®)

BiolVled Central

Research article

Testing statistical significance scores of sequence comparison
methods with structure similarity
Tim Hulsen*!, Jacob de Vlieg!2, Jack AM Leunissen3 and Peter MA Groenen?

BIVIC Bioinformatics

Address: 1Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University
Nijmegen Medical Centre, Nijmegen, The Netherlands, 2Molecular Design and Informatics, NV Organon, Oss, The Netherlands and 3Laboratory
of Bioinformatics, Wageningen University and Research Centre, Wageningen, The Netherlands

Email: Tim Hulsen* - T.Hulsen@cmbi.ru.nl; Jacob de Vlieg - jacob.devlieg@organon.com; Jack AM Leunissen - jack.leunissen@wur.nl;
Peter MA Groenen - peter.groenen@organon.com

* Corresponding author

Published: 12 October 2006
BMC Bioinformatics 2006, 7:444  doi:10.1186/1471-2105-7-444

Received: 10 July 2006
Accepted: 12 October 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/444

© 2006 Hulsen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: In the past years the Smith-Waterman sequence comparison algorithm has gained
popularity due to improved implementations and rapidly increasing computing power. However,
the quality and sensitivity of a database search is not only determined by the algorithm but also by
the statistical significance testing for an alignment. The e-value is the most commonly used statistical
validation method for sequence database searching. The CluSTr database and the Protein World
database have been created using an alternative statistical significance test: a Z-score based on
Monte-Carlo statistics. Several papers have described the superiority of the Z-score as compared
to the e-value, using simulated data. We were interested if this could be validated when applied to
existing, evolutionary related protein sequences.

Results: All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman
sequence comparison algorithm with both e-value and Z-score statistics is evaluated, using ROC,
CVE and AP measures. The BLAST and FASTA algorithms are used as reference. We find that two
out of three Smith-Waterman implementations with e-value are better at predicting structural
similarities between proteins than the Smith-Waterman implementation with Z-score. SSEARCH
especially has very high scores.

Conclusion: The compute intensive Z-score does not have a clear advantage over the e-value.
The Smith-Waterman implementations give generally better results than their heuristic
counterparts. We recommend using the SSEARCH algorithm combined with e-values for pairwise
sequence comparisons.

increase in whole genome sequencing projects, the

Background

Sequence comparison is still one of the most important
methodologies in the field of computational biology. It
enables researchers to compare the sequences of genes or
proteins with unknown functions to sequences of well-
studied genes or proteins. However, due to a significant

amount of sequence data is nowadays very large and rap-
idly increasing. Therefore, pairwise comparison algo-
rithms should not only be accurate and reliable but also
fast. The Smith-Waterman algorithm [1] is one of the
most advanced and sensitive pairwise sequence compari-
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son algorithms currently available. However, it is theoret-
ically about 50 times slower than other popular
algorithms [2], such as FASTA [3] and BLAST [4]. All three
algorithms generate local alignments, but the Smith-
Waterman algorithm puts no constraints on the align-
ment it reports other than that it has a positive score in
terms of the similarity table used to score the alignment.
BLAST and FASTA put additional constraints on the align-
ments that they report in order to speed up their opera-
tion: only sequences above a certain similarity threshold
are reported, the rest is used for the estimation of certain
parameters used in the alignment calculation. Because of
this Smith-Waterman is more sensitive than BLAST and
FASTA. The Smith-Waterman algorithm finds the best
matching regions in the same pair of sequences. However,
BLAST and FASTA are still far more popular because of
their speed and the addition of a statistical significance
value, the Expect-value (or simply e-value), whereas the
original Smith-Waterman implementation relies only on
the SW-score without any further statistics. The newer
Smith-Waterman implementations of Paracel [5],
SSEARCH [6] and ParAlign [7] do include the e-value as a
measure of statistical significance, which makes the
Smith-Waterman algorithm more usable as the engine
behind a similarity search tool. The e-value is far more
useful than the SW-score, because it describes the number
of hits one can expect to see by chance when searching a
database of a certain size. An e-value threshold can be
used easily to separate the 'interesting' results from the
background noise. However, a more reliable statistical
estimate is still needed [8]. The Z-score, based on Monte-
Carlo statistics, was introduced by Doolittle [9] and
implemented by Gene-IT [10] in its sequence comparison
suite Biofacet [11]. The Z-score has been used in the crea-
tion of the sequence annotation databases CluSTr [12]
and Protein World [13] and was used in orthology studies
[14]. The Z-score has also been implemented in algo-
rithms other than Smith-Waterman, such as FASTA [15].
It is calculated by performing a number (e.g., 100) of
shuffling randomizations of both sequences that are com-
pared, completed by an estimation of the SW score signif-
icance as compared to the original pairwise alignment.
This makes the Z-score very useful for doing all-against-all
pairwise sequence comparisons: Z-scores of different
sequence pairs can be compared to each other, because
they are only dependent on the sequences itself and not
on the database size, which is one of the parameters used
to calculate the e-value. However, this independency of
the database size makes the Z-score unsuitable for deter-
mining the probability that an alignment has been
obtained by chance. The randomizations make the Z-
score calculation quite slow, but theoretically it is more
sensitive and more selective than e-value statistics [16,17].
Unfortunately, this has never been validated experimen-
tally.
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Some methods have been used to combine the sensitivity
and selectivity of a sequence comparison algorithm into
one single score [18]. Receiver operating characteristic
(ROCQ) is a popular measure of search accuracy [19]. For a
perfect search algorithm, all true positives for these que-
ries should appear before any false positive in the ranked
output list, which gives an ROC score of 1. If the first n
items in the list are all false positives, the ROC, score is 0.
Although researchers have devised many ways to merge
ROC scores for a set of queries [20], one simple and pop-
ular method is to 'pool’ search results so as to get an over-
all ROC score [21]. Another method to evaluate different
methods is the errors per query (EPQ) criterion and the
'coverage versus error' plots [2]. EPQ is a selectivity indi-
cator based on all-against-all comparisons, and coverage
is a sensitivity measure. The assumption for EPQ is that
the search algorithm can yield a 'normalized similarity
score' rather than a length-dependent one, so that results
from queries are comparable. Like ROC, the coverage ver-
sus error plot can give an overall performance comparison
for search algorithms. A third method, the average preci-
sion (AP) criterion, is adopted from information retrieval
research [22]. The method defines two values: the recall
(true positives divided by the number of homologs) and
the precision (true positives divided by the number of
hits), which are plotted in a graph. The AP then is an
approximate integral to calculate the area under this
recall-precision curve. These methods were used to com-
pare several sequence comparison algorithms, but we use
them to compare the e-value and Z-score statistics. Analy-
ses of BLAST and FASTA are also included as reference
material.

Here we show that two out of the three Smith-Waterman
implementations with e-value statistics are more accurate
than the Smith-Waterman implementation of Biofacet
with Z-score statistics. Furthermore, the comparison of
BLAST and FASTA with the four Smith-Waterman imple-
mentations shows that FASTA is a more reliable algorithm
when using the ASTRAL SCOP structural classification as
a benchmark. The Smith-Waterman implementation of
Paracel even has lower scores than both BLAST and
FASTA. SSEARCH, the Smith-Waterman implementation
in the FASTA package, scores best.

Results

We used a non-redundant protein-domain sequence data-
base derived from PDB as the target database. It is auto-
matically generated using the ASTRAL system [23].
According to the structural classification of proteins
(SCOP release 1.65), it includes 9498 sequences and 2326
families. True positives are those in the same family as the
query sequence. SCOP as an independent and accurate
source for evaluating database search methods has been
used by other researchers [2,24]. ASTRAL SCOP sets with
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different maximal percentage identity thresholds (10%,
20%, 25%, 30%, 35%, 40%, 50%, 70%, 90% and 95%)
were downloaded from the ASTRAL SCOP website [25].
Their properties (number of families, number of mem-
bers, etc.) are shown in table 1. Three different statistical
measures were applied: receiver operating characteristic
(ROQ), coverage versus error (CVE) and mean average
precision (AP). We compared six different pairwise
sequence comparison algorithms, which are listed in table
2, together with the parameters used in this study.

Receiver operating characteristic

The mean ROC;, scores increase if more structurally iden-
tical proteins are included, for both the e-value and the Z-
score measurements (Fig. 1). The ROC;, scores of the
PDBO010 set show a large difference between the several
Smith-Waterman implementations: 0.19 for Paracel, 0.23
for Biofacet (with Z-score), 0.27 for ParAlign and 0.31 for
SSEARCH. The advantage of ParAlign over Biofacet
decreases with increasing inclusiveness of the ASTRAL
SCOP set that is used. The ROCs scores of the PDB095 set
are 0.28 for Paracel, 0.35 for both ParAlign and Biofacet
(with Z-score) and 0.46 for SSEARCH. SSEARCH scores
best of all studied methods, regardless of which ASTRAL
SCOP set is used. The reference methods FASTA and
BLAST give quite different results: FASTA is a good second
and BLAST has scores similar to Paracel and Biofacet.

Coverage versus error

This method differs from the ROC analysis on one crucial
point: instead of looking at the first 100 hits, we varied the
threshold at which a hit was seen as a positive. Hence the
results are somewhat dissimilar: the differences between
the several algorithms in the coverage versus error plots
(Fig. 2) are not as obvious as they are in the ROC;, graph
(Fig. 1). Figure 2A shows the coverage versus error plot for
the smallest ASTRAL SCOP set (PDB010), figure 2B shows
the plot for the largest ASTRAL SCOP set (PDB095) and
figure 2C shows the plot for the intermediate set PDB035.
An ideal algorithm would have a very high coverage but

Table |I: Properties of ASTRAL SCOP PDB sets
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not many errors per query, which places it in the lower
right corner of the graph. SSEARCH has the best scores
when using the PDB010 set, followed by ParAlign and
FASTA, with the latter scoring best in the lowest-coverage
range (<0.02). Biofacet with Z-score has the lowest scores.
The PDB095 plot shows some differences between the
low-coverage range (<0.25) and the high-coverage range
(>0.50). In the low coverage range, FASTA and Paracel
have the highest scores, whereas SSEARCH and ParAlign
have the highest scores in the low-coverage range. It
should be noted that the high-coverage range might statis-
tically be more reliable because of the larger number of
hits. The PDB035 set gives similar results.

Average precision

The average precision graph (Fig. 3) shows some minor
differences from the ROC;, graph (Fig. 1): for the
PDB020, PDB025 and PDBO030 set, Paracel (e-value)
scores better than Biofacet (Z-score). However, the advan-
tage of the Biofacet Smith-Waterman with Z-score
increases from that point on (PDB035, Paracel: 0.16, Bio-
facet: 0.17) to the right side (PDB095, Paracel: 0.19, Bio-
facet: 0.24). The Z-score seems to score better when more
similar proteins are compared. Once more, SSEARCH has
the highest scores for all structural identity percentages,
with FASTA as the second best.

Case studies

We included two examples of our statistical analysis,
which show how the ROC and mean AP measures differ
from each other and how results can be different for each
studied protein. We choose two well-studied proteins:
enoyl-ACP reductase and the progesterone receptor, the
first from a prokaryote (E. coli) and the second from a
eukaryote (H. sapiens). Both case studies were done using
the PDB095 set, which is the most complete ASTRAL
SCOP PDB set used in our study.

Maximal Number of Number of Average family Size of largest Number of Number of families
percentage sequences families size family families having  having more than |
indentity only | member member
10% 3631 2250 1.614 25 1655 595
20% 3968 2297 1.727 29 1605 692
25% 4357 2313 1.884 32 1530 783
30% 4821 2320 2.078 39 1435 885
35% 5301 2322 2.283 46 1333 989
40% 5674 2322 2.444 47 1269 1053
50% 6442 2324 2.772 50 1178 1146
70% 7551 2325 3.248 127 1087 1238
90% 8759 2326 3.766 405 1023 1303
95% 9498 2326 4.083 479 977 1349
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Table 2: Sequence comparison methods and parameters
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Method Abbreviation Version Matrix Gap open penalty Gap extension penalty Number of
randomizations

Paracel SW e-value pce - BLOSUMé62 3¥IS * 0.3%IS * 0

Biofacet SW Z-score bf z 2.9.6 BLOSUMé62 12 | 100
NCBI BLAST e-value ble 229 BLOSUM62 12 | 0
FASTA e-value fae 3.4t24 BLOSUMé2 12 | 0
SSEARCH e-value sse 3.4t24 BLOSUMé2 12 | 0
ParAlign SW e-value pae 4.0.0 BLOSUMé62 12 | 0

* IS = average matrix identity score

Bacterial enoyl-ACP reductase

Table 3 shows the results of our analysis of the ASTRAL
SCOP entry of E. coli enoyl-ACP reductase chain A,
dlqg6a_, using the PDB095 set. One way of testing the
reliability of a sequence comparison method is by looking
at the first false positive (FFP) in the list of top 100 hits
(Table S.1 [see Additional file 1]). The c¢.2.1.2 structural
family has 46 members within the PDB095 set, so the per-

fect sequence comparison algorithm would return its first
false positive at the 46t hit (the hit containing the query
protein is discarded). For the Paracel Smith-Waterman
implementation, this is already the twenty-first hit. Four
algorithms score best with the first false positive at 24th
place. A second testing method is counting the total
number of true positives (NTP), of which the perfect algo-
rithm would return all 45. BLAST has the highest score

0.50
0.45
0.40
0.35 - |Hpce
o Ebfz
25 | |Ofae
§ Hsse
£ 0.20 A " |mpa e
0.15 ~ B
0.10 ~ B
0.05 ~ B
0.00 - =
pdb010 pdb020 pdb025 pdb030 pdb035 pdb040 pdb050 pdb070 pdb090 pdb095
ASTRAL SCOP set
Figure |

The mean receiver operating characteristic scores for ten different ASTRAL SCOP sets. The maximal structural
identity percentage of each set increases from the left to the right, from 10% to 95%. Red bars: mean ROC50 scores calculated
using the Paracel Smith-Waterman algorithm. Blue bars: mean ROC;, scores calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Green bars: mean ROC;, scores calculated using the BLAST algorithm. Yellow bars: mean
ROC,;, scores calculated using the FASTA algorithm. Purple bars: mean ROC;, scores calculated using the SSEARCH algo-
rithm. Orange bars: mean ROC; scores calculated using the ParAlign Smith-VWaterman algorithm.
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Figure 2

(A) Coverage versus error plot for the ASTRAL SCOP PDBO010 set. (B) Coverage versus error plot for the
ASTRAL SCOP PDBO035 set. (C) Coverage versus error plot for the ASTRAL SCOP PDB095 set. Red line: calcu-
lated using the Paracel Smith-Waterman algorithm. Blue line: calculated using the Biofacet Smith-VWaterman algorithm with Z-
score statistics. Green line: calculated using the BLAST algorithm. Yellow line: calculated using the FASTA algorithm. Purple
line: calculated using the SSEARCH algorithm. Orange line: calculated using the ParAlign Smith-Waterman algorithm.
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Figure 3

The average precision values for ten different ASTRAL SCOP sets. The maximal structural identity percentage of
each set increases from the left to the right, from 10% to 95%. Red bars: mean AP values calculated using the Paracel Smith-
Woaterman algorithm. Blue bars: mean AP values calculated using the Biofacet Smith-VWaterman algorithm with Z-score statis-
tics. Green bars: mean AP values calculated using the BLAST algorithm. Yellow bars: mean AP values calculated using the
FASTA algorithm. Purple bars: mean AP values calculated using the SSEARCH algorithm. Orange bars: mean AP values calcu-

lated using the ParAlign Smith-Waterman algorithm.

here: 27 out of the top 100 hits are true positives. FASTA
and Paracel are at the second place with 25 true positives.
Biofacet has the lowest score: only 23 true positives. Note
that differences are very small, which is a reason to look at
the ROC and mean AP scores. FASTA and SSEARCH have
both the highest ROC;, scores and the highest mean APs.
ParAlign and BLAST are third and fourth, followed by
Paracel and Biofacet. The ROC and mean AP scores give a
clearer view of the differences between the algorithms
than the FFP or NTP scores, because they take into account

Table 3: Scores for bacterial enoyl-ACP reductase

the ranking of all hits instead of just the first false positive
or just the true positives.

Human progesterone receptor

Table 4 shows our analysis of ASTRAL SCOP entry
dla28a_, using again the PDB095 set. The structural fam-
ily a.123.1.1 has 29 members, so the perfect algorithm
should have the first false positive at the 29t hit. Surpris-
ingly, BLAST scores best here with its first false positive at
the 25t hit (Table S.2 [see Additional file 1]), although

bf z bl e fae sse pae
ROC score 0.156 0.124 0.250 0.367 0.338 0.229
MAP score 0.212 .16l 0.264 0.374 0.343 0.234
First False Polsitive (FFP) 24 24 22 24 24
Number of True Positives (NTP) 23 27 25 24 24
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Table 4: Scores for human progesterone receptor
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pce bf z bl e fae sse pae

ROC score 0.402 0.437 0513 0.745 0.762 0.573

MAP score 0.504 0.503 0.548 0.727 0.745 0.586
First False Positive (FFP) 18 25 23 23 23
Number of True Positives (NTP) 27 27 28 28 28

the differences are quite small. BLAST is, together with
Biofacet, the only algorithm that does not have all the 28
family members of d1a28a_ in its top 100 list; d1n83a_ is
missing here. The ROCg, and mean AP analysis of
dla28a_ shows again that SSEARCH and FASTA give the
best results. Paracel and Biofacet have the lowest scores
once more. The differences are not large enough to put
any definite conclusions to the results of this example, but
by combining all ROC and mean AP scores for all ASTRAL
SCOP entries, we created a reliable comparison between
all sequence comparison methods.

Timing

Table 5 shows the time that each of the six algorithms
needs to perform an all-against-all sequence comparison
of the ASTRAL SCOP PDB095 set. The BLAST algorithm is
clearly the fastest, followed by the other heuristic algo-
rithm FASTA. Of the Smith-Waterman algorithms, ParA-
lign is by far the fastest. The Biofacet algorithm needs
much time to calculate 2 x 100 randomizations and is
therefore the slowest sequence comparison algorithm.

Discussion

The theoretical advantage of the Z-score over the e-value
appears to be rejected by our results. Our results show that
the e-value calculation gives an advantage over the com-
putationally intensive Z-score, at least when looking only
at the results from the Smith-Waterman algorithm. Some
caution should be taken however, drawing any definite
conclusions. First, the Z-score was designed to make a dis-
tinction between significant hits and non-significant hits
that have high SW scores. It might have an advantage over
the e-value when applied to the top hits only, but might

Table 5: Times for all-against-all sequence comparisons of the
ASTRAL SCOP PDB095 set.

Method Time
Paracel SW e-value 3 hours *
Biofacet SW Z-score multiple days
NCBI BLAST e-value 15 minutes
FASTA e-value 40 minutes
SSEARCH e-value 5 hours, 49 minutes
ParAlign SW e-value 47 minutes

* estimation because of unavailability Paracel system

have less advantage for the hits with lower SW scores. This
idea is supported by the fact that the Z-score is better at
scoring high-similarity sequence pairs. This is also
reflected in the different ROC and AP scores for the
PDBO010 set and the PDB095 set: the difference between Z-
score and e-value increases when structurally more similar
protein pairs are being included. Second, the Z-score can
differ for each run, because of its different randomizations
[17]. The standard deviation of the Z-score increases
almost proportionally with the Z-score itself, i.e. for
higher Z-scores the variance will be larger [16]. However,
the Z-score increases its precision when more randomiza-
tions are calculated (2 x 100 in this study). Third, the PDB
set is somewhat biased: it only contains crystallized pro-
teins, and it contains no hypothetical proteins and mem-
brane proteins. The crystallized proteins in the PDB are on
average smaller than proteins included in large sequence
databases such as the UniProt [26] database (Figure 4),
whereas the amino acid distribution is approximately the
same for these databases (Figure 5).

Figure 6 shows that the bias in sequence length is not the
reason for the difference in scores: if we only look at pro-
teins with a sequence length of 500 or more, the scores are
similar. Other studies have shown that FASTA performs
better than BLAST [18,27], but these did not include sev-
eral Smith-Waterman implementations. The SSEARCH
algorithm, an implementation of Smith-Waterman, was
analyzed in these studies, but this algorithm differs from
other Smith-Waterman algorithms used in this study due
to the use of length regression statistics [7,28]. A differ-
ence can also be found by comparing the SW scores of
Biofacet, ParAlign and SSEARCH: Biofacet and ParAlign
have the same SW scores, but the SSEARCH SW scores are
different. We calculated the ROC;,and mean AP for these
three SW scores and found that the SSEARCH SW scores
gives slightly worse results than the other two SW scores
(Figure 7). Another problem is that protein sequences
within a certain ASTRAL SCOP family usually have equiv-
alent lengths, since the ASTRAL SCOP database consists of
protein domains and not of whole proteins. Results might
vary when whole proteins, with different lengths, are stud-
ied. Unfortunately, the composition of the ASTRAL SCOP
database does not allow us to confirm this statement.
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Figure 4

Sequence length distribution between PDB095 and UniProt. The sequence length increases from the left to the right.
The vertical axis shows the number of proteins having that length, as a percentage of the total set. Black bars: PDB095 set.

Dotted bars: UniProt set.

Finally, we would like to stress that the results from the
CVE analysis might be more reliable than those from the
ROC and mean AP analyses. ROC and mean AP make use
of a ranking system based on the e-value or Z-score,
instead of looking at the e-value or Z-score directly. This
means that in some cases, especially the smaller protein
families, a large number of very low-scoring hits (e.g.
e>100 or Z<3) is still used for the calculation of the scores.
This is not the case for the CVE plots, because we varied
the e-value and Z-score thresholds above which a hit is
seen as a true positive, instead of relying on a ranking sys-
tem. However, because the results from the CVE plots are
similar to the results from the ROC and mean AP graphs,
the use of a ranking system does not seem to give a large
disadvantage.

Conclusion

For a complete analysis we need a less biased database,
having a wide range of proteins classified by structure sim-
ilarity. Until such a database is available, it will be difficult
to pinpoint the reasons for the different results between
FASTA, BLAST and Smith-Waterman, and the theoretical

advantages of the Z-score. Regardless of all these theoreti-
cal assumptions, the computational disadvantage of the
Z-score is smaller for larger databases. Z-scores do not
have to be recalculated when sequences are added to the
database, in contrast to e-values, which are dependent on
database size. For very large databases containing all-
against-all comparisons, this is an important advantage of
the Z-score. Although recalculating the e-values does not
take much time when the alignments and SW scores are
already available, this may cause a change in research
results that were obtained earlier. Despite these consider-
ations, we recommend using SSEARCH with e-value sta-
tistics for pairwise sequence comparisons.

Methods

Sequence comparisons

For the Smith-Waterman e-value calculation, the ASTRAL
SCOP files were loaded onto the Paracel file system as pro-
tein databases and subsequently used as queries against
these databases: the set with 10% maximal identity
(PDB010) against itself, the set with 20% maximal iden-
tity (PDB020) against itself, etc. The matrix used for all
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Figure 5

Amino acid distribution between PDB095 and UniProt. The 20 amino acids are displayed on the horizontal axis and
their occurrence, as percentage of the total, is shown on the vertical axis. Black bars: PDB095 set. Dotted bars: UniProt set.

sequence comparisons was the BLOSUM62 matrix [29].
This is the default scoring matrix for most alignment pro-
grams. For all sequence comparisons in this article, the
gap open penalty was set to 12 and the gap extension pen-
alty was set to 1. These are the averages of the default pen-
alties over the six studied methods. Both the matrix and
gap penalties used are suited for comparing protein sets
with a broad spectrum of evolutionary distances, like the
PDB set [30,31]. Per query sequence, the best 100 hits
were kept [see section Data availability]|, discarding the
match of each query sequence with itself.

Receiver operating characteristic calculation

For each query, the 100 best hits were marked as true pos-
itives or false positives, i.e. the hit being in the same or in
a different SCOP family than the query. For each of the
first 50 false positives that were found, the number of true
positives with a higher similarity score was calculated. The
sum of all of these numbers was then divided by the
number of false positives (50), and finally divided by the

total number of possible true positives in the database
(i.e. the total number of members in the SCOP family
minus 1), giving an ROC;, score for each query sequence.
The average of these ROC;, scores gives the final ROC
score for that specific statistical value and that specific
ASTRAL SCOP set. Mean ROC; scores were calculated for
all ten different ASTRAL SCOP sets.

Coverage versus error calculation

Instead of taking the first 100 hits for each query, like in
the ROC analysis, we varied the threshold at which a cer-
tain hit was seen as a positive. For the e-value analysis, we
created a list of 49 thresholds in the range of 10-5°to 100.
For Z-score, we created a list of 58 thresholds in the range
of 0 to 100. Then, for each threshold, two parameters were
measured: the coverage and the errors per query (EPQ).
The coverage is the number of true hits divided by the
total number of sequence pairs that are in the same SCOP
family, for that specific ASTRAL SCOP set. The EPQ is the
number of false hits divided by the number of queries. We
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Figure 6

mean AP

ROC;,and mean AP values for proteins larger than 500 aa. The ROC;, scores are shown at the left half, the mean AP
values on the right half. Red bars: calculated using the Paracel Smith-Waterman algorithm. Blue bars: calculated using the Bio-

facet Smith-Waterman algorithm with Z-score statistics. Green bars: calculated using the BLAST algorithm. Yellow bars: calcu-
lated using the FASTA algorithm. Purple bars: calculated using the SSEARCH algorithm. Orange bars: calculated using the

ParAlign Smith-Waterman algorithm.

used the most inclusive ASTRAL SCOP set (PDB095), the
least inclusive set (PDB010) and an intermediate set
(PDBO035) to create the coverage versus error plots.

Average precision calculation

For the calculation of the average precision (AP), the 100
best hits per query were marked again as either true posi-
tives or false positives. Subsequently for each true positive
found by the search algorithm, the true positive rank of
this hit (i.e. the number of true positives with a higher
score + 1) was divided by the positive rank (i.e. the
number of hits with a higher score + 1). These numbers
were all added up and then divided by the total number
of hits (i.e. 100), giving one AP value per query. The mean
AP is the average of all these APs. Mean APs were calcu-
lated for all ten different ASTRAL SCOP sets.

Bacterial enoyl-ACP reductase
The ASTRAL SCOP entry for E. coli enoyl-ACP reductase
chain A, d1qg6a_, was picked as an example for our meth-

odology. The 100 best hits of this entry on the PDB095 set
were calculated using each of the six algorithms and
sorted by ascending e-value and descending Z-score. Then
they were marked as either true positives or false positives,
depending on if the hit was in the same structural family
(c.2.1.2) or not. Furthermore, the ROCs scores and mean
APs were calculated.

Human progesterone receptor

A second example is the analysis of d1a28a_, the H. sapi-
ens progesterone receptor chain A. Once more, the 100
best hits of this entry on the PDB095 set were calculated
using each of the six algorithms and sorted by ascending
e-value and descending Z-score. These hits were marked as
either true positives or false positives, depending on if the
hit was in the same structural family (a.123.1.1) or not.
Finally, the mean AP and ROC; scores were calculated.
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Figure 7

mean AP

ROC;,and mean AP values for the SW scores of three different SW algorithms. The ROC;j scores are shown at
the left half, the mean AP values on the right half. Blue bars: calculated using the Biofacet Smith-Waterman algorithm with Z-
score statistics. Purple bars: calculated using the SSEARCH algorithm. Orange bars: calculated using the ParAlign Smith-Water-

man algorithm.

Timing

We measured the speed of the sequence comparison algo-
rithms, by doing an all-against-all comparison of the
ASTRAL SCOP PDB095 set and using the 'time' command
provided by UNIX. All calculations were performed on the
same machine, except for the Paracel calculation which
could only be performed on the Paracel machine. The
Paracel calculation time had to be estimated because of
the unaivailability of the Paracel machine at the time of
performing this analysis.

Data availability

All raw sequence comparison output files (containing the
top 100 hits per query sequence) are available through
our website [32]. The top 100 hits for the two case studies
of the bacterial enoyl-ACP reductase (i.e. Table S.1) and
the human progesterone receptor (i.e. Table S.2) can be

found in the additional files section [see Additional file
1].

Abbreviations
AP Average Precision

bf z Biofacet (Z-score)

BLAST Basic Local Alignment Search Tool

bl e BLAST (e-value)

BLOSUM BLOcks SUbstitution Matrix
CluSTr Clusters of SWISS-PROT and TrEMBL

CVE Coverage Versus Error
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EPQ Errors Per Query

fa e FASTA (e-value)

FFP First False Positive

NTP Number of True Positives

pa e ParAlign (e-value)

pc e Paracel (e-value)

PDB Protein Data Bank

ROC Receiver Operating Characteristic

SCOP Structural Classification Of Proteins

ss e SSEARCH (e-value)

SW Smith-Waterman

Authors’ contributions

TH participated in the design of the study, carried out the
calculations and statistical analysis and drafted the manu-
script

JdV participated in the design of the study

JL gave some technical and scientific advice and helped to
draft the manuscript

PG participated in the design and coordination of the
study and helped to draft the manuscript

All authors read and approved the final manuscript

Additional material

Additional File 1

Supplementary tables: Table S.1. Top 100 hits of bacterial enoyl-ACP
reductase. Table S.2. Top 100 hits of human progesterone receptor.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-444-S1.doc]

Acknowledgements

This work was supported financially by NV Organon and the Netherlands
Organization for Scientific Research (NWO). The authors like to thank
Scott Lusher for critically reading this manuscript.

References

1. Smith TF, Waterman MS: Identification of common molecular
subsequences. | Mol Biol 1981, 147(1):195-197.

o

13.
14.

20.
21.

22.
23.

24.

25.

27.

http://www.biomedcentral.com/1471-2105/7/444

Brenner SE, Chothia C, Hubbard T): Assessing sequence compar-
ison methods with reliable structurally identified distant
evolutionary relationships. Proc Natl Acad Sci U S A 1998,
95(11):6073-6078.

Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A 1988, 85(8):2444-2448.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

Paracel [http://www.paracel.com]

Pearson WR: Searching protein sequence libraries: compari-
son of the sensitivity and selectivity of the Smith-Waterman
and FASTA algorithms. Genomics 1991, 11(3):635-650.

Rognes T: ParAlign: a parallel sequence alignment algorithm
for rapid and sensitive database searches. Nucleic Acids Res
2001, 29(7):1647-1652.

Pearson WR, Sierk ML: The limits of protein sequence compar-
ison? Curr Opin Struct Biol 2005.

Doolittle RF: Of URFs and ORFs: a primer on how to analyze
derived amino acid sequences. Mill Valley California , University
Science Books; 1986.

Gene-IT [http://www.gene-it.com]

Codani ), Comet JP, Aude |C, Glémet E, Wozniak A, Risler JL, Hénaut
A, Slonimski PP: Automatic Analysis of Large-Scale Pairwise
Alignments of Protein Sequences. Methods in Microbiology 1999,
28:229-244.

Kriventseva EV, Servant F, Apweiler R: Improvements to CluSTr:
the database of SWISS-PROT+TrEMBL protein clusters.
Nucleic Acids Res 2003, 31(1):388-389.

Protein World [http://www.cmbi.ru.nl/pw/]

Hulsen T, Huynen MA, de Vlieg J, Groenen PM: Benchmarking
ortholog identification methods using functional genomics
data. Genome Biol 2006, 7(4):R31.

Booth HS, Maindonald JH, Wilson SR, Gready JE: An efficient Z-
score algorithm for assessing sequence alignments. | Comput
Biol 2004, 11(4):616-625.

Comet JP, Aude JC, Glemet E, Risler JL, Henaut A, Slonimski PP,
Codani JJ: Significance of Z-value statistics of Smith-Water-
man scores for protein alignments. Comput Chem 1999, 23(3-
4):317-331.

Bastien O, Aude JC, Roy S, Marechal E: Fundamentals of massive
automatic pairwise alignments of protein sequences: theo-
retical significance of Z-value statistics. Bioinformatics 2004,
20(4):534-537.

Chen Z: Assessing sequence comparison methods with the
average  precision  criterion. Bioinformatics 2003,
19(18):2456-2460.

Gribskov M, Robinson NL: Use of receiver operating character-
istic (ROC) analysis to evaluate sequence matching. Compu
Chem 1996, 20:25-33.

Kester AD, Buntinx F: Meta-analysis of ROC curves. Med Decis
Making 2000, 20(4):430-439.

Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI,
Koonin EV, Altschul SF: Improving the accuracy of PSI-BLAST
protein database searches with composition-based statistics
and other refinements. Nucleic Acids Res 2001, 29(14):2994-3005.
Salton G: Developments in automatic text retrieval. Science
1991, 253:974-980.

Brenner SE, Koehl P, Levitt M: The ASTRAL compendium for
protein structure and sequence analysis. Nucleic Acids Res 2000,
28(1):254-256.

Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Cho-
thia C: Sequence comparisons using multiple sequences
detect three times as many remote homologues as pairwise
methods. | Mol Biol 1998, 284(4):1201-1210.

ASTRAL SCOP rel 1.65 [http://astral.berkeley.edu/scopseq-
1.65.html]

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S,
Gasteiger E, Huang H, Lopez R, Magrane M, Martin M), Natale DA,
O'Donovan C, Redaschi N, Yeh LS: UniProt: the Universal Pro-
tein knowledgebase. Nucleic Acids Res 2004, 32(Database
issue):D115-9.

Agarwal P, States D): Comparative accuracy of methods for
protein sequence similarity search.  Bioinformatics 1998,
14(1):40-47.

Page 12 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-7-444-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.paracel.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919194
http://www.gene-it.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520029
http://www.cmbi.ru.nl/pw/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15579234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15579234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11059476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://astral.berkeley.edu/scopseq-1.65.html
http://astral.berkeley.edu/scopseq-1.65.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520500

BMC Bioinformatics 2006, 7:444 http://www.biomedcentral.com/1471-2105/7/444

28. Pearson WR: Comparison of methods for searching protein
sequence databases. Protein Sci 1995, 4(6):1145-1160.

29. Henikoff S, Henikoff JG: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci U S A 1992, 89(22):10915-10919.

30. Reese JT, Pearson WR: Empirical determination of effective
gap penalties for sequence comparison. Bioinformatics 2002,
18(11):1500-1507.

31. Price GA, Crooks GE, Green RE, Brenner SE: Statistical evalua-
tion of pairwise protein sequence comparison with the Baye-
sian bootstrap. Bioinformatics 2005, 21(20):3824-3831.

32. Supplementary data [http://www.cmbi.ru.nl/~timhulse/ezcomp/]

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7549879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7549879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16105900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16105900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16105900
http://www.cmbi.ru.nl/~timhulse/ezcomp/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Receiver operating characteristic
	Coverage versus error
	Average precision
	Case studies
	Bacterial enoyl-ACP reductase
	Human progesterone receptor
	Timing

	Discussion
	Conclusion
	Methods
	Sequence comparisons
	Receiver operating characteristic calculation
	Coverage versus error calculation
	Average precision calculation
	Bacterial enoyl-ACP reductase
	Human progesterone receptor
	Timing

	Data availability
	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

