
COMMENTARY

Peroxynitrite: just an oxidative/nitrosative stressor
or a physiological regulator as well?
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It is widely accepted now that enhanced peroxynitrite

(ONOO�) formation contributes to oxidative and nitrosative

stress in a variety of cardiovascular and other pathologies (see

for reviews: Ferdinandy & Schulz (2001, 2003), Denicola &

Radi (2005)). Therefore, targeting ONOO� directly by

ONOO� decomposition catalysts and ONOO� scavengers or

indirectly by inhibitors of downstream targets of peroxynitrite

such as poli(ADP-ribose)-polimerase or matrix metalloprotei-

nases are exciting new strategies for cytoprotection (Salvemini

et al., 1998; Ferdinandy et al., 2000; Virag et al., 2003; Giricz

et al., 2006). In contrast, increasing evidence suggests that

physiological levels of ONOO� may act as a regulator of

several physiological functions (Ferdinandy & Schulz, 2001;

2003; Herold & Fago, 2005; Ji et al., 2006). However, still very

little is known about the physiological roles of endogenous

peroxynitrite formation, possibly due to the number of

technical limitations of detecting low, physiological levels of

ONOO� in biological systems (Tarpey & Fridovich, 2001;

Daiber et al., 2003).

ONOO� is a powerful oxidant species, which can be formed

in vivo by the nonenzymatic reaction of nitric oxide (NO) and

superoxide anion at an extremely rapid rate limited only by

diffusion (Figure 1). At physiological pH, ONOO� is proto-

nated to form peroxynitrous acid which rapidly decomposes

forming highly reactive oxidant species especially in the

presence of CO2 (see for review Szabó, 1996). Unfortunately,

due to its very short half life at physiological pH, endogenous

formation of ONOO� cannot be directly detected in biological

systems (Tarpey & Fridovich, 2001; Alvarez & Radi, 2003;

Daiber et al., 2003). Although nitration of tyrosine residues is

being recognized as a marker for ONOO� formation, the

specificity and sensitivity of nitrotyrosine formation, especially

in case of physiological rate of ONOO� production, is not

sufficient (van der Vliet et al., 1995; Ferdinandy & Schulz,

2001; 2003; Tarpey & Fridovich, 2001). Nitrotyrosine can be

formed by ONOO�-independent pathways as well, for

example, via the actions of peroxidases in the presence of

nitrite (Eiserich et al., 1998). Moreover, the exogenous

administration of ONOO� in experimental settings (e.g. via

the blood) does not accurately reflect the effects of endogenous

generation of ONOO� within the cells. Exogenous ONOO�

rapidly reacts with plasma proteins and thiols to form the NO

donor S-nitrosothiols (see for review Ferdinandy & Schulz

(2001)). Thus, ONOO� is likely to be detoxified before it has a

chance to reach tissues downstream of the injection site, let

alone the intracellular compartment (Ishida et al., 1999). As

NO itself is a cardioprotective and antioxidant molecule (Wink

et al., 1993; Rubbo et al., 1996; Ferdinandy & Schulz, 2003)

tissue protection may be seen when exogenous ONOO� is

administered intravenously (Lefer et al., 1997; Nossuli et al.,

1997; 1998). Exogenously applied ONOO�, however, may

show toxic effects when it does not have the opportunity to

combine with sulphydryl groups or other antioxidant defenses

before reaching its cellular targets. This is dependent upon the

concentration of ONOO� and the antioxidant capacity of the

cell or tissue of interest. Indeed, ONOO� has been shown to be

detrimental to cellular functions when it was applied for

example, in crystalloid buffer systems, in which the concentra-

tions of extracellular antioxidants and both free and protein-

bound thiols are limited (Schulz et al., 1997; Digerness et al.,

1999; Ferdinandy et al., 2000).

In this issue of British Journal of Pharmacology, Graves

et al. (2006) show that L-b,b-dimethylcysteine (L-penicilla-

mine), a potential ONOO� scavenger, inhibits the dose-

dependent vasodilator responses to moderate doses of

peroxynitrite administered repeatedly in vivo. This group has

also shown recently that the vasodilator response elicited by

exogenous ONOO� involves activation of ATP-sensitive

potassium channels (KATP) (Graves et al., 2005b). As the

glibenclamide-sensitive vasodilator response was still seen after

repeated injections of increasing doses of ONOO�, when

depletion of antioxidants is suspected, ONOO� may open

KATP independently from generation of S-nitrosothiols

(Graves et al., 1998). However, when 10 repeated injections

of a high dose of ONOO� (10mmol kg�1) were administered, a

loss of KATP function has been observed (Graves et al., 2005a).

Vasodilation and opening of KATP is not the only potential
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regulator function of ONOO�, where ONOO� is not definitely

detrimental to the tissues.

Increasing evidence suggests that ONOO� may act as a

regulator of various physiologic cellular functions. Endogen-

ous ONOO� has been shown to trigger ischemic stress

adaptation of the rat myocardium (Altug et al., 2000; Csonka

et al., 2001; see for review: Ferdinandy & Schulz, 2003), and to

activate stress response pathways such as the tyrosine kinase-

dependent MAP-kinase and ERK pathways (see for review

Klotz et al. (2002)). Cerioni et al. (2006) has recently

demonstrated that nontoxic concentrations of peroxynitrite

induced mitochondrial translocation of PKC-alpha and

activated cell survival pathways in U937 cells. It has been

recently shown that activation of microsomal glutathione-S-

transferase-1 by peroxynitrite is mediated by nitration of

tyrosine residue 92, and represents one of the few examples in

which a gain in function has been associated with nitration of a

specific tyrosine residue by ONOO� (Ji et al., 2006). Reactions

of ONOO� with globins are suspected to play crucial roles in

regulating normal physiological responses (see for review

Herold & Fago, 2005). Moreover, ONOO� appears to be

essential to the reversible S-glutathiolation of sarcoplasmic

reticulum Ca2þ -ATPase, thereby regulating muscle relaxation

(Viner et al., 1999; Adachi et al., 2004). ONOO� and NO

donors can stimulate myocardial contractility independently of

guanylyl cyclase activation, suggesting a role for S-nitrosyla-

tion reactions in the positive inotropic effects of NO/

peroxynitrite in intact hearts (Paolocci et al., 2000). S-

nitrosylation and S-glutathiolation are proposed mechanisms

by which ONOO� regulates protein functions, although it

should be noted that the role of NO and ONOO� in these

reactions is still not clear and little is known about the

oxidative actions ONOO� which seems to be more important

than the nitrosative effect of ONOO� (Ji et al., 1999; Viner

et al., 1999; Okamoto et al., 2001; Steffen et al., 2001).

Nevertheless, it is plausible to speculate that ONOO� via its

oxidative and nitrosative actions plays an important role in

several physiological regulatory mechanisms that is becoming

increasingly clear.

In summary, although it is widely accepted that enhanced

ONOO� formation is cytotoxic, increasing evidence suggests

that physiologic levels of ONOO� contribute to regulation of

normal cellular functions. However, due to the numerous

limitations of ONOO� detection using the currently available

techniques, the conclusions should be drawn cautiously from

studies based on ONOO� measurements. The development of

more sensitive techniques to detect ONOO� and/or the

discovery of specific and sensitive markers for endogenous

ONOO� formation at a physiological rate will definitely

enhance the exploration of the physiological roles of ONOO�.
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Figure 1 Cellular mechanisms of the actions of NO, superoxide (O2
�K), and ONOO�. NO is an important cardioprotective

molecule via its vasodilator, antioxidant, antiplatelet, and antineutrophil actions and it is essential for normal cellular function.
However, excess NO could be detrimental if it combines with O2

�K to form ONOO� which rapidly decomposes to highly reactive
oxidant species leading to tissue injury. There is a critical balance between cellular concentrations of NO, O2

�K, and superoxide
dismutase (SOD) which physiologically favor NO production but in pathological conditions such as, for example, ischemia and
reperfusion result in ONOO� formation. ONOO� might be converted to NO donors if it combines with SH-group containing
molecules (X-SH) to form S-nitroso compounds (X-SNO) including S-nitrosoglutathione. S-nitrosylation and S-glutathiolation are
proposed mechanisms by which ONOO� regulates protein functions. Increasing evidence suggests that physiological levels of
ONOO� act as regulator of several physiological functions. MMP, matrix metalloproteinase; NOS, NO synthase; PARP, poly-ADP
ribose polymerase; XOR, xanthine oxidoreductase; SERCA, sarcoplasmic reticulum Ca2þ -ATPase; KATP, ATP sensitive potassium
channel.
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