in good agreement with

KB values determined for these same antagonists for inhibition

of P2Y1 receptor-promoted second messenger signaling

(Figure 4b, Table 1).

[32P]MRS2500 binding in rat brain

One of the potential advantages of a high-specific-activity

radioligand is high sensitivity for detection of receptors in

native tissues. To determine the utility of [32P]MRS2500 for

detection of P2Y1 receptors in native tissues, membranes were

prepared from brains of adult male Sprague–Dawley rats. As

Figure 2 [32P]MRS2500 binding in Sf9 membranes expressing P2Y
receptors. Wild-type Sf9 membranes or membranes expressing the
human P2Y1, P2Y2, or P2Y12 receptors or the avian P2Y receptor,
P2Ya (10 mg each) were incubated with 220 pM [32P]MRS2500 in
the presence or absence of 10 mM MRS2179 to determine non-
specific binding. Values are reported as total fmol [32P]MRS2500
bound7s.e.m. from a representative experiment (n¼ 3).

Figure 3 Saturation-binding isotherm for [32P]MRS2500 binding
to the human P2Y1 receptor. Sf9-P2Y1 membranes (10mg per assay)
were incubated for 45min with the indicated concentrations of
[32P]MRS2500 without or with the P2Y1R selective antagonist
MRS2179 (10 mM). Values are reported as total fmol [32P]MRS2500
bound7s.e.m. from a representative experiment (n¼ 3). Inset,
Scatchard transformation of the data.
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shown in Figure 5a, saturation-binding analysis revealed

binding of [32P]MRS2500 to a homogenous population of

binding sites in rat brain with high affinity (KD:

0.3370.02 nM). An average Bmax value of 48.978.7 fmol re-

ceptormg�1 protein was determined (n¼ 3). To confirm the

identity of this high affinity binding site as the rat P2Y1

receptor, pharmacological selectivity of P2Y1 receptor anta-

gonists was examined. The P2Y1 selective antagonists,

MRS2179, MRS2279, and MRS2500, competed for binding

of [32P]MRS2500 in rat brain membranes with Ki values of

1.9770.74, 27.478.4, and 267772, respectively (n¼ 3). These

values were in agreement with values obtained at the

recombinant human P2Y1 receptor (Table 2). Taken together,

these data demonstrate that [32P]MRS2500 is useful for

quantification of P2Y1 receptors in adult rat brains. Pre-

liminary studies revealed a large amount of breakdown of

nucleotides by brain homogenates; therefore, we have not

pursued agonist competition binding further in these studies of

native P2Y1 receptors.

Tissue distribution of the rat P2Y1 receptor

Having confirmed the utility of [32P]MRS2500 for labeling

P2Y1 receptors in rat brain, we determined the relative

density of P2Y1 receptors in a variety of rat tissues (Figure 6).

Among tissues examined with a submaximal concentration

of [32P]MRS2500 (4 nM), lung, liver, and brain exhibited

the highest relative amounts of specific binding, with

55710, 3173, and 3175 fmol [32P]MRS2500 boundmg�1

protein, respectively. Heart, abdominal muscle, spleen, and

stomach exhibited moderate receptor levels. Testes and

kidney bound the least amounts of radioligand, 6.572.4

and 2.771.7 fmol [32P]MRS2500 boundmg�1 protein, respec-

tively, and, in some cases, specific binding in these tissues

was undetectable.

P2Y1 receptor distribution in rat brain

P2Y1 receptor mRNA is abundantly expressed in brain, and

this receptor has been implicated in a number of neuronal

physiologies, including regulation of neurotransmission, an-

xiolysis, and protection of astrocytes from oxidative stress-

induced damage (Kittner et al., 2003; Luthardt et al., 2003;

Shinozaki et al., 2005). Saturation-binding analyses were

performed in five major brain regions – cerebellum, cortex,

midbrain, hypothalamus, and, hippocampus. Among the brain

regions examined, cerebellum exhibited the highest number of

binding sites with a Bmax value of 112717 fmol [32P]MRS2500

bound per mg protein (Table 2). Midbrain, hypothalamus, and

hippocampus displayed intermediate densities of binding sites,

and cortex displayed the lowest number of binding sites with a

Bmax value of 21.772.4 fmol [32P]MRS2500 bound per mg

Figure 4 Competition of P2Y1 receptor agonists and antagonists with [32P]MRS2500 for binding to P2Y1 receptor-expressing
Sf9 membranes. (a) Sf9-P2Y1 membranes (250 ng per assay) were incubated with 100 pM [32P]MRS2500 and the indicated
concentrations of P2Y1 receptor agonists. (b) Sf9-P2Y1 membranes (500 ng per assay) were incubated with 200 pM [32P]MRS2500
and the indicated concentrations of the P2Y1 receptor selective antagonists. Values are reported as % binding observed in the
absence of competing ligand. Data shown are averages of triplicate samples7s.e.m. from a representative experiment.

Table 1 Ki values for P2Y1 receptor agonists and
antagonists in P2Y1 receptor-expressing Sf9 mem-
branes

Agonist n Ki (mM) KB (nM)

2MeSADP 5 0.0570.01
2MeSATP 5 0.4970.10
ADP 4 0.5670.09
ATPgS 3 1.0770.11
ADPbS 3 2.3070.60
ATP 3 14.076.0
UTP 3 41000
UDP 3 41000

MRS2500 3 2.3570.48 1.74 (Kim et al., 2003)
MRS2279 5 46.577.9 8.91 (Boyer et al., 2002)
MRS2179 3 11779 102 (Boyer et al., 1998)

Values reported are the average of three or more experi-
ments7s.e.m.
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protein. Thus, P2Y1 receptor expression varies by approxi-

mately six-fold among the major brain regions examined.

Discussion

Study of the P2Y1 receptor has been significantly advanced by

the development of selective pharmacological tools that

directly target this signaling protein. In this report, we describe

the synthesis and confirm the utility of [32P]MRS2500 as a

novel high-affinity, high-specific-radioactivity antagonist radio-

ligand for the P2Y1 receptor. [32P]MRS2500 binds selectively

to the human P2Y1 receptor with a KD of 1.2 nM. We have used

this high-affinity radioligand to quantify P2Y1 receptors in a

variety of rat tissues, and among the tissues examined, relative

receptor levels were highest in lung, liver, and brain. We also

examined receptor levels in several major brain regions and

found a six-fold range of expression, with the highest

and lowest densities of receptors found in the cerebellum and

cortex, respectively. To our knowledge, this is the first

unambiguous demonstration of a broadly useful high-speci-

fic-activity radioligand for a P2Y receptor natively expressed

in mammalian tissues. Given the availability of the precursor,

MRS2608, the preparative method is sufficiently simple to

allow its convenient synthesis.

Development of selective P2Y1 receptor antagonists began

with the identification of adenosine bisphosphate molecules as

competitive antagonists. The presence of a 50 phosphate group
and an accompanying 20 or 30 phosphate group on the ribose

moiety allowed recognition of these molecules by the P2Y1

receptor without receptor activation (Boyer et al., 1996).

Removal of the 20 hydroxyl group of the ribose entity

Figure 5 [32P]MRS2500 binding in adult male rat brain. (a) Membranes prepared from adult male rat brain (30 mg per assay) were
incubated for 45min with the indicated concentrations of [32P]MRS2500 without or with the P2Y1R selective antagonist MRS2179
(100 mM). Inset, Scatchard transformation of the data. (b) Membranes from adult male rat brains (50 mg per assay) were incubated
with 200 pM [32P]MRS2500 and the indicated concentrations of the indicated P2Y1 receptor antagonists. Values are reported as %
binding observed in the absence of competing ligand. Data shown are averages of triplicate samples (a) or averages of triplicate
samples7s.e.m. (b) from a representative experiment (n¼ 3).

Table 2 KD and Bmax values for [32P]MRS2500
binding in rat brain regions

Region KD (nM) Bmax (fmolmg�1 protein)

Whole brain 0.3370.02 48.978.7
Cerebellum 0.5570.07 112717
Cortex 0.4770.06 21.772.4
Hippocampus 0.4470.09 32.277.8
Hypothalamus 0.4370.09 55.8711.0
Midbrain 0.3870.01 74.879.4

Values reported are the average of three experiments7s.e.m.

Figure 6 [32]MRS2500 binding in adult rat tissues. Membranes
prepared from various tissues of adult male Sprague–Dawley rats
were incubated with 4 nM [32P]MRS2500 in the presence or absence
of MRS2179. Specific binding was normalized to protein amounts.
Values are reported as fmol [32P]MRS2500 bound per mg protein.
Data shown are averages of triplicate samples7s.e.m. from a
representative experiment (n¼ 3).

464 D. Houston et al [32P]MRS2500, a novel P2Y1 receptor radioligand

British Journal of Pharmacology vol 147 (5)



eliminated interactions of adenosine-30,50-bisphosphate analog
with adenosine receptors, and addition of a methyl group at

the N6 position conferred an increase in P2Y1 receptor-binding

affinity (Boyer et al., 1998). The discovery that interaction

with the P2Y1 receptor was retained in bisphosphate analogs

in which the ribose was replaced by acylic or hetero-

cyclic moieties (Kim et al., 2000; 2001) was extended to the

use of carbocyclic ribose-substituted heterocyclic bispho-

sphate analog constrained in either the Northern or Southern

conformation by fusion of cyclopropane to a pseudosugar

cyclopentane ring (Marquez et al., 1996; Ezzitouni &

Marquez, 1997). These bisphosphate methanocarba analogs

retained affinity for the P2Y1 receptor, and N-methanocarba

derivatives of P2Y1 receptor agonists and antagonists

were more than 100-fold more potent than their corres-

ponding S-isomers (Nandanan et al., 2000; Kim et al., 2002).

Molecular modeling studies of the P2Y1 receptor based on

the structure of rhodopsin confirmed that the Northern

conformation was energetically favored by ligands docked in

the putative P2Y1 receptor ligand recognition site (Nandanan

et al., 2000).

One goal of the development of non-nucleotide P2Y1

receptor antagonists was to reduce interaction of these

molecules with other nucleotide-binding proteins, which

hypothetically should be of value in our secondary goal of

developing a useful radioligand for the P2Y1 receptor. Indeed,

our studies of methanocarba analogs led to the synthesis of

[3H]MRS2279, and the binding of [3H]MRS2279 to mem-

branes prepared from Sf9 insect cells expressing recombinant

human P2Y1 receptors fit the pharmacological properties

of the P2Y1 receptor (Waldo et al., 2002). The [3H]MRS2279

radioligand-binding assay has allowed efficient screening

of novel ligands for the P2Y1 receptor (Kim et al., 2002;

Waldo et al., 2002) and has been applied to quantify the

P2Y1 receptor during purification to homogeneity (Waldo

& Harden, 2004). Although [3H]MRS2279 proved useful

for quantification of P2Y1 receptors in human platelets

(Waldo et al., 2002), its relatively low specific activity

(89Cimmol�1) has limited its use in other tissues in which

the receptor is endogenously expressed. Thus, development

of [32P]MRS2500, which exhibits 10-fold higher affinity and

100-fold higher specific radioactivity than [3H]MRS2279,

represents an important step in ligand development for

the unambiguous study of P2Y1 receptor-binding sites in

mammalian tissues.

Previous work has investigated the tissue distribution of the

rodent P2Y1 receptor using in situ hybridization techniques

(Tokuyama et al., 1995; Janssens et al., 1996; Leon et al., 1996;

Moran-Jimenez & Matute, 2000). These studies suggest a

broad expression pattern for the P2Y1 receptor among

peripheral tissues and in rodent brain. Although in situ

hybridization studies provide important insight into the

relative distribution of this signaling protein, the relationship

of mRNA to expressed functional receptors is unknown and is

not likely to be constant. Antibodies that specifically recognize

P2Y receptors would allow direct immunocytochemical

quantification of receptor protein, but these tools also do

not necessarily identify functional receptor-binding sites.

Moreover, although antibodies against the P2Y1 receptor have

been reported (Fong et al., 2002; Yoshioka et al., 2002; Franke

et al., 2003; Scheibler et al., 2004), evidence for their selectivity

is limited and their general reliability is uncertain.

The results described here illustrate that [32P]MRS2500

is a useful radioligand for quantification of functional

P2Y1 receptor-binding sites across a wide range of mammalian

tissues, and the remarkably high ratio of specific to

nonspecific binding of this high-affinity, high-specific-

activity radioligand allows reliable detection of binding sites

to at least 1 fmolmg�1 protein. Application of [32P]MRS2500

revealed a broad expression pattern for the functional

receptor protein among peripheral tissues and rodent

brain. Interestingly, this pattern is similar to that previously

reported for messenger RNA (Tokuyama et al., 1995;

Janssens et al., 1996; Leon et al., 1996; Moran-Jimenez &

Matute, 2000).

Tissue distribution data from our studies and other studies

suggest potentially important physiological consequences of

P2Y1 receptor signaling. The role of the P2Y1 receptor in

ADP-promoted platelet aggregation is now well established

(Gachet, 2001). However, its function remains largely un-

defined in the majority of tissues. Several studies have

investigated the importance of P2Y1 receptor signaling in the

central nervous system. ATP released from nerve terminals

acts as an excitatory neurotransmitter through ionotropic

P2X receptors (Cunha & Ribeiro, 2000). Roles for adenine

nucleotides in other neural processes have been proposed,

and potentially important consequences of signaling involving

the P2Y1 receptor have been suggested. For example, activa-

tion of the P2Y1 receptor inhibits glutamate release, and P2Y1

receptor-mediated inhibition of NMDA receptor-promoted

signaling occurs in prefrontal and parietal cortex (Luthardt

et al., 2003; Rodrigues et al., 2005). Activation of the P2Y1

receptor also has been associated with anxiolysis, astrocyte

protection, and oligodendrocyte proliferation and migration

in rats (Kittner et al., 2003; Agresti et al., 2005; Shinozaki

et al., 2005).

Our work illustrates that [32P]MRS2500 can be utilized to

quantify P2Y1 receptors in very small tissue samples, and the

relatively high affinity and high specific radioactivity of this

radioligand also make it a good candidate for detection of

these receptors using autoradiographic techniques. Previous

studies have claimed autoradiographic detection of the rat

P2Y1 receptor using [a33P]dATP or [35S]dATPaS as radio-

ligands (Simon et al., 1997; Fong et al., 2002), but we have

previously shown that the enormous amount of binding (10–

50 pmolmg�1 protein) observed with these radioligands is

nonspecific (Schachter & Harden, 1997). A 33P-labeled

radioligand, [33P]MRS2179, was used previously to quantify

P2Y1 receptors in human platelets (Baurand et al., 2001).

We suspect that [33P]MRS2179 may not be a generally

applicable radioligand since its affinity for the P2Y1 receptor

is 100-fold lower affinity than the affinity of MRS2500.

We have demonstrated here the high selectivity of

[32P]MRS2500 for the P2Y1 receptor, and predict that this

selectivity will allow for a more accurate analysis of brain P2Y1

receptor-binding sites.

The work described here demonstrates the development of

a new molecular tool for quantification of the P2Y1 receptor

with high sensitivity and illustrates that active P2Y1 receptor-

binding sites are broadly distributed across rat tissues

and brain. A reliable means for quantification of the P2Y1

receptor should lead to better understanding of the complex

signaling and physiology associated with this important

signaling protein.
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