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A microscopically motivated theory of glassy dynamics based
on an underlying random first order transition is developed to
explain the magnitude of free energy barriers for glassy relax-
ation. A variety of empirical correlations embodied in the concept
of liquid “fragility” are shown to be quantitatively explained by
such a model. The near universality of a Lindemann ratio char-
acterizing the maximal amplitude of thermal vibrations within
an amorphous minimum explains the variation of fragility with
a liquid’s configurational heat capacity density. Furthermore, the
numerical prefactor of this correlation is well approximated by
the microscopic calculation. The size of heterogeneous reconfig-
uring regions in a viscous liquid is inferred and the correlation of
nonexponentiality of relaxation with fragility is qualitatively ex-
plained. Thus the wide variety of kinetic behavior in liquids of
quite disparate chemical nature reflects quantitative rather than
qualitative differences in their energy landscapes.

I t is believed that all classical fluids could form glasses if cooled
sufficiently fast so as to avoid crystallization. Central to glass

formation is a dramatic slowing of molecular motions on cool-
ing the liquid. The existence of a universal description of glass
transitions is suggested by empirical observations connecting de-
viations from the Arrhenius law for the slowing of rates, non-
exponential relaxations in the super cooled liquid state, and the
behavior of thermodynamic properties on cooling (1). Quanti-
tative differences in behavior of different substances sometimes
obscure this universality. This has led to a classification of liq-
uids into “fragile” ones like o-terphenyl, having the most dra-
matic deviations from the Arrhenius law, and into “strong” ones
like pure SiO2 where the Arrhenius equation works well (1). In
this paper, we show how the fragile versus strong behavior of
liquids can be understood within a microscopically motivated
theory based on the idea that glassy dynamics is caused by an
underlying thermodynamic, ideal “random first order” transi-
tion (2–7).

The notion that a random first order transition lies at the
heart of glass formation received its early theoretical support
from the remarkable confluence of approximate microscopic
theories of the liquid glass transition (8–10) and the behavior of
a large class of exactly solvable statistical mechanical models of
spin glasses with quenched disorder (11). Two closely connected
theories of the liquid glass transition suggest features similar to
first order transitions. One of these, the so-called mode–mode
coupling theory (8, 12), focuses on the feedback between the
slow fluctuations of fluid density in a molecule’s environment
on the motion of that molecule. This theory predicts a sharp
transition in the dynamics as well as a characteristic behavior
of the time correlation functions near the predicted transi-
tion. Mössbauer effect (13) and neutron scattering (14) are
roughly consistent with these precursor phenomena. At tem-
peratures below the transition, mode coupling theory predicts
the freezing of the liquid’s configuration near to a given ran-
dom configuration; i.e., there is broken ergodicity. Another
approach to the glass transition directly addresses broken er-
godicity by investigating the stability of a frozen density wave
using either self-consistent phonon theory (9) or the density
functional theory of liquids, applying them to aperiodic struc-
tures (10, 15). The mode coupling, self-consistent phonon and

density functional approaches all predict that there is a Linde-
mann criterion for the stability of an aperiodic density wave:
just as for a periodic crystalline solid, thermal vibrations can-
not yield a root mean square displacement of particles from
their fiducial location exceeding roughly one-tenth of the in-
terparticle spacing. The precise value of the Lindemann ratio
only weakly depends on the detailed intermolecular forces. The
predicted Lindemann ratio corresponds well to the experimen-
tally measured magnitude of the intermediate time plateau in
the structure function measured by neutron scattering (14). A
finite Lindemann ratio would be consistent with a first order
phase transition, but glass transitions in the laboratory do not
show a latent heat as ordinary first order transitions do. This
lack of latent heat is explained by the existence of the large
number of aperiodic structures that may be frozen in at a glass
transition in contrast to the unique periodic structure formed
in ordinary crystallization. Many exactly solvable models of dis-
ordered magnetic systems have been shown to exhibit freezing
into many structures (11, 16, 17). The major class of these also
show a first order jump in a locally defined order parameter
without any latent heat. This defines what has been called a
“random first order” transition. Unlike Ising spin glasses, these
models possess no symmetry between local states but have long
range, quenched random interactions. Such systems include
Potts spin glasses (11), p-spin glasses (17), and the elegantly
solved Random Energy Model (16). There are further parallels
between these systems and the phenomenology of glass form-
ing liquids, most notably both glass forming liquids and these
models exhibit a Kauzmann entropy crisis, i.e., the configura-
tional entropy vanishes at a finite temperature above absolute
zero (18). This crisis would define an underlying ideal glass
transition. Whether the crisis for liquids would be avoided in
some way at lower temperature than measurements have been
made is controversial and is of limited relevance to describing
the observed behavior using the analogy. In the exactly solvable
statistical mechanical models, a dynamic transition occurs at a
high temperature TA coincident with mode coupling and stabil-
ity analyses, but the thermodynamic transition does not occur
until at a lower temperature, TK the configurational entropy of
different frozen solutions vanishes (4). The idea then is that the
glassy dynamics in the measured temperature range is governed
by the approach to an ideal glass transition described like that
shown in the exactly solved models. There are two seeming
differences between the exactly solved models and the situa-
tion for the liquid–glass transition. First, in liquids there is no
quenched randomness; it must be self-generated. Second, while
the models have infinite range forces, interactions in liquids
are of finite range. The absence of quenched randomness has
been addressed by exhibiting several mean field models without
quenched randomness that do generate randomness inter-
nally (19–21). Also the formal statistical mechanical tools used
for quenched random Hamiltonians, e.g., the replica technique,
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have been shown to be applicable to atomic fluid systems with
self-generated randomness (7). Furthermore, computer simula-
tions of fluid glass transitions show replica symmetry breaking
like a random first order transition (22). The consequences of
finite range interactions are more important. The finite range
causes the dynamic transition at TA, like a spinodal of an or-
dinary first order transition to be smeared out. It becomes a
crossover to activated dynamics. Below TA, motions in the finite
range system that involve the rearrangement of large regions of
the liquid can still occur. The transition to such collective acti-
vated events in liquids has been confirmed in simulations (23,
24). The events are driven by the configurational entropy. For
finite range systems approaching a random first order transi-
tion, an “entropic droplet” scaling argument for the activation
barriers naturally explains the non-Arrhenius transport behavior
and leads to the Vogel–Fulcher law (4, 5). The idea that con-
figurational entropy is needed for motions in glasses predates
the random first order transition theory and was described by
Adam and Gibbs (25). The older argument is quite different,
however, from the random first order transition theory, because
it provides no explanation for how a rearranging unit’s activa-
tion energy is related to the microscopic forces. Here we show
how the near universality of the Lindemann ratio explains the
connection between barrier heights and thermodynamics for
liquids of varying fragility.

The naive density functional approach used to obtain the Lin-
demann criterion for vitrification allows an estimate for the free
energy of dynamic rearrangements. The density functional (10,
26) assesses the cost of forming any density wave by breaking
the free energy into an entropic localization penalty and an in-
teraction term.

F =
∫
f �ρ�r��d3r = kBT

∫
d3rρ�r��ln ρ�r� − 1�

+
∫ ∫

d3rd3r′�ρ�r� − ρ0�c�r − r′��ρ�r′� − ρ0�; [1]

where ρ0 is the mean density. The localization cost is the same
as for a perfect gas while the interaction term involves the di-
rect correlation function of the liquid, a renormalized form of
the bare interaction potential. The direct correlation function is
determined by the condition that the functional gives small fluc-
tuations in density reproducing the static liquid structure fac-
tor. Higher order terms in the density can also be included.
In the frozen aperiodic state, the density wave is decomposed
into a sum of Gaussians centered around random lattice sites,
ρ�r� = ∑

i�πα �3/2 exp�−α�r − ri�2�, where α represents the ef-
fective local spring constant that determines the rms displace-
ment from the fiducial lattice site. The localization sites are �ri�.
For large α, the densities around different sites overlap weakly
giving

F

N
= kBT

[
3
2

ln
(
αr2

0

π

)
− 5

2

]
+ 1
N

∫ ∫
d3rd3r′�ρ�r� − ρ0�c�r − r′��ρ�r′� − ρ0�; [2]

where N is the total number of particles and r0 is the mean
lattice spacing. We can take ρ0r

3
0 = 1. For small α, F/N reduces

to the perfect gas value.
A similar free energy expression is obtained from self-

contained phonon theory where the direct correlation function
is replaced by the Mayer function f = e−βu�r� − 1 for hard po-
tentials (10) or by the potential itself (7). The free energy varies
with the particular arrangement of sites �ri�, but assuming α
is the constant, the mean free energy of aperiodic structures
is plotted in Fig. 1A. The lowest value of α for which a sec-
ondary minimum occurs is given by the Lindemann value αL.

Fig. 1. (A) Free energy as a function of order parameter α. Right below TA, a
second minimum emerges around α 8 αL, which corresponds to a glassy state.
The free energy difference between the liquid and glass state is TSc (T ), which ap-
proaches zero at the Kauzmann temperature TK . (B) An illustration of a liquid-like
(multiconfiguration) droplet inside a glassy region corresponding to a single mean
field minimum free energy configuration. The interface is wetted by suitable con-
figurations to lower the surface energy. One considers an inhomogeneous situation
with single minimum given by the density functional theory abutting another min-
imum as in a naive droplet solution with a radius of curvature r. Upon this surface,
one erects a smaller droplet of one of the other solutions of the density functional
theory as shown in the figure. The free energy of interpolating this wetting phase
is given by 1 F = σ (r)rd−1( ζr )2 − T

√
kB1Cprd/2( ζr )1/2. This additional free energy

cost depends on the surface tension at the scale r, σ (r) and on the fluctuations
in driving force for forming this smaller wetting droplet. In the Ising model, the
fluctuations in driving force for these droplets arise from the random part of the
magnetic field. For a random first order transition, the field fluctuation’s role in the
disordered magnet is played by the fluctuations of configurational entropy density.
The magnitude of these fluctuations should be given by the usual Landau expres-
sion 1S2

c = kB1Cp, where 1Cp is the configurational heat capacity of a region.
The contribution to the free energy from the interpolating wetting droplet yields a
change with size of the surface tension at size r, dσ (Eq. 4).

This minimum representing the frozen wave is higher in free
energy than the α = 0 fluid phase. For the exactly solvable ran-
dom first order transitions the excess free energy of the frozen
solution is known to equal the configurational entropy of pos-
sible mean field solutions, TSc . For the fluid system in addition
to the α = 0 and α 8 αL uniform stationary solutions of the
variational equation δF = 0, there are saddle points represent-
ing droplet configurations in which a region of low α 8 0 forms
in the midst of a given large α solution (See Fig. 1B). This
saddle point is a transition state for reconfiguring the frozen
density wave. Within the melted region there is a multiplicity
of states corresponding to other aperiodic arrangements of the
atoms. Much below TA, the interface should be quite sharp,
that is, in a single atomic layer α changes from a value near
αL to near zero. Close to TA the transition should be smoother
with α slowly varying over many atomic layers. In both cases,
there will arise a surface tension σ reflecting the deviation of
α in the layers from the α for bulk free energy minima. The
density functional expression for the droplet free energy then
is given as a function of the radius of the droplet much as in
conventional nucleation,

F�r� = −4
3
πTscr

3 + 4πσr2: [3]

Here sc is the configurational entropy density.
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The maximum of F�r� gives a reconfiguration barrier 1F‡ =
16
3 πσ

3/�Tsc�2. A detailed calculation of this barrier for a spe-
cific glassy system, the random heteropolymer has been given by
Takada and Wolynes (27). This naive droplet result (4, 28) dif-
fers from the Adam Gibbs suggestion 1F‡ = s∗c1µ/sc(25), where
1µ is a bulk “activation energy” per particle and s∗c is the “criti-
cal configurational entropy” taken to be usually kB ln 2. The AG
formula is not the result of a self-contained microscopic calcula-
tion but assumes the free energy cost of dynamically reconfigur-
ing a region is independently given from the free energies that
determine the low energy structures themselves. There is no ap-
parent reason to assume 1µ a constant for different substances.
On the other hand, the modern random first order transition
theory does suggest universality for σ based on the universality
of the Lindemann ratio α−1/2

L /r0. We see this in the following
way: assuming a sharp interface between the localized and delo-
calized regions, the energy associated with the interface should
be one-half of the interaction part of the free energy in the bulk
stable phase. Therefore,

σ = T

2
r0

[
3
2
nkB ln

(
αr2

0

πe

)
− sc�T �

]
;

where n is the density of particles. Because the localization part
of the free energy depends only logarithmically on α, we can
replace α by its minimum value αL which it achieves at TA.
Near TK , on the other hand, we can neglect the configurational
entropy part of the expression. For temperatures between TA
and TK , the errors of making these two approximations largely
cancel. This gives

σ = 3
4
nr0kBT ln

(
αLr

2
0

πe

)
= σ0

as an approximation for temperatures much below TA. The uni-
versality of the Lindemann ratio α

−1/2
L /r0 means σ/nr0kBT is

nearly universal and therefore that 1F‡ increases more rapidly
with cooling for substances with a large configurational heat ca-
pacity. This explains the empirical correlation that strong liquids
with nearly Arrhenius rate slowing have small excess heat capac-
ities contrasting with fragile liquids having large excess heat ca-
pacity with dramatically non-Arrhenius slowing. Near TA the in-
terface broadens and the sharp interface approximation breaks
down. A gradient expansion of the free energy as a function
of α yields a surface energy vanishing near TA. The universal
value of σ0 is only approximate. For a given substance, the re-
maining temperature dependence of σ from the broadening of
the interface implies that the apparent fragility of liquids mea-
sured at high temperature should be larger than that measured
at low temperature, as noted by Angell in his detailed survey
of viscosity data (29). Similarly we note that σ depends on the
density and therefore the pressure. Thus although a kinetic glass
transition defined by a specific numerical barrier height or fidu-
cial relaxation time will be largely a function of the configura-
tional entropy density there will be another explicit but weak
thermodynamic dependence on pressure too. Consistent with
Nieuwenhuizen’s recent analysis of the dynamic effects on glass
transitions caused by pressure and temperature change (30), this
could explain the mild deviation of the Prigogine–deFay ratio
from 1.

While the simple density functional calculation explains qual-
itatively the fragility/heat capacity density correlation, viscosity
data are more consistent with an s−1

c scaling for the free en-
ergy of activation [like that suggested by Adam and Gibbs (25)]
rather than the s−2

c behavior predicted from the simple density
functional theory. The scaling theory of the entropic droplet
formulation already accounts for this observation (5). The mod-
ification comes from the complexity of the interface between

aperiodic crystalline minima (5). Correct scaling near TK is re-
stored by the wetting of droplets corresponding with one partic-
ular density wave, by a surface coating corresponding to a differ-
ent aperiodic arrangement. This acts to lower the surface energy
much like what happens in the random field Ising model (31).
Wetting for a random system gives a surface tension that de-
pends on the radius of the drop. This r dependent surface ten-
sion yields s−1

c scaling when the thermodynamic critical expo-
nents for the random first order transition are used. We now
reprise this argument based on a similar one for the random
field Ising magnet (31) in Fig. 1B.

The wetting argument leads to a differential renormalization
group equation for σ�r�,

σ1/3dσ = −�4−1/3 − 4−4/3�
(
T
√
kB1c̃p

)4/3
r−5/3dr; [4]

where 1c̃p is the heat capacity jump per unit volume. This renor-
malization group equation is integrated outward from r0 where
the short range value is set by the naive density functional the-
ory without wetting discussed earlier, σ0. Between TK and TA,
σ�r� vanishes at large distance and is only finite below TK . By
using this boundary condition, the solution of the renormaliza-
tion equation for σ�r� at TK is then

σ�r� = σ0

(
r0
r

)1/2

: [5]

When this is substituted into the expression for F�r�, one finds
that the maximum gives a barrier, 1F‡ which now varies in-
versely to the first power of the configurational entropy density:
i.e., the Vogel–Fulcher scaling. We find a simple expression for
the activation barrier:

1F‡ = 3πσ2
0 r0

Tsc
= 3πσ2

0 r0
T1c̃p

TK
T − TK

= kBTD
TK

T − TK
: [6]

The coefficient D in this expression has been called the liquid’s
fragility, which has the expression

D = 27
16
π
nkB
1c̃p

ln2 αLr
2
0

πe
: [7]

Based on the Lindemann ratio universality, the root mean
square displacement, α−1/2

L is taken as 0:1r0, the hard sphere
value, so that D can be expressed in terms of the heat capacity
jump per mole, 1cp,

D = 32R/1cp; [8]

where R = 8:31 J mole−1 K−1. The value of D depends on the
heat capacity jump per mole, which varies greatly from sub-
stance to substance and is far from being universal. In Fig. 2
we plot the D predicted from this theory versus the inverse of
the configurational heat capacity for several glass forming liq-
uids. The straight line is given by Eq. 8. Superimposed on the
plot are the experimental values of the D. The agreement is ex-
cellent. We see that the magnitude of the activation barriers for
rearrangement of the viscous liquid depends on the difference
in temperature from TK , on universal microscopic parameters
connected with the Lindemann ratio and on the excess heat ca-
pacity connected with configurational excitations.

A hallmark of the random first order transition theory
of glass dynamics is the dynamic heterogeneity required to
explain the growing barriers upon cooling. After combining
Eqs. 3 and 5 with our expression of σ0, a little algebra shows the
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Fig. 2. The fragility parameter D as a function of the inverse heat capacity jump per mole. The glass formers chosen are those shown in Angell’s review article (35).
The solid line in the graph is calculated with random first order transition model (Eqs. 7 and 8) based on the universality of the Lindemann ratio and the points are
from experiments. Data for fragility parameter D are found in refs. 35–37 and references therein; for specific heat jump, see refs. 38–40. The heat capacity jump is
given as per mole “beads” (38, 41) or “mobile units” (42). Generally speaking, “beads” are “rearrangeble elements in a relaxing liquid” (38). We have used the bead
count of previous workers (41). The number of beads for GeO2 and ZnCl2 is 3 (38), 6 for glycerol (38), 10 for KCl·2BiCl3 (40), 12 for 3KNO3·2Ca(NO3)2 (39), 2 for
m-fluorotoluene (41, 43), and 3 for o-terphenyl (43). The “bead” count is a crude way of accounting for internal flexibility of the molecules (because the free energy
functional is essentially that for a monatomic fluid). To illustrate the robustness of the correlation we indicate also the values of o-terphenyl as shown by a star (*) if its
internal flexibility is ignored and it is assigned a bead count of one.

characteristic size of a rearranging region is

ξ

r0
= 2

(
2

3π ln�αLr2
0/πe�

)2/3 ( DTK
T − TK

)2/3

:

This can be expressed as a universal function of the relaxation
time

ξ

r0
= 2

(
2

3π ln�αLr2
0/πe�

)2/3 (
ln
τ

τ0

)2/3

;

because

τ = τ0 exp
(
DTk
T − Tk

)

according to the Vogel–Fulcher law. This is plotted in Fig. 3.
The kinetic laboratory glass transition occurs when molec-

ular slowing gives relaxations in the hours range, i.e., τ
τ0
=

1017. Thus at Tg; � ξr0 � 8 4:5, a rather modest size. We also
note the universality of σ0 suggests that sc is nearly the same
for all substances at the laboratory glass transition. Roughly
90 molecules are involved in a rearranging unit according to
the random first order transition theory at the conventionally
defined glass transition temperature. The rearranging unit ac-
cording to the Adam–Gibbs argument is a region just capable
of having two states; therefore, � ξAG

r0
� = �R ln 2

sc
�1/3. ξAG grows

slowly as TK is approached in contrast to the random first order

transition theory. The Adam–Gibbs argument gives rearranging
units with at most 10 molecules near Tg for the most frag-
ile substances. It is clearly very ambiguous to have such small
“cooperative” units. Recent observations of structural hetero-
geneities are inconsistent with units of the small size predicted
by Adam–Gibbs but are in harmony with the estimates of the
random first order transition entropic droplet picture (32). A
single size does not characterize the viscous liquid completely.

Fig. 3. The correlation length ξ (in the unit of lattice spacing r0) is shown as a
function of relaxation time. The solid line is that predicted by random first order
transition theory, and the dashed line is the result of Adam–Gibbs theory (25)
assuming 1cp = 51:8 J mole−1 K−1, the value for PVAC (polyvinyl acetate) (25).
The Adam–Gibbs result weakly depends on fragility. The point (and its error bar)
gives the only “direct” measurement by Spiess et al. on PVAC (32). Results of many
“indirect” measurements on different glass formers around the glass transition
temperature also fall in the range of the Spiess experiment (32).
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The random first order transition entropic droplet picture actu-
ally leads to a “mosaic” structure of the supercooled liquid (33)
with cooperative regions only somewhat larger than the critical
droplet size ξ. These regions fluctuate in size and therefore have
different flipping rates because of the configurational entropy
fluctuations whose magnitude depends on the configurational
heat capacity density jump 1c̃p and the volume of the rearrang-

ing region, 1Sc =
√
kB1c̃pξ

3. At Tg both strong and fragile liq-
uids have roughly the same size scale for their mosaic structures,
i.e., ξ/r0 is nearly universal at the laboratory glass temperature.
It follows that the range of activation barriers is smaller for
strong than for fragile liquids because of their smaller 1c̃p. This

is in accord with the observed correlation between growing non-
exponentiality of relaxation with growing fragility (34).

We conclude that the wide variety of kinetic behavior seen in
liquids reflects quantitative rather than qualitative differences
in their energy landscape. Furthermore, the random first or-
der transition approach coupled with microscopic considerations
about the stability of aperiodic structures can account semi–
quantitatively for these differences.
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