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What to do about the covariables that complicate almost every
statistical comparison is the message of the last of three
related papers. Perhaps its discussion of the permissible
number of covariables is its most pertinent reminder for the
nonstatistical researcher.

The Use of Analysis of Covariance and
Balancing in Analytical Surveys*
BERNARD G. GREENBERG, PH.D., F.A.P.H.A.

Professor and Head, Department of Biostatistics, School of Public Health,
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SPECIFIC differences in mortality,
morbidity, and other characteristics

may be observed to occur in surveys of
population groups. Before concluding
that the occurrence of a difference in one
of those variables can be ascribed to the
factor(s) used in classifying the popula-
tions, it is important to investigate the
composition of the populations with re-
spect to other attributes related to that
particular variable. For example, does a
population of nonsmokers have less lung
cancer than a population of smokers be-
cause of smoking habits, or is the former
group less prone to develop lung cancer
because of age, race, sex, socioeconomic,
and occupational differences? Similarly,
is the nutritional status of one racial
group better than that of another be-
cause of real differences in food habits,
or is it a reflection of the pattern of cash
income? Is the mortality experience of
community A lower than that of com-
munity B because of differing health
conditions and facilities in the two areas,

*Presented before the Statistics Section of the
American Public Health Association at the Eightieth
Annual Meeting in Cleveland, Ohio, October 23, 1952.

t A planned experiment is distinguished from an
analytical survey here by defining the former to
include only those cases in which subjects can be
assigned at random to treatment groups and the
response is observed from a sequence of events
progressing forward in time.

or does it merely indicate a difference
related to the age, race, and sex dis*ri-
butions?
The comparison of two groups which

are essentially alike in every detail
except the one being tested is an ideal
which is usually unattainable. This
condition is probably inevitable since
every individual in a population has
multiple possible measurements each of
which may contribute, in varying de-
grees, to produce the observable effect.
Uncontrolled and associated variables
are always present when population
groups are studied, and the research
worker in public health must be pre-
pared to deal with variations in the
above mentioned attributes as well as
with differences in educational level,
height, weight, birthweight, order of
birth, period of gestation, amount of
nutrient consumed, number of previous
inoculations, or an almost infinite variety
of other possibilities.

This problem is not uniquely limited
to analytical surveys. Even in planned
experiments t where a group of valid
controls may have to be constructed,
the presence of many variables other
than the one under immediate considera-
tion becomes a complicating factor. The
associated variables are referred to in
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such cases as concomitant ones or
covariables. Technics developed in ex-
perimental design to determine whether
observed differences between experi-
mental and control groups are due to
differing treatments, the covariables, or
both, will be found to be useful in the
present problem.

In planned experiments, one technic
used is to assign subjects at random to
treatment groups in the hope that bias
will be avoided from these associated
sources of variation, known or unknown.
But in such instances, it is impractical
(and sometimes impossible) to expect
randomization procedures to cancel the
full impact of all covariables.* In sur-

veys, furthermore, there may not be any
opportunity for randomization of sub-
jects to treatment or population groups
since the latter already exist. The only
freedom of design present is concerned
with the sampling process.
When the number of observations at

hand is large, however, one can some-
times solve this problem by dividing the
data into several homogeneous sub-
groups and dealing with each of them
individually. For example, when age,

race, and sex are concomitant variables
needing consideration, comparisons be-
tween treatment or population groups

might be made separately for white
males, ages 5-9, 10-14, 15-19, etc.

There are several objections to this
type of analysis.
1. When the covariable is a continuous one,

such as age, subdivision involves arbitrary
decisions for grouping.

2.In most public health problems, numerous

observations are not always possible because
of the nature of the event. There is a

limited frequency of occurrence of certain
deaths, diseases, and conditions.

3. Subdivision into small homogeneous groups

involves samples larger than may be needed
to measure an over-all effect. This is in-
efficient and costly.

* Randomization will ordinarily remove the bias but
not the accompanying variability produced by the
associated variables.

How, then, are these other variables
efficiently dealt with so as to eliminate
or adjust for their effects upon the
measurement under study? A recom-
mended procedure for treating them is
called analysis of covariance. It is per-
haps expedient to illustrate its use by
an example. The illustration will also
serve to bring out the assumptions in-
volved in the method.

EXAMPLE
The data for the present example are

from a section of a larger study in nu-
trition, part of which has been reported
elsewhere.1 At one point in that investi-
gation, the question was raised whether
the sample of 9- through 11-year-old
children in a private urban school were
taller than children in the same grades
in a rural school. The children reported
here from the rural school include only
those whose parents were classified as
tenant farmers. The data in Table 1
were available to answer this particular
question.
The data for the present example in-

volve a main variable (height) and a
covariable (age) which are both quan-
titative, continuous measurements. The
technic of covariance may also be ex-
tended to cover cases where some of the
variables are qualitative and discontin-
uous.

Although the sample of children for
the private school appears to be taller
by (144.5-141.7) = 2.8 cm., this dif-
ference is not significant since the t-test
yields a value of 1.06. On the other
hand, examination of the ages of the
two groups being compared shows that
the rural school children in this sample
are about one-half year older on the
average. Taking this fact into consider-
ation with the observed height difference
might provide a new light on the dif-
ference in stature.

ANALYSIS OF COVARIANCE
Analysis of covariance is a recom-
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TABLE 1

Height and Age of Private and Rural School Children in a Study in North Carolina in 1948

Private School
rA- )~

Age (x) Height (y)
(months) (cm.)

109
113
115
116
119
120
121
124
126
129
130
133
134
135
137
139
141
142

2,283
126.8

291,331

1,770.50

137.6
147.8
136.8
140.7
132.7
145.4
135.0
133.0
148.5
148.3
147.5
148.8
133.2
148.7
152.0
150.6
165.3
149.9

2,601.8
144.5

377,329.00

1,253.26
330,900.20

905.23

mended method of taking this age dif-
ference into account in order to compare
stature. The procedure involves a com-
bination of analysis of variance and
standard regression technics.
The fact that the children differ in

ages has introduced two limitations on
the use of the straightforward t-test
above.
The first has already been pointed

out, viz., that the rural children are
older by one-half year. The second and
more important one is that the estimate
of the standard error of the difference
in height used in the preliminary test
of significance was inflated because of
the varying ages of children in those
grades.
To consider the latter limitation first,

a more valid estimate of this error can
be obtained by measuring deviations
from a fitted regression line of height on

age instead of the average height in each

Rural School

Age (x) Height (y)
(months) (cm.)

121
121
128
129
131
132
133
134
138
138
138
140
140
140

1,863
133.1

248,469

556.93

139.0
140.9
134.9
149.5
148.7
131.0
142.3
139.9
142.9
147.7
147.7
134.6
135.8
148.5

1,983.4
141.7

281,478.10

486.99
263,996.20

62.33

school. In that way, the rural school
child who is, say 140 months old, can
be compared in height with an expected
height for children of that age (Figure
1) rather than the observed average for
the entire group of 9- through 11-year-
old children, which was 141.7 cm.
The calculations for this procedure

are outlined in Table 2 and will be dis-
cussed briefly here. It will be assumed
that the steps for converting the data
from Table 1 to the form indicated in
the left hand side of Table 2, if not
readily apparent, can be comprehended
by consulting a good text on statistical
methods (e.g., see Snedecor 2).
The preliminary t-test employed the

value of 1,740.25 in deriving an estimate
of error, this term coming from the
"Within schools" line for Sy2 in Table 2.
As pointed out, this term is based upon
deviations from the mean in each school.
A more valid estimate of error is ob-
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Students

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Total
Mean
Sums of
squares

Sums of squares
of deviations
Sum of products
Sum of products
of deviations
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TABLE 2

Analysis of Covariance of Stature of Children in Two Schools

Source Degrees
of of

Variation Freedom

Sums of Squares and Products

Sys Sxy

Errors of Estimate

Adjusted Sum Degrees of Mean
of Squares * Freedom Square

31 1,805.25 826.42 2,633.87

1 65.00 -141.14

1,545.95 30

306.44

30 1,740.25 967.56 2,327.43 1,338.02 29 46.14

For test of significance of adjusted means

(Sxy)2
*Sy2

Sx2

tained if deviations are measured from
the regression lines of height on age in
each school. When this is done, the
adjusted sum of squares is obtained, the

is represented by the vertical difference
between the two parallel lines shown in
Figure 1. This difference can be calcu-
lated as follows:

Private school adjusted mean height = 144.5 - 0.42 (126.8 - 129.6) = 145.7
Rural school adjusted mean height = 141.7 - 0.42 (133.1 - 129.6) = 140.2
Difference = 5.5

Where 0.42 2,327.43 = common slope of the regression lines of height on age; 129.6 is the
mean age of the 32 students from both schools and remaining values are mean heights and ages
as reported in Table 1.

result being equal to 1,338.02. This
calculation was designed, therefore, to
derive a proper estimate of error to be
used in the denominator of the F-test.
The fact that the rural children were

slightly older is taken into account when
the numerator for the F-test is calcu-
lated. It is obtained from the difference
between the total adjusted sum of
squares and the previously calculated
"Within schools" value, i.e.:

1,549.45 1,338.02 = 207.93

The test of significance is then signifi-
cant at the 5 per cent level since the
F value is 4.51.
The estimated difference in stature

between the two schools, if age is ad-
justed to the same age for both groups,

The adjustments calculated by the
foregoing are represented graphically in
Figure 1. Thus, the unadjusted mean
height of private school children at point
A is transferred to point B. Similarly,
the unadjusted mean height of rural
children at point C is adjusted to point
D. Points B and D are at the average
age of all 32 children and there is 5.5
cm. separating these two points.

SPECIAL ASSUMPTIONS UNDERLYING
ANALYSIS OF COVARIANCE

In addition to the usual assumptions
underlying the analysis of variance,3
additional ones are introduced here be-
cause of the application of regression
procedures. These are as follows:

1. Linearity of regression of keight on

age-The appropriateness of assuming

Total

Between
schools

Within
schools

207.93

207.93
F = = 4.51

46.14

207.93
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Age (lmot)
FIGURE 1-Height and Age of Private and Rural School Children in a Study in North Carolina

in 1948.

that a straight line relationship exists
between height and age should be in-
vestigated. For the relatively small
interval of three years involved here,
departure from linearity does not appear
to be a serious shortcoming. For large
ranges in age, however, the linearity of
the regression should be reviewed and
evaluated.
The technic of covariance is by no

means restricted to applications where
the regression is linear. Even though
the relationship might assume a non-
linear form of mathematical curve,
adjustments can still be made. This
may involve, however, additional cal-
culations similar to the use of more than
one covariable. (See below for discus-
sion of several covariables.)

2. Similarity of regression slopes for

each school-It can be seen in Figure 1,
that the deviations in each school are
measured from two parallel lines. That
is to say, the lines were determined so
as to have the same slope. This assump-
tion is necessary if there is to be a
constant differential in stature between
the two groups over the entire age range.
If the two slopes are not identical, then
the children in one school might be
taller at age 9 but smaller at age 11.
The parallelism of the lines should be

tested in every instance. The details of
this test will not be discussed here. The
test, nevertheless, was performed in this
example and the departure from parallel-
ism was not significant.

3. Homogeneity of variances-As in
other applications of elementary regres-
sion technics, it is assumed that the
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deviations about the line at age 9 are of
the same order of magnitude as those at
ages 10 and 11. From the growth-curve
literature (Burgess 4), it is known that
this is not completely true. The degree
to which it is not, however, is slight in
this example and not serious enough to
invalidate the inferences. For informa-
tion on handling situations involving
heterogeneity of variances, see Cochran 5
and Bartlett.6

4. Overlapping of ages in both groups
-If the mean ages in the two groups
are far apart, adjustment of the mean
heights to points B and D at the point
of over-all mean height may represent
extrapolation. The uncertainties of ex-
trapolation are greater in covariance
analysis than in the usual case of regres-
sion since it is performed twice. In this
example, there was considerable over-
lapping of the age distributions and no
trouble was encountered on that score.

SEVERAL COVARIABLES
The use of more than one concomitant

variable is frequently necessary to
achieve desired results, particularly to
obtain a valid estimate of error. The
analysis of covariance permits the use
of any number of covariables, provided
it is less than the number of degrees of
freedom in error.
The question of how many variables

* The procedure of balancing is a tricky one if a
random element in the sample is to be retained. In
the case where subjects are available before the experi-
ment is started, and they are to be assigned to either
an experimental or control treatment group, a recom-
mended procedure for matching the two groups with
iespect to a covariable is as follows:

Arrange the subjects according to the magnitude of
the covariable to be balanced. There are many ways
in which the individuals can now be grouped from this
linear arrangement so that the term txx in expression
(A) above is small. In many cases, one of the most
advantageous groupings is to proceed in units of four
subjects. The first of each unit of four persons is
assigned at random to either the experimental or con-
trol treatment. Having made this initial random
allocation, the following two individuals are assigned
to the opposite treatment. Finally, the fourth indi-
vidual is assigned to the same treatment as the first
person. Repeat the identical procedure, including
randomization, for each unit of four. The sequence
appears as a sandwich of four which in symbolic nota-
tion can be written as ABBA.

to include is identical to that which
arises in most multiple regression prob-
lems. The decision depends upon a
comparison of the expected gain in
efficiency versus the cost of gathering
that information and performing the
additional calculations. Generally speak-
ing, if the partial correlation coefficient
of rn x x ... is significantly dif-

p 1 2 p-1
ferent from zero, the inclusion of vari-
able Xp (in addition to X1, X2, ...
X,-1) will reduce the magnitude of the
denominator in the F-test.

BALANCING
In most planned experiments, the in-

vestigator has the opportunity of arrang-
ing the subjects so that the average ages,
say, in the two groups are the same.
This method of design has intuitive as
well as popular appeal and is well known
in some branches of research as match-
ing of groups or balancing.*

If balancing has value in planned
experimentation, it appears at first
glance that matching of groups might
also be helpful in analytical surveys.
The investigator can choose samples in
such a way that the average values of
the covariables are identical, or nearly
so, by restricting the random element in
the sampling procedure (e.g., stratified
sampling in several stages). For ex-
ample, a segment from each of two
populations might be chosen so that
both samples contain the same per-
centage of males.

If this is a true probability sample
for a finite population, use of the cor-
rect estimation technic would weight
the estimate of the main variable under
study according to the true sex ratio in
each population and nothing will have
been gained.

If interest is centered upon an infinite
population, does matching of groups
produce a worth-while result? Generally
in public health problems, I think not.
The justification for this can be demon-

Vol. 43 697



AMERICAN JOURNAL OF PUBLIC HEALTH

strated by examining the claimed ad-
vantages of balancing in planned experi-
ments.
When balancing is used, the reasoning

goes that there is no need for adjust-
ment of the covariables by covariance
since the two distributions, or at least
the first moments of the two distribu-
tions, are identical. Unfortunately, this
logic is not quite true. Even if one
assumes that the relationship is exactly
linear so that equivalence of the means
is all that is needed, matching of the
treatment groups has done nothing
about the error term, the denominator
of the F-test. In this respect, covariance
analysis is of much more value for it
enables a valid estimate of the error
term to be made.

It so happens, nevertheless, that when
covariance analysis is used, there is still
a slight additional gain to be achieved
in the sensitivity of an experiment by
balancing. This gain stems from the
effect of balancing upon the numerator
of the F-test.

If an equal number of subjects have
been allocated to each treatment group
at random, it can be shown that the
average or expected value of the numer-
ator of the F-ratio in the analysis of
covariance is equal to *

(A) 02 + n t=-I S} t2

where a2 = true experimental error
n = number of subjects on each

treatment
p = number of treatments

txx= symbol for the sum of squares
represented by 306.44 in the
present example

Sx= symbol for the sum of squares
represented by 2,633.87 in the
present example

2 = sum of squares of the true(p-i) A
t treatment effects

* It has been assumed that the true mean of the
covariable is identical in each of the treatment groups.

The sensitivity or discriminatory
power of a given experiment can be
enhanced by maximizing the numerator

txx
of the F-ratio, or making

(p-1) SX1
as small as possible. The effect of
balancing is to make txx essentially
equal to zero.

txx
The term has therefore

(p- ) Sxx
been suggested by Lucas 7 as a measure
of the loss in sensitivity due to failure
to balance. It has an average or ex-

1
pected value equal to . Also, 95

np-1
per cent upper limits for the loss in
sensitivity due to failure to balance can
be calculated. These values have been
calculated in Table 3 for the special
case where p = 2. It can be seen that
the sensitivity loss is trivial (0.05)
when there are about 20 subjects in all
and only two treatments. With less
than that many subjects, the loss be-
comes more substantial.

TABLE 3

Loss in Sensitivity of an Experiment with Two
Treatments Due to Failure to Balance

No. of
Subjects
on Each

Treatment

2
3
4

10
20
30
40

Average Loss
in

Sensitivity

0.33
0.20
0.14

0.05
0.03
0.02
0.01

Five Per cent of Time Loss
in

Sensitivity Exceeds

0.90
0.66
0.50

0.20
0.09
0.06
0.06

Thus, in cases where covariables
exist, the preferred procedure is always
covariance analysis. If the study con-
sists of less than 10 subjects on each of
two treatments, a slight gain in effi-
ciency may be obtained by the technic
of balancing.
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SUMMARY
In drawing inferences from surveys of

population groups, it has been demon-
strated how the effect of covariables
upon the measurement under study can
be taken into account by the use of
covariance analysis. The assumptions
underlying the use of the method were
pointed out.
The advantage of balancing or match-

ing of groups with respect to a covari-
able has been compared with that of
covariance. The latter is the preferred
procedure, since it enables a valid esti-
mate of error to be made as well as
removing any bias. In addition to co-
variance, however, balancing has further
merit when surveys involve less than
10 subjects on each of two treatment
groups. If many covariables exist, co-

variance analysis may be inconvenient
to use for all of them, in which case
balancing of the remainder will usually
remove a considerable portion of the
bias.
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Medical Health Officer Examination
The U. S. Civil Service Commission announces an examination for medical

officers to fill positions in various specialized fields, with salaries ranging from
$5,940 to $10,800. The positions are principally in the Bureau of Indian Affairs
located on reservations west of the Mississippi and in Alaska with a few positions in
the Fish and Wild Life Service. Further information from U. S. Civil Service
Commission, Washington 25, D. C.


