Table 3.
(1) let Q0 be the probability distribution such that Q0(x) = 1 |
(2) for d = 1, ..., dmax do |
• let Qd(x) = 0 for all x |
• for i = 1, ..., m do |
- sample xi according to Qd-1 |
- Qd(xi) = γQd-1 (xi) |
- for each edge label ℓ ∈ L (x) |
* for each node y ∈ Y(x, ℓ) |
· let qxy = Pr(y|ℓ, x)·Pr(ℓ|x) |
· increment Qd(y) by (1 - γ)Qd-1 (xi)qxy |
(3) return (z) as an approximation to Q(z|x) |
An efficient approximation algorithm for computing Q(z|x), given transition probabilities Pr(y|x, ℓ) and Pr(ℓ|x).