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Wnt-1-induced secreted protein 1 (WISP-1) is a mem-
ber of the CCN (connective tissue growth factor,
Cyr61, NOV) family of growth factors. Experimental
evidence suggests that CCN family members are in-
volved in skeletogenesis and bone healing. To inves-
tigate the role of WISP-1 in osteogenic processes, we
characterized its tissue and cellular expression and
evaluated its activity in osteoblastic and chondrocytic
cell culture models. During embryonic development,
WISP-1 expression was restricted to osteoblasts and to
osteoblastic progenitor cells of the perichondral mes-
enchyme. In vitro , we showed that WISP-1 expres-
sion in differentiating osteoblasts promotes BMP-2-
induced osteoblastic differentiation. Using in situ and
cell binding analysis, we demonstrated WISP-1 inter-
action with perichondral mesenchyme and undiffer-
entiated chondrocytes. We evaluated the effect of
WISP-1 on chondrocytes by generating stably trans-
fected mouse chondrocytic cell lines. In these cells,
WISP-1 increased proliferation and saturation density
but repressed chondrocytic differentiation. Because
of the similarity between skeletogenesis and bone
healing, we also analyzed WISP-1 spatiotemporal ex-
pression in a fracture repair model. We found that
WISP-1 expression recapitulates the pattern observed
during skeletal development. Our data demonstrate
that WISP-1 is an osteogenic potentiating factor promot-
ing mesenchymal cell proliferation and osteoblastic dif-
ferentiation while repressing chondrocytic differentia-
tion. Therefore, we propose that WISP-1 plays an
important regulatory role during bone development
and fracture repair. (Am J Pathol 2004, 165:855–867)

Wnt-1-induced secreted protein 1 (WISP-1) is a member
of the CCN family of growth factors, which also includes
connective tissue growth factor (CTGF), cysteine-rich 61
(Cyr61), nephroblastoma overexpressed (NOV), WISP-2,
and WISP-3.1–4 WISP-1 is a target of the Wnt-1/Frizzled
pathway and its expression is regulated by �-catenin.3,5

It is overexpressed by mesenchymal cells of the peritu-
moral stroma of several types of cancers and constitutes
a putative paracrine effector of tumorigenesis.5–8 When
expressed in normal fibroblasts, WISP-1 acts in an auto-
crine manner to accelerate cell growth, increase satura-
tion density, induce morphological transformation, and
promote tumorigenesis.5 WISP-1 activity and availability
is modulated by its interaction with decorin and biglycan,
two extracellular matrix-associated proteoglycans.9 Al-
though WISP-1 involvement in tumor progression has
gathered a lot of attention, its function in normal biological
processes remains to be clarified.

Several genes involved in cancer progression have
emerged as encoding critical elements of pathways in-
volved in embryonic development.10 Among them, the
Wnt/�-catenin signaling transduction pathway is known
both for its central role in the etiology of numerous types
of cancers and for its regulatory function during skeleto-
genesis.11–13 The Wnt signaling pathway acts on cell fate
determination by modulating the expression of key play-
ers in a hierarchy of regulatory genes.14 In addition, the
function of several Wnt target genes is consistent with
control of cellular functions implicated in tumorigenesis
and embryonic development.5,6,15 The Wnt pathway af-
fects growth, patterning, and morphogenesis of skeletal
elements by modulating chondrocyte and osteoblast dif-
ferentiation.16–19

During vertebrate embryogenesis, most skeletal ele-
ments are first formed by cartilaginous templates that are
progressively replaced by bone in a process called en-
dochondral ossification.20–23 This process begins with
the proliferation and condensation of committed osteo-
chondroprogenitor mesenchymal cells into aggregates.
Cells at the center of these aggregates differentiate into
chondrocytes and initiate the synthesis of cartilage. Spin-
dle-shaped cells surrounding the cartilage templates
align longitudinally to form the perichondrium that sepa-
rates the chondrocytes from the adjacent tissue. The
chondrocytes at the distal ends of the templates continue
to proliferate whereas the cells in the central region of the
cartilage elements exit the cell cycle and become hyper-
trophic. Differentiation into hypertrophic chondrocytes is
accompanied by the differentiation of the mesenchymal
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cells of the perichondrium into osteoblasts. Osteoblasts
are responsible for the deposition of bone matrix forming
the bone collar surrounding the hypertrophic region of
the cartilage. The invasion of hypertrophic cartilage by
blood vessels and osteogenic cells results in the replace-
ment of the cartilage by bone. Alternately, in some skel-
etal elements, especially the flat bones of the skull, the
osteochondroprogenitor cells bypass the cartilaginous
template formation and directly differentiate into osteo-
blasts. This process is called intramembranous ossifica-
tion. The Wnt/�-catenin pathway constitutes one of the
essential molecular mechanisms regulating several as-
pects of bone development including chondrocyte and
osteoblast differentiation and joint formation.16–19 Be-
cause WISP-1 is a Wnt/�-catenin-signaling pathway tar-
get gene, it could play an important regulatory role during
vertebrate skeletal development.

In this study we describe WISP-1 spatiotemporal ex-
pression during skeletogenesis and show its association
with mesenchymal and osteoblastic cells of bones devel-
oping via endochondral and intramembranous ossifica-
tion processes. Using cell culture models, we further
demonstrate that WISP-1 expression is associated with
osteoblastic differentiation. In addition, we present evi-
dence that WISP-1 interacts with chondrocytic cells and
increases their proliferation and saturation density and
prevents their differentiation. Finally using a bone fracture
model, we show that WISP-1 expression during bone
healing recapitulates the pattern observed during devel-
opment. Taken together, the data presented here sug-
gest an important role for WISP-1 in the osteochondro-
progenitor’s maturation process during skeletogenesis
and fracture repair.

Materials and Methods

Materials

Fatty acid ultra-free bovine serum albumin fraction V and
the complete ethylenediaminetetraacetic acid-free pro-
tease inhibitor cocktail tablets were from Roche Molecular
Biochemicals (Indianapolis, IN). The biotinylated horse anti-
mouse IgG was purchased from Jackson ImmunoResearch
Laboratories (West Grove, PA). Fluorescein isothiocyanate-
conjugated streptavidin and Hoechst 33342 were from Mo-
lecular Probes (Eugene, OR). The Renaissance TSA indi-
rect amplification kit was bought from NEN Life Science
Products (Boston, MA). Vectashield mounting media was
obtained from Vector (Burlingame, CA) and the Tissue-Tek
OCT compound was from Miles (Elkhart, IN). Collagenase
type 2, bovine insulin, transferrin, and sodium selenite were
purchased from Sigma (St. Louis, MO). Recombinant hu-
man BMP-2 was purchased from R&D Systems (Minneap-
olis, MN) and recombinant human GDF-5 from Antigenix
America Inc. (Huntington, NY). Recombinant WISP-1-Fc fu-
sion protein and WISP-1 monoclonal antibody were gener-
ated as previously described.9

In Situ Hybridization

Localization of gene expression was executed as de-
scribed previously24 using 33P-labeled sense and anti-
sense riboprobes transcribed from a 740-bp polymerase
chain reaction product corresponding to nucleotides 440
to 1180 of mouse WISP-1 (NM�018865).

Immunofluorescence

Sections (10 �m) of OCT-embedded rat E18 embryos
were washed with phosphate-buffered saline (PBS) and
the nonspecific binding sites were blocked for 20 minutes
in PBS/3% bovine serum albumin containing 1.5% normal
horse serum. Avidin and biotin binding sites were
blocked with the avidin/biotin blocking kit from Vector
and the slides were incubated with 1 �g/ml of mouse
monoclonal anti-WISP-1 antibody (clone 9C10) in
PBS/3% bovine serum albumin containing 1.5% normal
horse serum for 1 hour, washed, and fixed in PBS/4%
paraformaldehyde for 10 minutes. The sections were
washed and incubated for 30 minutes with 1:200 biotin-
ylated horse anti-mouse IgG in HBS-C/3% bovine serum
albumin. The slides were washed, fixed, and the signal
amplified using the TSA indirect amplification kit accord-
ing to the manufacturer’s instructions. The slides were
incubated for 30 minutes with streptavidin-conjugated
fluorescein isothiocyanate (1:1000). The sections were
washed, mounted in Vectashield mounting media con-
taining 1 �g/ml of Hoechst 33342, and visualized under a
Nikon Eclipse 800 fluorescent microscope.

In Situ Ligand Binding

Binding of WISP-1-Fc to rat embryo sections was evalu-
ated using the in situ ligand-binding procedure previously
described.9,25 No signal was detected when WISP-1-Fc
was omitted or the anti-human IgG antibody replaced by
an irrelevant antibody (anti-gp 120). The binding pat-
tern described for WISP-1-Fc was unique and different
from the binding pattern observed for a control protein
(human IgG).

Primary Porcine Chondrocyte Isolation

Primary chondrocytes were isolated using a protocol pre-
viously described.26 Briefly, the metacarpo-phalangeal
joint of 4- to 6-month-old female pigs was aseptically
opened, and articular cartilage was dissected free of the
underlying bone. The cartilage was pooled, minced,
washed, and digested overnight at 37°C with collage-
nase. The digest was filtered through a 50-�m sieve and
the cells were washed, seeded at 25,000 cell/cm2 in
Ham-F12 containing 10% fetal bovine serum (FBS) and 4
�g/ml gentamicin, and maintained at 37°C under 5%
CO2. Cells were fed every 3 days and reseeded every 5
days. After 11 days in culture, 50 to 60% of the primary
chondrocytes had lost their chondrocytic character and
reverted to a mesenchymal phenotype characterized by
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a spindloid bipolar shape and a switch from collagen 2 to
collagen 1 expression.

Cell Binding

Binding of WISP-1-Fc to dedifferentiated porcine primary
chondrocytes was executed as previously described.9

No signal was detected when WISP-1-Fc was omitted or
the anti-human IgG antibody replaced by an irrelevant
antibody (anti-gp 120).

Cell Culture

Normal human dermal fibroblasts and normal human lung
fibroblasts were purchased from Cambrex (Walkersville,
MD). The C57MG mouse mammary epithelial cell line was
provided by Diane Pennica (Genentech, South San Fran-
cisco, CA). NIH/3T3 mouse fibroblasts, MC3T3-E1 clone 14
mouse calvaria preosteoblasts, and the mouse C2C12 skel-
etal muscle myoblasts were purchased from American
Type Culture Collection (Manassas, VA). ST2 mouse bone
marrow stromal cells and the ATDC5 mouse embryonal
carcinoma-derived chondrogenic cell line were purchased
from Riken (Tsukuba, Japan).

MC3T3-E1 cells were maintained in a mixture (1:1) of
DME and Ham’s F-12 (DME/F12) medium supplemented
with 10% FBS until they reached confluency. Osteoblas-
tic differentiation was induced as previously described.27

Briefly, cells were grown to confluency in �-modified
Eagle’s medium containing 10% FBS and treated with 50
�g/ml of ascorbic acid. The inorganic phosphate con-
centration was raised to 3 mmol/L and the cells were
treated an additional 2 days. ST2 cells were maintained in
RPMI 1640 containing 10% FBS and C2C12 cells in DME/
F12 medium supplemented with 15% FBS. To induce
osteoblastic differentiation, cells were grown to conflu-
ency and treated with 300 ng/ml of BMP-2.16,28

ATDC5 cells were maintained in DME/F12 medium
supplemented with 5% FBS and 10 �g/ml bovine insulin,
10 �g/ml human transferrin, and 30 nmol/L sodium se-
lenite. ATDC5 cells expressing a high level of WISP-1
(ATDC5/WISP-1H) or a lower level of WISP-1 (ATDC5/
WISP-1L) were generated by co-transfecting human
WISP-1 in a pRK vector with pSVi puromycin plasmid
using Fugene6 according to the manufacturer’s instruc-
tions (Roche Diagnostics). After 48 hours, cells were
selected in media containing 2 �g/ml of puromycin. After
2 weeks, clones were isolated and WISP-1 expression
was evaluated by immunofluorescence. Control cell lines
were generated using the same procedure after the
transfection of the empty pRK vector. Chondrocytic dif-
ferentiation was induced by treating ATDC5 cells with
BMP-2 or GDF-5 as previously described.29 We mea-
sured ATDC5 cell proliferation by seeding 104 cells in
10-cm2 Petri dishes in culture media supplemented with
0.5% FBS. At indicated time points, we counted the via-
ble cells using a hemacytometer after trypsinization.

Immunoprecipitation and Western Blot Analysis

Stably transfected ATDC5 cells (2 � 106) were cultured
overnight in 4 ml of 1:1 Ham’s F-12:Dulbecco’s modified
Eagle’s medium. A specific monoclonal antibody9 was
used to immunoprecipitate WISP-1 from culture media
and lysates using a previously described protocol.30 The
immunoprecipitate was electrophoresed on sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (Bio-
Rad, Hercules, CA) and electrotransferred to a polyvinyli-
dene difluoride membrane (Bio-Rad). WISP-1 was
immunodetected with a biotinylated monoclonal antibody
and visualized with the West Femto chemiluminescent
substrate (Pierce, Rockford, IL). An equivalent of 0.5 �
106 cells/lane and 0.2 � 106 cells/lane were analyzed for
supernatant and cell lysate, respectively.

Real-Time Reverse Transcriptase-Polymerase
Chain Reaction Analysis

Total RNA was extracted from cells using the RNeasy kit
according to the manufacturer’s instructions (Qiagen, Va-
lencia, CA). Specific primers and fluorogenic probes
were used to amplify and quantitate gene expression
(sequences available on request).31 The gene-specific
signals were normalized to the glyceraldehyde-3-phos-
phate dehydrogenase housekeeping gene. Triplicate sets
of data were averaged for each condition. All TaqMan re-
verse transcriptase-polymerase chain reaction reagents
were purchased from Applied Biosystems (Foster City, CA).

Alkaline Phosphatase Assay

Cells were washed twice with PBS and lysed in 20
mmol/L Tris, pH 7.4, 150 mmol/L NaCl, and 1% Triton
X-100 for 5 minutes on ice. Twenty �l of the lysate were
added to 80 �l of Attophos substrate (Roche) and incu-
bated for 5 minutes at room temperature. The fluores-
cence was measured (excitation, 420 nm; emission, 560
nm) and the alkaline phosphatase activity was deter-
mined by comparison to a standard curve of enzymatic
product. Cell lysates were analyzed for protein content
using the micro-BCA Assay kit (Pierce) and alkaline
phosphatase activity was normalized for total protein
concentration.

Mouse Femoral Fracture Healing Model

A midshaft, fixed femur fracture was created in anesthe-
tized 6- to 8-week-old male C57BL6 mice (Charles River
Laboratories, Wilmington, MA) following a previously de-
scribed procedure.32 All animal experimentation was
conducted in accordance with national guidelines.

Results

Tissue Distribution of WISP-1

We performed in situ hybridization to elucidate the spa-
tiotemporal profile of WISP-1 mRNA expression during
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embryonic skeletogenesis. At E10.5, before ossification
begins, WISP-1 was weakly expressed in circumscribing
precartilaginous condensations of developing endochon-
dral bones (data not shown). As skeletal development
progresses, WISP-1 expression increased in the mesen-
chymal cell layer surrounding the cartilage anlagen and
subsequently in osteoblasts lining bones undergoing en-
dochondral ossification (Figure 1, A to D). As early as
E12.5, WISP-1 mRNA was expressed in regions of mes-
enchymal condensations comprising flat bones of the
skull destined to undergo intramembranous ossification
(Figure 1A). At this stage, some expression was also

found in the myocardium and subcutaneous mesen-
chyme (data not shown). At E15.5, WISP-1 expression
was high in osteoblasts and associated periosteal cells of
vertebrae, ribs, and along the diaphysis forming the cor-
tex of the long bone after ossification has begun (Figure
1, B and C). Notably, at E15.5, WISP-1 expression was
more prominent at sites of intramembranous ossification
(Figure 1D). The signal was predominantly in osteoblasts
and periosteal cells of the developing calvarium and
maxilla. WISP-1 was low or undetectable in chondrocytes
and other cells surrounding osteogenic cells.

The presence of WISP-1 protein at sites of developing
bone was assessed by immunofluorescence in E18 rat
embryos. We observed an intense fluorescent staining
pattern that closely matched the in situ hybridization ex-
pression profile (Figure 2). WISP-1 protein was found in
osteoblasts at all sites of endochondral and intramem-
branous ossification. The staining was intense in osteo-
blasts lining the developing calvaria, mandible, clavicle,
vertebrae, and ribs. No staining was observed in the
perichondrium or chondroblasts.

WISP-1 Is Expressed by Differentiating
Osteoblasts

WISP-1 expression was measured in various cell types
(Figure 3A). No WISP-1 expression was detected in pri-
mary human normal lung and skin fibroblasts, C57MG
mammary epithelial cells, and ATDC5 chondrogenic
cells. A comparable level of WISP-1 expression was
found in NIH3T3 fibroblasts and C2C12 myoblasts. On
the other hand, the level of WISP-1 expression was sixfold
to ninefold higher in MC3T3-E1 calvaria preosteoblasts
and ST2 osteoblastic bone marrow stromal cells when
compared to NIH3T3 fibroblasts.

We monitored WISP-1 expression during osteoblast
differentiation using the MC3T3-E1 and ST2 osteogenic
cell lines.16,27 When placed in differentiating medium,
these cells progressively adopted an osteoblast pheno-
type as demonstrated by their increase in osteocalcin
expression and alkaline phosphatase activity (Figure 3).
In these cells, the level of WISP-1 expression did not
change during the osteoblastic differentiation and re-
mained elevated at all times. Because WISP-1 is ex-
pressed in preosteoblastic cells, it could represent an
early event that precedes the commitment of MC3T3-E1
and ST2 cells to the osteoblastic lineage. To test this
possibility, we measured WISP-1 expression in an osteo-
blastic transdifferentiation model using the C2C12 myo-
blasts.28 WISP-1 expression rapidly increased on BMP-2
induction of the osteogenic transdifferentiation (Figure
3H). WISP-1 expression was also induced by the pro-
osteoblastic factors BMP-3, BMP-4, and BMP-6 but not
by IGF-1, a pro-myoblastic factor for C2C12 cells (data
not shown).33–35 These results suggest that WISP-1 is
predominantly expressed by cells of the osteoblastic lin-
eage and that its induction occurs early during the ac-
quisition of this phenotype.

Figure 1. In situ hybridization of WISP-1 expression during mouse devel-
opment. Left: Dark-field images; right: corresponding bright-field images. A:
Base of the skull dorsal of the oropharynx (*) at E12.5. At E15.5, WISP-1 is
expressed in osteoblasts and mesenchymal cells adjacent to bones undergoing
endochondral ossification (B, vertebras; C, ribs) and intramembranous ossifica-
tion (D, ossification within palatal shelf of maxilla). WISP-1 expression was
similarly distributed in human embryo lower limb (E, lateral border of head of
tibia). Original magnifications: �100 (A, D); �40 (B); �200 (C, E).
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WISP-1 Promotes Osteoblast Differentiation

Because WISP-1 is induced during osteoblastic differen-
tiation we evaluated its participation in this process. Al-
though WISP-1 overexpression was not sufficient to trig-
ger C2C12 cell osteoblastic differentiation, it greatly
potentiated BMP-2 pro-osteoblastic activity (Figure 4).
When treated with BMP-2, WISP-1-transfected cells dem-
onstrated a 13- to 14-fold increase in alkaline phospha-
tase activity compared to cells transfected with a vector
control (Figure 4). WISP-1 potentiation of pro-osteoblastic
factors could promote lineage determination by facilitat-
ing the osteoblastic differentiation of progenitor cells.

WISP-1 Binds to the Perichondrium

To better understand the role of WISP-1 in skeletal devel-
opment we analyzed its in situ binding to sagittal sections
of rat embryo. At embryonic stage E14, WISP-1 inter-
acted with the perichondrial mesenchyme and the con-

densing prechondroblastic cells of cartilage primordium
(Figure 5). At stage E18, WISP-1 bound only to mesen-
chymal cells of the perichondrium. No fluorescence was
associated with chondroblasts or chondrocytes. No sig-
nal was detected with an unrelated antibody or when
WISP-1 was omitted or replaced by a control protein.

The interaction of WISP-1 with mesenchymal cells was
evaluated using primary porcine chondrocytes that had
adopted a mesenchymal phenotype after 11 days in
culture. WISP-1 binding revealed an irregular pattern as-
sociated with patches and points of focal adhesion (Fig-
ure 6A). We observed intense fluorescent staining at
points of contact between adjacent cells (Figure 6B).
WISP-1 interaction with mesenchymal cells could be in-
volved in cell-cell communication.

WISP-1 Acts on Chondrocytic Cells

The WISP-1 binding pattern suggested that the protein
might act on differentiating chondrocytes. We investi-

Figure 2. Immunofluorescent localization of WISP-1 in rat embryo E18. Differentiating osteoblasts lining the calvaria (A), femur (B), and ribs (C, D). S, skull; P,
periosteum; C, cartilage primordium. Original magnifications: �100 (A); �200 (B, C); �400 (D).
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gated this possibility by generating ATDC5 chondrogenic
cell lines stably transfected with WISP-1. A cell line ex-
pressing a high level of WISP-1 (ATDC5/WISP-1H), a cell
line expressing a low level of WISP-1 (ATDC5/WISP-1L),
and a cell line transfected with an empty vector (ATDC5/
control) were analyzed. Compared to ATDC5/WISP-1L
cells, ATDC5/WISP-1H cells had a WISP-1 mRNA level
2.0 � 0.7-fold higher (data not shown) and a protein level
twofold higher (Figure 7A). When grown to confluency the
WISP-1-expressing cell lines demonstrated a significant
increase in density compared to the control cell line
(Figure 7C). The saturation density of ATDC5/WISP-1H
cell line increased by 1.4 � 0.1-fold (t � 0.0075) and the

ATDC5/WISP-1L by 1.2 � 0.1-fold (t � 0.45) compared to
the ATDC5/control cell line (Figure 7B). No significant
differences were found between the density of the
ATDC5/control cell line and the parental cell line at con-
fluency (data not shown). The WISP-1 transfectants also
demonstrated an increased proliferation compared to the
ATDC5/control and the parental cell line. After 11 days,
the ATDC5/WISP-1H and the ATDC5/WISP-1L cell popu-
lation increased by 6- and 2.5-fold, respectively, com-
pared to the ATDC5/control cell line (Figure 7D). The
growth rate of the ATDC5/control cell line and the paren-
tal cell line were identical.

Figure 3. WISP-1 is induced in differentiating osteoblasts. A: WISP-1 expres-
sion in different cell types. WISP-1 (B, E, H) and osteocalcin expression (C,
F, I) and alkaline phosphatase activity (D, G, J) in MC3T3-E1 cells after
ascorbic acid treatment (B–D), in ST2 cells after BMP-2 treatment (E–G), and
in C2C12 cells after BMP-2 treatment (H–J).
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We assessed the differentiation state of the ATDC5 cell
lines by evaluating their collagen 2 expression level. Be-
fore chondrocytic differentiation was induced, the level of
collagen 2 expression was comparable in ATDC5/control
and ATDC5/WISP-1L cells but was 10-fold lower in the
ATDC5/WISP-1H cells compared to the control cell line
(Figure 7E). The induction of chondrocytic differentiation

by BMP-2 or GDF-5, significantly increased collagen 2
expression in ATDC5/control cells. On the other hand,
collagen 2 induction was greatly diminished in ATDC5/
WISP-1L cells and nearly abolished in ATDC5/WISP-1H
cells. These results indicate that WISP-1 increases pre-
chondrogenic cell proliferation and saturation density
and it prevents the progression of these cells along the
chondrocytic lineage.

WISP-1 Expression Is Induced During Bone
Fracture Repair

Because signals regulating embryonic bone formation
are recapitulated during fracture repair, we evaluated
WISP-1 temporal expression in a mouse model of bone
fracture healing.36 WISP-1 signal was prominent at days
5 through 14 after fracture and gradually decreased until
day 21 (Figure 8).

Figure 4. WISP-1 promotes BMP-2-induced osteoblastic differentiation.
C2C12 cells were transiently transfected with an empty vector (black bars)
or WISP-1 expression construct (gray bars). Forty-eight hours after trans-
fection, the culture media was replaced by media containing 5% FBS (A) or
media containing 5% FBS and 300 ng/ml of BMP-2 (B) and alkaline phos-
phatase activity was measured at the indicated time.

Figure 5. In situ WISP-1 binding in rat embryo. At E14, WISP-1 binding
revealed an intense fluorescent signal associated with costal (A) and verte-
bral (B) condensed mesenchymal cells. At E18, WISP-1 bound to osteoblasts
and perichondral mesenchyme of developing bones; mesenchyme surround-
ing cartilage primordium of rib (C), calvaria (D), mesenchyme surrounding
cartilage primordium of distal part of radius (E, F). P, perichondrium; C,
cartilage primordium; S, skull. Original magnifications: �200 (A, D, E); �40
(B); �100 (C); �400 (F).

Figure 6. WISP-1 binding to dedifferentiated chondrocytes. A: The binding
of WISP-1 (green) to dedifferentiated primary porcine chondrocytes showed
an irregular pattern associated with patches and point of focal adhesion. B:
Intense staining was found at the point of contact of adjacent cells. Red, actin
filament staining; blue, nuclear staining. Original magnifications, �200.
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At day 5 after fracture, WISP-1 was found in mesen-
chymal cells within the provisional callus formed along
the periosteal surface. Weak expression was also ob-
served in osteoblastic cells lining the periosteum adja-
cent to the fracture site. At day 7, the osteoblasts along

the islands of woven bone within the provisional callus
were expressing WISP-1. At day 14 after fracture,
WISP-1 expression was strongest over osteoblasts ag-
gregated along bone spicules bridging islands of wo-
ven bone within the hard callus. By day 21, WISP-1

Figure 7. WISP-1 represses chondrogenic differentiation of ATDC5 cells. A: Western blot of WISP-1 produced by the ATDC5/control, ATDC5/WISP-1L, and
ATDC5/WISP-1H cell lines. Saturation density (B) and photomicrograph (C) of ATDC5 cell lines grown to confluency. D: Proliferation of ATDC5 (open
squares), ATDC5/control (filled squares), ATDC5/WISP-1L (open circles), and ATDC5/WISP-1H cells (filled circles). E: Relative expression of collagen
2 in ATDC5/control, ATDC5/WISP-1L, and ATDC5/WISP-1H cells before (black bars) and after inducing chondrocytic differentiation by BMP-2 (gray
bars) or GDF-5 (white bars).
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signal was absent from the remodeled bony callus.
WISP-1 temporal expression pattern implies a role in
early fracture repair that would mirror its function dur-
ing bone development.

Discussion

Skeletogenesis involves the commitment of mesenchy-
mal progenitor cells to chondrogenic and osteogenic
lineages and their terminal differentiation in chondrocytes
or osteoblasts.20,21 Factors involved in the differentiation
process are present in the committed progenitor cells of
the appropriate lineage before terminal differentiation has
taken place. During mouse development, WISP-1 expres-
sion was initiated at day 10.5 in pluripotent mesenchymal
cells surrounding the cartilaginous skeletal templates.
WISP-1 expression progressively increased during the
mesenchymal condensation of the developing skull and
appendicular skeleton and reached a maximum in newly
differentiated osteoblasts. By day 15.5, WISP-1 was lo-
cated in all osteoblasts regardless of their future mode of
ossification. Although WISP-1 is expressed early during
development, it was not found in mesenchymal cell ag-
gregates that will later differentiate into chondrocytes
through the endochondral process. WISP-1 expression
was restricted to mesenchymal cells and cells of the
osteoblastic lineage at sites of endochondral and in-
tramembranous ossification. Using the C2C12 myoblast
cell line, we further confirmed that WISP-1 expression
gradually increased in cells induced to transdifferentiate
along the osteoblastic lineage. Although WISP-1 overex-
pression did not modify the phenotype of these cells, it
potentiated their BMP-2-promoted osteoblastic differentia-
tion. Therefore, in lineage-specific progenitor cells, early
WISP-1 induction by pro-osteoblastic factors could promote
their progression along the osteoblastic pathway.

We performed in situ ligand binding and identified the
potential site of WISP-1 action as the perichondral mes-
enchyme of developing bones. We confirmed WISP-1
interaction with mesenchymal cells using cultured dedif-
ferentiated primary chondrocytes. WISP-1 is a glycosami-
noglycan binding protein that interacts with cell surface
and extracellular matrix-associated proteoglycan of mes-
enchymal cells.9 The staining pattern of WISP-1 binding
at the surface of dedifferentiated chondrocytes differs
from the pattern previously observed with human skin
fibroblasts.9 Because WISP-1-binding pattern differ-
ences were previously reported for normal rat kidney
fibroblasts and human skin fibroblasts, the cellular origin,
the species, and phenotype could be responsible for
these variations. WISP-1 specifically interacts with decorin
and biglycan, two small leucine-rich secreted dermatan
sulfate proteoglycans abundantly found in bone and carti-
lage.9,37–43 Decorin and biglycan are attached to the extra-
cellular matrix through their interaction with collagen I, col-
lagen II, collagen XIV, and fibronectin.44–47 The importance
of decorin and biglycan in osteogenesis has been con-
firmed in knockout mouse models and human diseas-
es.48–50 Biglycan and decorin distribution at sites of bone
formation is consistent with WISP-1 in situ binding pat-
tern.38–40 Consequently, WISP-1 is most likely bound to the
surface of mesenchymal cells of the perichondrium through
its interaction with these small leucine-rich proteoglycans.

The prominent structural similarities to extracellular com-
ponents suggest that CCN proteins, including WISP-1, re-
semble the functionally diverse matricellular proteins, which

Figure 8. In situ hybridization of WISP-1 expression during fracture repair.
Left: Bright-field images; right: corresponding dark-field images. Photomi-
crographs showing the localization of WISP-1 expression at days 3 (A), 5 (B),
7 (C), 14 (D), 21 (E), and 28 (F) after fracture. Each image is oriented with
the medullary cavity (m) at the bottom right; the cortex, fracture (fx), and
callus (c) occupy the majority of the photomicrograph. Original magnifica-
tions, �100.
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are also characterized by a mosaic of matrix protein do-
mains.51–54 Matricellular proteins have the ability to interact
with multiple cell-surface receptors, cytokines, growth fac-
tors, proteases, and structural proteins.52,55–58 CCN protein
interaction with multiple components of the extracellular
matrix and the proteoglycan would therefore limit their dif-
fusion. Consistent with this notion, WISP-1, CTGF, CYR61,
and NOV were shown to remain associated with the cell
surface after secretion.7,59–61 In vivo, WISP-1 is likely to be
associated with the extracellular matrix-attached decorin
and biglycan in the vicinity of secreting mesenchymal cells
of the osteoblastic lineage. This specific interaction would
modulate WISP-1 diffusion range, availability, and activity.

The importance of intercellular communication medi-
ated by extracellular matrix proteins during limb devel-
opment has been demonstrated.62 The concept of a
growth factor and cytokine depot has been suggested for
the proteoglycans.43 Consequently, WISP-1 tethered to
the extracellular matrix could act in a paracrine manner
on neighboring mesenchymal cells committed to the
chondrogenic lineage.

To test this hypothesis we generated chondrocytic cell
lines stably transfected with WISP-1. In these cell lines,
WISP-1 increased proliferation, saturation density, and
promoted the expression of genes associated with undif-
ferentiated mesenchymal (vimentin, fibronectin; data not
shown) cells while repressing genes linked to chondro-
cyte differentiation. In addition, it attenuated the induction
of chondrocytic differentiation by added exogenous
growth factors. Taken together, these results suggest that
WISP-1 is a negative regulator of chondrocyte differenti-
ation.

Chondrocyte proliferation, commitment, and differenti-
ation depends on their local environment, autocrine, and
paracrine regulation.63 Wnt genes were shown to be
important paracrine regulators of chondrocyte and osteo-
blast differentiation during vertebrate skeletal develop-
ment. Wnt-1, Wnt-5a, Wnt-7a, and Wnt-14 negatively reg-
ulate chondrogenesis whereas Wnt-4 and Wnt-8 promote
chondrocyte maturation.17–19,64 Wnt signaling also pro-
motes osteoblast differentiation and regulates bone ac-
crual during development.65 Wnt regulatory activity re-
quires the integrity of its pathway, suggesting that Wnt/
�-catenin target genes are involved in the osteoblastic
and chondrocytic differentiation of mesenchymal progen-
itor cells.16,17 Because WISP-1 is a Wnt/�-catenin down-
stream gene, it could constitute an effector of the Wnt
regulatory cascade acting during skeletogenesis.3,5 The
parallels found between the activity of WISP-1 and sev-
eral Wnt genes on chondrocytes would support this hy-
pothesis.19,66

During endochondral ossification, proliferation and
condensation of mesenchymal cells are stopped by their
differentiation into hypertrophic chondrocytes. The ap-
propriate size and shape of the bones depends on a
balance between proliferation and differentiation of mes-
enchymal cells forming the cartilage anlagens.67 In vitro,
WISP-1 positively regulates osteoblastic differentiation
while repressing chondrocytic differentiation. Because
WISP-1 a secreted protein expressed by osteoblastic
cells at sites of endochondral ossification during devel-

opment, it could act in a paracrine manner to prevent
premature completion of chondrocytic differentiation and
ensure adequate morphogenesis of the skeletal struc-
ture. Alternatively, WISP-1 expressed at an early stage
during osteoblastic differentiation could act through an
autocrine mechanism and contribute to phenotype defi-
nition by promoting the completion of osteoblastic differ-
entiation and preventing precursor cells from reverting to
a chondrocytic lineage.

Several pathways regulating embryonic skeletal devel-
opment are reactivated during bone healing.36 Moreover,
the activation of the Wnt/�-catenin signaling pathway
during bone healing was recently demonstrated.68 For
these reasons, we analyzed WISP-1 expression patterns
during fracture repair. Bone healing proceeds through
three distinct phases, namely inflammation, reparation,
and remodeling.69,70 The first phase begins with the ac-
tivation of the inflammatory cell response and the recruit-
ment and proliferation of mesenchymal stem cells sur-
rounding the fracture site. During the reparation phase,
endochondral and intramembranous bone synthesis
takes place. Mesenchymal cells of the subperiostal bone
differentiate into chondrocytes to form the fibrocartilagi-
nous soft callus. Chondrocytes of the soft callus that
progressively differentiate into hypertrophic chondro-
cytes are invaded by blood vessels and osteogenic cells
and are ultimately replaced by bone. Also, the periosteal
mesenchymal cells adjacent to the injured bone directly
differentiate into osteoblasts and start the production of
bone matrix to form the hard callus. The formation of
primary bone is followed by extensive remodeling until
the damaged skeletal element regains original shape and
size. During the bone healing process, WISP-1 expres-
sion recapitulated the pattern observed during embry-
onic development.

Soon after bone fracture, WISP-1 was expressed in
mesenchymal cells surrounding the site of injury. WISP-1
could prevent premature chondrocytic differentiation and
promote growth and accumulation of mesenchymal cells
at the fracture site. Similarly, CTGF, a closely related CCN
family member, was suggested to participate in fibroblast
recruitment, proliferation, and stimulation of extracellular
matrix protein synthesis during fracture repair.71 Other
factors including BMP-4, were also shown to recruit mes-
enchymal progenitor cells during the inflammation
stage.72 Alternatively, WISP-1 could participate in mes-
enchymal stem cell recruitment by modulating BMP-4
activity. Vascular endothelial growth factor and noggin
were shown to play such a function by, respectively,
potentiating and antagonizing BMP-4 activity during
bone repair.73,74 Because CTGF, was already shown to
interact with BMP-4 and transforming growth factor-� and
modulate their activity a similar role could be played by
WISP-1.75

During the reparation stage, WISP-1 expression was
limited to the osteoblasts lining the periosteum and the
islands of woven bone within the provisional callus. Be-
cause bone matrix is formed at this stage, it is possible
that WISP-1 plays a role in this process. By 3 weeks after
fracture, the bones were reunited by hard callus and
bone remodeling is taking place. No WISP-1 expression
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could be detected at 21 days after fracture indicating that
WISP-1 is not likely implicated in the bone remodeling
process.

Other members of the CCN family were found to have
functions related to skeletogenesis and bone homeosta-
sis. Cyr61 is expressed in chondrocytes of the develop-
ing limbs, ribs, vertebrae, and craniofacial elements
where it promotes chondrogenic differentiation.76,77 Dur-
ing embryogenesis, CTGF expression is associated with
condensed connective tissue and osteoblasts around
bone and cartilage. It promotes chondrocyte and osteo-
blast proliferation and differentiation. It is also involved in
bone mineralization.78,79 NOV expression is found in,
chondrocytes, osteoclasts, and osteoblasts and may
play a role in sustaining the growth of osteoblast-like
cells.80 WISP-2 expression is localized to osteoblasts and
chondrocytes where it is thought to play a role in bone
turnover.81 WISP-3 mutations are responsible for pro-
gressive pseudorheumatoid dysplasia and its associa-
tion with postnatal growth regulation and cartilage ho-
meostasis has been proposed.82 Accumulating evidence
for a link between the CCN family and skeletogenesis
supports the involvement of WISP-1 in this process.

During bone development, the various CCN family
members show either overlapping or exclusive expres-
sion patterns and reported activities for individual mem-
bers are either similar or opposing. In addition, several
types of receptors including integrins,83–85 low-density
lipoprotein-related protein,86 and Notch87 were reported
for this family. The absence of consensus suggests that a
complex regulatory mechanism involving all members of
this family of proteins could take place during embryo-
genesis to modulate the osteogenic process. We believe
that WISP-1 plays an important role in this regulatory
mechanism.

In conclusion, the data presented in this study dem-
onstrate that WISP-1 is a osteogenic potentiating factor
promoting mesenchymal cell proliferation while repress-
ing chondrocytic differentiation. WISP-1 expression pat-
terns and activity suggest an important osteogenic reg-
ulatory function of this protein during bone development
and fracture repair.
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