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Abstract
Although most cellular glutathione (GSH) is in the cytoplasm, a distinctly regulated pool is present
in mitochondria. Inasmuch as GSH synthesis is primarily restricted to the cytoplasm, the
mitochondrial pool must derive from transport of cytoplasmic GSH across the mitochondrial inner
membrane. Early studies in liver mitochondria primarily focused on the relationship between GSH
status and membrane permeability and energetics. Because GSH is an anion at physiological pH, this
suggested that some of the organic anion carriers present in the inner membrane could function in
GSH transport. Indeed, studies by Lash and colleagues in isolated mitochondria from rat kidney
showed that most of the transport (>80%) in that tissue could be accounted for by function of the
dicarboxylate carrier (DIC, Slc25a10) and the oxoglutarate carrier (OGC, Slc25a11), which mediate
electroneutral exchange of dicarboxylates for inorganic phosphate and 2-oxoglutarate for other
dicarboxylates, respectively. The identity and function of specific carrier proteins in other tissues is
less certain, although the OGC is expressed in heart, liver, and brain and the DIC is expressed in liver
and kidney. An additional carrier that transports 2-oxoglutarate, the oxodicarboxylate or oxoadipate
carrier (ODC; Slc25a21), has been described in rat and human liver and its expression has a wide
tissue distribution, although its potential function in GSH transport has not been investigated.
Overexpression of the cDNA for the DIC and OGC in a renal proximal tubule-derived cell line,
NRK-52E cells, showed that enhanced carrier expression and activity protects against oxidative stress
and chemically induced apoptosis. This has implications for development of novel therapeutic
approaches for treatment of human diseases and pathological states. Several conditions, such as
alcoholic liver disease, cirrhosis or other chronic biliary obstructive diseases, and diabetic
nephropathy, are associated with depletion or oxidation of the mitochondrial GSH pool in liver or
kidney.
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1. Introduction
Glutathione (GSH) is the primary low-molecular-weight thiol in all aerobic cells. Its functional
importance lies in the presence of the thiol group on the cysteinyl residue (Fig. 1). The thiol
enables GSH to function as both a reductant and a nucleophile. Synthesis of GSH occurs by
two sequential, ATP-dependent reactions in the cytoplasm and is catalyzed by γ-
glutamylcysteine synthetase and GSH synthetase. The available evidence indicates that most
if not all of the biosynthetic activity resides in the cytoplasm with little if any activity in other
organelles, including the mitochondria [1,2]. Virtually all mammalian cells have some capacity
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to synthesize GSH and activity is widely distributed. Degradation of GSH is mediated by a
separate pathway that, in contrast to the synthetic pathway, exhibits a discrete tissue distribution
[3]. Thus, the initial step in the breakdown of GSH, which involves cleavage of the γ-glutamyl-
peptide bond by γ-glutamyltransferase (GGT), is localized in luminal membranes of epithelial
cells, such the renal proximal tubule and enterocytes, and is largely absent from cells such as
hepatocytes or cardiac myocytes.

As a reductant, GSH maintains intracellular, sulfhydryl-containing proteins in the reduced and
active form by either the reduction of potentially toxic peroxides or by the action of thiol-
disulfide exchange reactions. The first process is mediated by the selenium-containing GSH
peroxidase and the second process is mediated by thioltransferases. The GSH–glutathione
disulfide (GSSG) redox pair has a midpoint electrochemical potential at pH 7.0 (Em,7) of −240
mV, which places it well between the most reduced redox couple, H+/H2 (−420 mV) and the
most oxidized redox couple, O2/H2O (+820 mV). Accordingly, the GSH/GSSG redox couple
can readily interact with most of the physiologically relevant redox couples, undergoing
reversible oxidation or reduction reactions, thereby maintaining the appropriate redox balance
in the cell.

As a nucleophile, GSH serves a critical function in the cell by reacting with electrophiles that
are generated as a consequence of metabolic processes involving both endogenous compounds
and xenobiotics. While GSH can react non-enzymatically with electrophiles, rates of
nucleophilic addition reactions are greatly enhanced by the catalytic action of a family of
enzymes called the GSH S-transferases (GSTs). Most of the GST isoforms are present in the
cytoplasm, although isoforms are also present in the endoplasmic reticulum and mitochondrial
matrix.

The mitochondrion is an excellent example of a subcellular organelle whose function is closely
linked to maintenance of redox balance. As mitochondria are the primary intracellular sites of
oxygen consumption, they may also be primary sites of generation of reactive oxygen species
(ROS). Although normal electron transport in mitochondria involves four-electron reduction
of molecular oxygen to water, partial reduction reactions occur even under physiological
conditions, causing release of superoxide anion and hydrogen peroxide. Toxic or pathological
conditions, such as oxidative stress, that lead to an impairment of mitochondrial function, can
increase release of ROS. A large number of mitochondrial enzymes, including dehydrogenases
and transport ATPases, contain critical sulfhydryl groups that must be maintained in the
reduced form for proper function [4]. Furthermore, redox-sensitive components in the electron
transport chain, such as iron ions on heme prosthetic groups and iron-sulfur centers, may be
oxidized during a redox imbalance, thereby producing mitochondrial dysfunction.

The redox status of GSH and other thiols has long been known to be critical for proper
mitochondrial function [5–8]. Alterations in GSH concentration and redox status have been
associated with oxidative stress induced by peroxides and other oxidants in mitochondria from
kidney, liver, brain, and tumor cells [2,9–15], regulation of mitochondrial Ca2+ ion distribution
and pyridine nucleotide oxidation status [16–21], damage to mitochondrial DNA [22,23], and
induction of the membrane permeability transition [21,24–29]. More recently, changes in
mitochondrial GSH status have been associated with activation of signaling pathways and
expression of genes that regulate apoptosis [30–37] and cell growth and differentiation [38,
39]. Besides ROS, recent attention has focused on the role of reactive nitrogen species, in
particular nitric oxide (NO) and peroxynitrite (ONOO−), in the regulation of mitochondrial
and cellular function and in mediating certain forms of chemically induced and pathological
injury. Although NO may interact directly with proteins and other cellular macromolecules,
effects of NO may also be mediated by formation of S-nitrosoglutathione (GSNO) [40–43].
Thus, GSH may react with NO to release ROS (Fig. 2) or it may serve as an NO donor via
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formation of GSNO (Fig. 3). The normally high concentration of GSH in the mitochondrial
matrix and the presence of a constitutively expressed nitric oxide synthase in the organelle
suggest that formation of GSNO plays an important physiological role.

It is, therefore, clear that maintenance of adequate concentrations of GSH within the
mitochondrial matrix is essential for regulation and proper function of numerous critical
processes. This review will focus on the current state of knowledge about how the
mitochondrial pool of GSH is determined and regulated and some approaches that the author’s
laboratory has taken to modulate this pool to alter susceptibility to chemically induced injury
or disease.

2. Early studies on mitochondrial GSH homeostasis and energetics
The earliest studies that focused specifically on the mitochondrial GSH transport process
studied the relationships between mitochondrial respiratory state and transport activity in
mitochondria from rat liver. In 1990, Kurosawa et al. [44] found that GSH was transported into
rat liver mitochondria at highest rates under state 4 conditions and that transport was diminished
by a protonophore, by antimycin A, or under state 3 conditions. Fasted rats were used in their
studies, indicating that mitochondria were likely in an energy-depleted state. In that same year,
Martensson et al. [45] defined two kinetic components for uptake of GSH by isolated
mitochondria from rat liver: A high-affinity component (Km = 60 μM, Vmax = 0.5 nmol/min
per mg protein) and a low-affinity component (Km = 5.4 mM, Vmax = 5.9 nmol/min per mg
protein). Both components were inhibited by a protonophore, glutamate, and by the GSH-
analogue ophthalmic acid. Fasted rats were also used in their studies. In 1995, Kaplowitz and
colleagues [46] expressed GSH transport activity in mitochondria of Xenopus laevis oocytes
that were microinjected with total liver mRNA. The transport activity exhibited similar
properties to those observed in mitochondria from rat liver and was distinct from those present
in the canalicular or sinusoidal plasma membranes. Fractionation of poly(A)+ RNA identified
a single mRNA species of 3 to 3.5 kb. There is some concern, however, about the identity of
the activity measured because the oocytes exhibit some endogenous GSH transport activity
and no attempt was made to identify the potential function of specific carriers in GSH uptake.

Using rat kidney mitochondria, Schnellmann [47] concluded that GSH was taken up by both
a carrier-mediated process and by diffusion. The carrier-mediated process was modestly (30%)
inhibited by glycine, serine, and ophthalmic acid, but not by glutamate, cysteine, γ-
glutamylglutamate or proline.

Other studies that are described below provided insight into the relationships between
mitochondrial GSH status and several pathological or disease states. Because we know that
transport of cytoplasmic GSH into the mitochondrial matrix is the primary, if not sole,
determinant of GSH status in the organelle, the implication from these studies is that GSH
transport is inhibited or somehow defective. Direct evidence for this suggestion, however, has
only recently become available. Although these studies and those described above provided
mostly indirect information about GSH transport activity under various physiological or
pathological conditions, they did not address the crucial questions of what specific carrier
protein(s) mediate(s) the transport process and the specific energy sources that are used to
maintain the tightly regulated mitochondrial GSH pool. In the section that follows, we present
summaries of the studies that identified and confirmed the function of specific carrier proteins
in the mitochondrial inner membrane of rat kidney in transport of cytoplasmic GSH into the
matrix.
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3. Role of anion carriers in GSH uptake
3.1. GSH as an organic anion: Potential carriers in mitochondrial inner membrane

The charged nature of the GSH molecule suggests that it cannot passively diffuse across the
mitochondrial inner membrane. Rather, because mitochondria possess a membrane potential
with the matrix space negative relative to the cytoplasm and because GSH is a negatively
charged molecule at physiological pH, GSH must be transported actively or in exchange for
another anion. Possible net charges for GSH are determined by four functional groups (cf. Fig.
1): There is one free amino group (pKa = 8.6; predominantly protonated = +1), two free
carboxyl groups (pKa = 3.53 and 2.12; predominantly deprotonated = −2), and the thiol group
(pKa = 9.2; predominantly protonated = 0). Whereas the pH of the cytoplasm is typically near
7.0, that of the mitochondrial matrix is slightly alkaline (approximately 7.8). Hence, more of
the −SH groups will be deprotonated in the matrix. Additionally, a microenvironment may
exist near the active sites of the carrier proteins that effectively lowers the pKa of the thiol
group so that a much higher proportion of GSH molecules would be in the thiolate form. Overall
then, the GSH pool available for mitochondrial carriers is likely to have a net charge of between
−1 and −2.

Considering the anionic nature of GSH, our first approach to determining the function of
specific, inner membrane carrier proteins in mitochondrial GSH transport was to examine the
potential activity of known carriers [2]. Eight known anion carriers are present in the
mitochondrial inner membrane that could conceivably play a role in the uptake of GSH from
the cytoplasm (Table 1). These carriers are involved in the translocation of citric acid cycle
intermediates, amino acids, and gluconeogenesis precursors across the mitochondrial inner
membrane and thus play critical roles in mitochondrial and cellular energetics [48,49]. High
activity of these carriers is expected in cells such as those of the renal proximal tubule because
of high rates of mitochondrial respiration, active transport, and gluconeogenesis. These carriers
are presumably expressed in mitochondria from all tissues, although tissue-specific differences
in expression levels and activities also presumably exist (see section 3.2.4 below).

Based on substrate specificities, potential candidates among these carriers for a role in GSH
uptake are the monocarboxylate (MCC), dicarboxylate (DIC; Slc25a10), 2-oxoglutarate (OGC;
Slc25a11), tricarboxylate or citrate (CIC; Slc25a1), glutamate–hydroxide
(GC1/2;Slc25a22/18), and glutamate-aspartate (AGC1/2;Slc25a12/13) carriers. Because the
adenine nucleotide translocase and phosphate–hydroxide carriers have fairly restricted
substrate specificities, they are not likely to catalyze GSH transport. Although the MCC, DIC,
OGC, and CIC all differ with respect to substrate specificity and inhibitor sensitivity, they
share a common ~30 kDa molecular weight subunit and are believed to belong to a carrier
“superfamily” [50]. Each of these carriers are electroneutral, meaning that they catalyze
exchange of anions or a combination of anions and a proton, so that there is no net transfer of
charge across the inner membrane. The glutamate–hydroxide carrier is similarly electroneutral,
exchanging glutamate for an hydroxide ion. In contrast, the glutamate–aspartate carrier is
electrogenic, catalyzing net transfer of one positive charge into the mitochondrial matrix.
Although the two glutamate carriers are not likely candidates to mediate transport of GSH, the
presence of a glutamyl residue on the GSH molecule suggests the possibility that GSH may
interact with these carriers.

3.2. Identification of the DIC and OGC as major GSH transporters
3.2.1. Keys to accurate measurement of mitochondrial GSH transport—One of
the most straightforward and simple approaches to determining the potential function of
individual membrane carriers in the transport of a given substrate across the inner membrane
is to use the experimental model of suspensions of freshly isolated mitochondria [51]. The
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mitochondrial suspensions are prepared in a standard buffer, mixed with the appropriate
substrate solutions, incubated for various time periods, typically at temperatures no higher than
25°C, and then the intramitochondrial and extramitochondrial compartments are separated by
either rapid filtration under vacuum or rapid centrifugation procedures. Although measurement
of transport activity in this experimental model is technically simple, the procedures used are
subject to a large number of potential artifacts that may compromise the accuracy of
measurements [48,52]. Some of these potential artifacts are specific to studies involving GSH,
some of specific to studies involving suspensions of isolated mitochondria, and others are
relevant to any transport study regardless of the experimental model being used. To convey
the complexity of the mitochondrial transport process despite the simplicity of the assay
methods, a brief discussion of these artifacts and suggested approaches to minimize or
otherwise account for them are presented. We have previously discussed these considerations
with regard to accurate measurement of mitochondrial GSH transport [52,53].

Potential artifacts in measurement of mitochondrial GSH transport that are important for any
transport study, regardless of substrate, tissue of origin, or specific experimental model being
used, include the following: 1) Loss of transported substrate during sample processing; or 2)
contamination of compartment of interest with substrate from outside the compartment. The
first concern, that of potential loss of transported substrate during sample processing, can be
minimized by processing in such a way that the compartments are rapidly separated and
metabolic and transport processes inactivated. This is typically accomplished by methods such
as filtration under vacuum or rapid centrifugation through a medium that separates
compartments and delivers the compartment of interest into a medium that inhibits metabolic
and transport processes. Examples of such a stop medium include a buffer that contains a high
concentration of an inhibitor of metabolism or transport and/or an acid to effect precipitation
of proteins. The second concern, that of contamination of material in the outside of the
compartment, can be handled methodologically by the filtration or centrifugation methods just
described. In spite of these methods, however, a small fraction of fluid from outside the
compartment can still contaminate the sample. This is particularly significant for uptake
measurements because of the high concentration of substrate in the medium and the small
fraction of total solution volume occupied by the compartment of interest. Such contamination
can be monitored by the use of radiolabeled markers of the extra- and intracompartmental
space. Typically, an impermeant molecule, such as [14C]-sucrose or [3H]-inulin, is used as a
marker for the extracompartmental space and 3H2O is used as a measure of total volume. In
this manner, corrections can be made for carry-over of extracompartmental substrate that
occurs during sample processing.

Potential artifacts that are unique to studies with isolated mitochondria include: 1) Changes in
mitochondrial matrix volume that occur during the transport incubation; and 2) induction of
the membrane permeability transition (MPT) during transport incubation. The MPT is defined
as a voltage-dependent, cyclosporine A (CsA)-sensitive, high-conductance inner membrane
channel. Pore opening is favored by increases in matrix calcium ion concentrations and is
strongly promoted by a diverse array of agents, including many that oxidize pyridine
nucleotides and thiols. Regarding the first potential artifact, radiolabeled markers of extra- and
intramitochondrial space can be used to quantitatively determine matrix volume, similar to the
approaches used to account for contamination with extracompartmental medium. Additionally,
mitochondrial incubations can be performed in the presence of antimycin A (typically 1–5
μM). Caution must be exercised in the use of antimycin A because it can produce oxidative
stress and mitochondrial injury under certain conditions [54,55]. Regarding the second
potential artifact, a role for the MPT can be assessed by use of the permeability transition pore
inhibitor CsA (e.g., at 0.5 nmol/mg protein); inhibition of apparent uptake by CsA would
indicate involvement of the MPT. Similarly, one can distinguish between the mechanism of
apparent inhibition of transport by a specific compound as occurring by competitive inhibition
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or by induction of the MPT by use of CsA. For example, in our study of substrate specificity
of GSH uptake in suspensions of mitochondria isolated from rat renal cortex ([53]; see below),
we found that the apparent inhibition of GSH uptake by phosphoenolpyruvate, which is a
substrate for the CIC, was not due to competitive inhibition but was due to its well known
ability to induce the MPT as its effect was eliminated by CsA.

Finally, a potential artifact that is specific to measurement of GSH transport is degradation of
GSH during the transport process or during sample processing by contaminating GGT. As
explained above, GGT is the sole enzyme that cleaves the γ-glutamyl peptide bond of GSH,
thereby initiating its turnover. GGT is present on the luminal membrane, with its active site
facing the extracellular space, of many epithelial cells, including the renal proximal tubule,
choroid plexus, retinal pigment epithelium, and small-intestinal jejunal epithelium. Although
there is a considerable degree of variation in activity levels among species, GGT activity is
always highest in the renal proximal tubule [3]. In fact, GGT activity on the luminal or brush-
border plasma membrane of renal proximal tubular cells is so high that even a very modest
(e.g., < 1%) contamination of an isolated mitochondria preparation with brush-border
membranes can result in a significant capacity to degrade GSH that is comparable to rates of
transport. Consequently, it is critical to inhibit GGT activity as completely as possible.
Although several compounds have been used to inhibit GGT, the most widespread and effective
inhibitor is acivicin (L-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid) [56].

3.2.2. Substrate specificity, sensitivity to inhibitors, and energetics of GSH
transport—In our initial study of mitochondrial GSH transport [2], we found that uptake of
GSH by rat kidney mitochondria was saturable (Km = 1.3 mM, Vmax = 5.59 nmol/min per mg
protein), was markedly inhibited by γ-glutamylglutamate, certain S-alkyl derivatives of GSH,
glutamate, and by dicarboxylates, but was not inhibited by monocarboxylates. Furthermore,
the rate of GSH uptake was not altered by uncouplers or a protonophore. These findings
suggested that GSH uptake in rat kidney mitochondria is mediated by an electroneutral
exchange with dicarboxylates. More recent studies of ours using isolated mitochondria from
rat renal cortex [53], assessed substrate specificity, inhibitor sensitivity, and energetics in more
depth: We provided additional evidence that of the substrates for the various citric acid cycle
carriers, only dicarboxylates specifically interacted with GSH for transport across the
mitochondrial inner membrane. Although L-glutamate was inhibitory, the interaction is not due
to the two compounds being transported by the same carrier. Rather, the glutamyl residue of
the GSH molecule appears to play a role in binding to the carrier(s). Whereas L-glutamate
inhibited GSH uptake, GSH did not affect rates of L-glutamate uptake, which were
approximately 5-fold higher than those for GSH. Mitochondrial uptake of GSH was also found
to be significantly diminished in a nominally phosphate-free or low (≤1 mM) phosphate-
containing buffer, consistent with the function of the DIC in GSH uptake.

Function of the DIC and OGC in GSH uptake were further demonstrated in studies where the
inner membrane carriers from mitochondria of rabbit kidney cortex were enriched and
reconstituted into proteoliposomes [57], using reconstitution methods previously developed
for study of the DIC and OGC [58–61]. This approach has the advantage of eliminating the
potentially confounding effects of matrix metabolism or volume change or induction of the
MPT. Kinetics, substrate specificity, and inhibitor sensitivity were similar to those properties
observed in intact mitochondria from rat renal cortex. Based on effects of butylmalonate
(selective DIC inhibitor) and phenylsuccinate (selective OGC inhibitor), both singly and in
combination, we estimated that of the total amount of GSH transport in renal cortical
mitochondria, ~60% is mediated by the DIC and ~40% is mediated by the OGC. At least 80%
of the total observable GSH transport across the mitochondrial inner membrane of kidney
mitochondria could be attributed to function of the DIC and OGC [53,57]. A basic scheme
illustrating the function of the two carriers in renal mitochondrial GSH transport and their

Lash Page 6

Chem Biol Interact. Author manuscript; available in PMC 2006 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



relationship to both the citric acid and GSH redox cycles, is shown (Fig. 4). It should be
emphasized that although the DIC and OGC account for most of the observable transport of
GSH in mitochondria from renal cortex, other thus far unidentified carriers may also contribute
and that the contribution of these two carriers in mitochondria from other tissues may be less
than that in kidney.

Kaplowitz and colleagues [62] identified decreased mRNA expression and transport activity
of the OGC in rat liver mitochondria as being linked to the decreased mitochondrial GSH
content characteristic of alcoholic liver disease, confirming the role of this carrier in
mitochondrial GSH transport. More detailed mechanistic studies of the kinetics and properties
of GSH transport in liver mitochondria, however, are not available. As discussed below, we
have unpublished data suggesting that tissue-specific differences exist in the function of the
various carriers for mitochondrial GSH transport. Fernandez-Checa and Kaplowitz [63]
recently reviewed the role of hepatic mitochondrial GSH transport in disease and chemically
induced toxicity. As briefly discussed below (see section 4), studies from these investigators
highlight the human health and therapeutic significance of mitochondrial GSH transport.

3.2.3. Structural and functional studies of the DIC and OGC—As noted above, both
the DIC and OGC appear to belong to a “superfamily” of mitochondrial inner membrane
transporters with similar three-dimensional structure, as predicted by hydropathy analysis
[64]. The TMpred program predicts three-dimensional structure and transmembrane-spanning
domains (TMDs) using amino acid polarity and charge. Based on this program, both the DIC
and OGC, as well as other carriers in the superfamily (e.g., the MCC, CIC, PiC), are predicted
to have three TMDs. Each TMD is comprised of two hydrophobic stretches that span the
membrane presumably as α-helices, each separated by hydrophilic loops. Both the N- and C-
terminal ends of each monomer are on the cytoplasmic side of the inner membrane. The
hydropathy plots can then be used to predict which amino acid residues may be essential for
proper three-dimensional structure and insertion into the membrane. Both carriers are similar
in size, with the DIC containing 286 or 287 amino acids, depending on species, and a molecular
mass of approximately 31 kDa, and the OGC containing 314 to 322 amino acids, depending
on species, and a molecular mass of 34–37 kDa. All the members of the Slc25 transporter
family are believed to exist as homodimers.

Various approaches have been used to identify essential residues for proper carrier function,
including inhibition by amino acid-specific reagents, site-directed and cysteine-scanning
mutagenesis, and spin labeling. For example, Palmieri’s group used Arg-specific reagents
[65] and different mutagenesis and spin-labeling techniques [66,67] to demonstrate the
function of an Arg residue near the substrate-binding site and two other Arg residues in TMD1
and TMD2 of the OGC. Cys residues are often critical to protein function. Although the DIC
and OGC exhibit some homology, their content of Cys residues and the apparent role of these
residues in carrier function appear to differ. Thus, the DIC from rat or bovine liver contains
five Cys residues at positions 17, 21, 22, 211, and 216. Conversion of any one of these residues
in the bacterially expressed DIC from rat kidney mitochondria to Ser or Ala by site-directed
mutagenesis, however, failed to significantly alter transport activity (J. Wang, F. Xu, D.A. Putt,
L.H. Matherly, and L.H. Lash, unpublished observations). In contrast, the OGC contains only
three Cys residues at positions 184, 221, and 224, with the latter two forming an intramolecular
disulfide bond [68–71]. Conversion of C221 and C224 to Ser results in a marked reduction in
transport activity, indicating that formation of the intramolecular disulfide bridge is critical for
function [71].

For the OGC, therefore, the Cys residues appear to be critical for proper three-dimensional
structure and function. For the DIC, however, the functional significance of the cysteine
residues is unclear. In studies to purify and reconstitute the DIC [58,60], it was noted that in
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marked contrast with the OGC, the DIC is relatively unstable when isolated, undergoing
relatively facile oxidative inactivation. Thus, although replacement of any of the five Cys
residues of the DIC with a Ser or Ala does not markedly affect activity, oxidation of the thiol
groups in the native protein inhibits activity.

3.2.4. Species and tissue specificity of transport—The DIC appears to be invariant
across tissues and exhibits a high degree of amino acid sequence homology across species.
Protein sequences from the liver mitochondrial carriers are known for three species: mouse,
rat, and human. Whereas mouse and human DIC have 287 amino acid residues, rat DIC has
286. The extent of sequence homology between mouse and rat is 96% whereas that between
mouse and human is 89%. The OGC, in contrast, exhibits much broader cDNA and amino acid
sequence differences across both species and tissues. Using the cDNA sequence from brain as
the basis for comparison, rat and mouse exhibit the highest degree of homology (95%;
919/964), with those from rat and bovine and rat and human exhibiting somewhat lower degrees
of homology (rat vs. bovine: 90% or 866/964; rat vs. human: 89% or 862/964). Comparison
of deduced amino acid sequences, however, shows greater species differences, with that from
the mouse differing the greatest amounts from those from rat, human, or bovine. Thus, whereas
the OGC protein from bovine, rat, and human contain 314 amino acid residues, that from mouse
contains 322 amino acid residues. Moreover, whereas amino acid sequence homologies
between the OGC from rat, bovine, and human are 95% to 96%, those between mouse and the
other species is only 34%. The functional implications for these differences are unknown.

cDNA sequences for the OGC from rat that are published in GenBankTM are only available
from brain and heart mitochondria. Although Coll et al. [62] quantified OGC expression in rat
liver, the published cDNA sequence from rat brain was used as the template for their PCR
primer design. In our study of OGC from rat kidney [71], we used total rat kidney RNA as a
template. The sequence of our PCR product, which was repeated numerous times with identical
results, exhibited significant differences from that of the mitochondrial OGC from rat heart
and brain. Nucleotide differences in the cDNA sequences were observed for 6 bp or 10 bp
between kidney and heart or kidney and brain, respectively. Amino acid differences for the
deduced sequences did not appear to be significant between kidney and heart (2 amino acid
residues) but were significant between kidney and brain (6 amino acid residues), with 2
differences involving changes in charge or polarity and 3 differences involving residues in or
near TMDs. The nature of these differences suggests that the OGC proteins in rat liver and
kidney mitochondria exhibit differences in structure that may translate into functional
differences.

While extensive studies of transport kinetics and substrate specificity for the OGC have been
conducted in rat kidney mitochondria [53], no such studies have as yet been published for rat
liver mitochondria. We have, however, conducted preliminary studies in isolated rat liver
mitochondria (Q. Zhong, L.H. Lash, unpublished observations), and one clear difference
between GSH transport in mitochondria from the two tissues is that whereas function of the
DIC and OGC can account for at least 80% of the total transport activity in kidney mitochondria,
these two carriers account for at most 50% of total transport activity in liver mitochondria. This
suggests that at least one other carrier besides the DIC and OGC plays a quantitatively
significant role in GSH transport into rat liver mitochondria. Additional studies are needed to
clarify the function of various carriers for GSH in rat liver mitochondria.

Besides the potential function of tissue-specific carriers, differences also exist in the level of
expression and activity of carriers in various tissues. It is known, for example, that deficiencies
exist in certain mitochondrial enzymes or transmembrane carriers, resulting in so-called
mitochondriocytopathies [72]. Further, these disorders most severely affect those tissues that
are most dependent on mitochondrial energy production, such as skeletal muscle and heart.
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Huizing et al. [72] determined the human tissue distribution of several key carriers involved
in either oxidative phosphorylation (i.e., the AAC, PiC, and voltage-dependent anion channel)
or metabolite transport (i.e., OGC, carnitine-acylcarnitine carrier, CIC). Levels of mRNA
expression in various tissues generally correlated with tissue dependence on mitochondrial
energy, with skeletal muscle and heart exhibiting much higher levels of mRNA for several
carriers than other tissues, including brain, pancreas, lung, liver, placenta, and kidney. Of
interest for GSH transport, OGC mRNA expression was by far the highest in skeletal muscle
and heart, but was also relatively high in brain, liver, and kidney. Pancreas and placenta
exhibited very low levels of OGC mRNA expression and that in lung was barely detectable.

3.2.5. Potential role of other carriers—As indicated above, less specific, mechanistic
information on mitochondrial GSH transport is available in liver than in kidney. Although rat
liver OGC may have a high degree of homology with rat brain OGC [62], its sequence has not
been reported. A thorough search of the GenBankTM database and the published literature
failed to find any cDNA or amino acid sequences for the OGC from rat liver mitochondria
[71]. Fiermonte et al. [73], however, reported cloning and expression of a rat liver
oxodicarboxylate (oxoadipate) carrier (ODC; Slc25a21) that transports 2-OG and other C5–
C7 dicarboxylates. They isolated a 1456-bp cDNA with a 99-bp 5’-untranslated region, an
open reading frame of 897 bp, and a 460-bp 3’-untranslated region. The cDNA encodes a
polypeptide of 298 amino acids with a molecular mass of 33,276, which contrasts with the
OGC from rat kidney, heart, and brain mitochondria, which are all 314 amino acids in length.
The relationship between the rat liver ODC and OGC is unclear as is the potential for the ODC
to transport GSH. Clearly, further investigation is needed to establish the roles of the OGC
versus ODC in rat liver, to determine the significance of the OGC sequence variants in relation
to kidney and liver GSH transport, and to assess the functional implications of these sequence
differences for mitochondrial GSH transport.

3.2.6. Regulation of mitochondrial GSH transport—The identification of the DIC and
OGC as the primary membrane carriers responsible for transport of GSH into renal
mitochondria suggests that mitochondrial GSH status is closely regulated by mitochondrial
energetics. Certainly, the fact that GSH is transported by the same carriers as and, therefore,
competes with, dicarboxylates, suggests that nutritional status can directly influence GSH
transport ability. Indeed, as described above, some of the earliest studies in liver and kidney
mitochondria found marked differences in transport activity dependent on respiratory state
[44,45,47]. Indeed, the principal function of the DIC is to transport dicarboxylates from the
cytoplasm into the mitochondria, thereby supplying substrates for the citric acid cycle [48,
49]. Interestingly, the DIC also transports thiosulfate into mitochondria, delivering it to
rhodanese and thiosulfate reductase. Although the OGC can also deliver substrates to the
enzymes of the citric acid cycle, it is primarily viewed as functioning in the malate-aspartate
and 2-OG-isocitrate shuttles, nitrogen metabolism, and gluconeogenesis from lactate.

Correlation between mitochondrial GSH status and energetics makes sense because the
mitochondria are the primary sites within the cell for oxygen consumption and, hence, for
endogenous generation of ROS. One would expect, therefore, that higher concentrations of
GSH in the matrix would be advantageous in rapidly respiring mitochondria to minimize the
potential release of toxic ROS generated during electron transport. Although some
investigation of the relationship between rates of GSH transport and respiratory state has been
done, the hypothesis or expectation stated above has not been tested directly.

There is, therefore, some expectation that ROS or RNS may directly affect activity of GSH
carriers by interaction with key Cys residues. For the DIC, while the five Cys residues do not
seem to be essential for activity (as replacement with Ser did not affect activity), they may
serve as regulatory sites or sensors of oxidative and/or nitrosative stress. Our hypothesis is that
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relatively low levels of ROS or RNS can up-regulate expression of one or more of the
mitochondrial GSH carriers. Higher levels of these species, however, may lead to in activation
of the carriers. The relatively facile autoxidation and inactivation of the DIC upon purification
and isolation [58,60] supports this notion. For the OGC, its three Cys residues appear to
function much differently than those of the DIC. Whereas C221 and C224 are important for
intramolecular disulfide bond formation, C184 may function similarly to the Cys residues of
the DIC as a redox sensor, although the relative stability of the purified OGC to autoxidation
and inactivation could be interpreted as arguing against this hypothesis. Additional studies are
needed to directly assess the influence of ROS and RNS on GSH carrier expression and
function.

4. Mitochondrial GSH status and disease or pathological states
An increasing number of toxic or pathological states are being recognized for being associated
with marked depletion and/or oxidation of the mitochondrial GSH pool. These observations
highlight the importance of this pool. Additionally, our increasing knowledge about the carriers
that are responsible for GSH transport into mitochondria provides us with therapeutic targets.
For example, hydrogen peroxide generation in liver mitochondria, which leads to oxidative
injury, is stimulated only when mitochondrial GSH is depleted below a critical level of
approximately 40% of normal [74,75]. Chronic ethanol ingestion and alcoholic liver disease
are associated with marked decreases in liver mitochondrial GSH content [76–81]. One
consequence of this ethanol-induced decrease is an increase in susceptibility to certain
toxicants, such as acetaminophen [82,83], and to toxic cytokines such as TNFα [84–86].
Cirrhosis and other forms of biliary obstruction are also characterized by mitochondrial
dysfunction and depletion of the matrix GSH pool [87,88]. Type II diabetes has been reported
to be associated with mitochondrial oxidative stress and a depleted and/or oxidized state of
mitochondrial GSH in rat heart, brain, and kidney [89–91].

As noted above, Kaplowitz and colleagues [62] provided direct evidence that the altered state
of mitochondrial GSH in alcoholic liver disease is due, at least in part, to decreased expression
and activity of the OGC. This was the first evidence of this type for any disease or pathological
state that is characterized by mitochondrial damage or oxidative stress. The specific
involvement of defects in or decreased expression of GSH carriers in other diseases has not
been established. As discussed above, Fernandez-Checa and Kaplowitz [63] recently reviewed
the role of alterations in hepatic mitochondrial GSH in various pathological and toxic states.

5. Manipulation of mitochondrial GSH
Numerous approaches can and have been used to alter concentrations of GSH in cells. For
therapeutic objectives, an increase in either GSH content or GSH/GSSG redox state would
typically be desired. Due to feedback inhibition of γ-glutamylcysteine synthetase (GCS) by
GSH, however, achievable levels of GSH inside cells have an upper limit. The most common
approach to increasing cellular GSH concentrations to bypass this limit is to incubate cells with
either GSH, GSH ethyl ester, or amino acid precursors, depending on whether or not intact
GSH is transported across the plasma membrane [56]. Another approach would involve
induction or overexpression of GCS. If one wants to specifically increase GSH content in a
particular subcellular organelle (e.g., the mitochondria), then simply increasing GCS activity
or expression or providing the extracellular medium with GSH or GSH precursors will not be
very effective. Rather, because the mitochondrial GSH pool appears to be largely, if not
entirely, determined by transport from the cytoplasm, the most logical method is to alter
expression of the DIC or OGC to effect the desired changes in mitochondrial GSH status
[71,92].
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In our initial study [92], we transiently transfected NRK-52E cells, an immortalized cell line
derived from rat proximal tubules that exhibits many properties that are favorable for study of
mitochondrial GSH transport [93], with the cDNA for the rat DIC. Besides exhibiting many
transport and metabolic functions that are normally found in the proximal tubular cell,
NRK-52E cells exhibit relatively high activities of GSH synthesis and other GSH-dependent
metabolic reactions with the exception of GGT. As is typical with immortalized epithelial cell
lines, the brush-border membrane is largely lost so that activities of enzymes normally found
there will be low. For our purposes, this is an advantage as it largely removes the possibly
confounding effect of degradation during measurement of transport.

Three clones that transiently overexpressed the DIC exhibited 3- to 11-fold increases (mean =
5.5-fold) in rates of GSH uptake into mitochondria (Fig. 5A). Similarly, NRK-52E cells that
stably expressed the OGC exhibited 6.1-fold increases in mitochondrial GSH uptake as
compared to the wild-type cells. Mutation of the two Cys residues of the OGC involved in an
intramolecular disulfide bond to Ser (OGC-C221,224S) resulted in a modified carrier protein
that exhibited a marked reduction in GSH transport so that mitochondrial accumulation of GSH
in these cells was actually slightly less than that in non-transfected, wild-type cells.

To investigate the toxicological consequences of altering mitochondrial GSH transport
capability, we incubated the different populations of NRK-52E cells with either of two well-
characterized mitochondrial toxicants, tert-butyl hydroperoxide (tBH) or S-(1,2-
dichlorovinyl)-L-cysteine (DCVC), and determined the fraction of cells undergoing apoptosis
(Fig. 5B). Dramatic differences were observed in the sensitivity of the different cell populations
to the two agents, with the cells overexpressing either the DIC or OGC exhibiting resistance
to cell injury. In contrast, cells overexpressing the double-cysteine mutant of the OGC exhibited
similar sensitivity to tBH or DCVC as the wild-type cells. These results support the use of
approaches to enhance mitochondrial GSH to protect cells from oxidants and other cytotoxic
chemicals. The absence of protection with cells overexpressing the double-cysteine mutant of
the OGC suggests that a threshold level of mitochondrial GSH exists for optimal mitochondrial
function and resistance to chemically induced toxicity.

6. Summary and conclusions
Studies using a variety of experimental models, including isolated mitochondria, purified and
reconstituted carrier proteins, bacterial-expressed and reconstituted carrier proteins, and cell
lines overexpressing specific carrier cDNAs, have established that transport of GSH from the
cytoplasm into mitochondria in rat kidney proximal tubule is primarily mediated by the DIC
and OGC. Some tissue-specific differences have been identified, so that additional carriers
may be more important in some tissues. Genetic manipulation of carrier activity and expression
has been demonstrated to be an effective means of producing severalfold increases in
mitochondrial contents of GSH, thereby protecting cells from oxidants and other mitochondrial
toxicants. The existence of several diseases that are characterized by oxidation or depletion of
the mitochondrial GSH pool in specific tissues illustrates the potential human health
significance of approaches that enhance mitochondrial GSH transport.
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Fig. 1.
Structure of GSH.
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Fig. 2.
Reactions by which GSH reacts with NO to form GSNO. GSH, as the thiolate, reacts with NO
in the presence of O2 and forms GSNO. GSNO can release NO (function of GSNO as an NO
donor) or it may react in the presence of the thiolate to form a species that can glutathionylate
protein sulfhydryl groups. SOD, superoxide dismutase. Adapted from [43].
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Fig. 3.
NO formation from GSNO. GSNO acts as an NO donor in two reactions, the first of which is
mediated by a flavoprotein containing FMN. The HNO generated from the first reaction can
react with another molecule of GSNO to form an intermediate that decomposes to GSH and
NO.

Lash Page 19

Chem Biol Interact. Author manuscript; available in PMC 2006 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Mitochondrial transport of GSH. Generalized summary scheme, simplified from [56],
illustrating the basic function of the DIC and OGC in GSH transport and their relationships
with the citric acid and GSH redox cycles.
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Fig. 5.
Genetic modulation of mitochondrial GSH transport in NRK-52E cells and susceptibility to
chemically induced apoptosis. The cDNA for the DIC was transiently overexpressed in
NRK-52E cells (NRK-DIC) and the cDNA for either the OGC or a double-cysteine mutant of
the OGC (NRK-OGC or NRK-OGC-M, respectively) was stably overexpressed in NRK-52E
cells. A. Uptake rates for GSH into mitochondria from different genetically modified NRK-52E
cell populations. Mitochondria from each cell population were incubated with [3H]-GSH (final
concentration = 5 mM). Data are expressed as uptake rates and are means ± SEM of
measurements from 3–5 separate experiments. B. Fraction of apoptotic cells. Each cell
population was incubated for 4 hr with either medium (= Control), 10 μM tert-butyl
hydroperoxide (tBH), or 50 μM S-(1,2-dichlorovinyl)-L-cysteine (DCVC). The fraction of
cells undergoing apoptosis was estimated by propidium iodide staining, flow cytometry and
FACS analysis. Results are means ± SEM of 4–5 separate experiments. These data were derived
from studies originally presented in refs. 71 and 92, and were combined to illustrate toxicologic
effects of genetic manipulation of mitochondrial GSH carriers.

Lash Page 21

Chem Biol Interact. Author manuscript; available in PMC 2006 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lash Page 22

Table 1
Mitochondrial anion transporters

Carrier Function Charge Transfer Inhibitors

Adenine nucleotide translocase
(AAC1–3; Slc25a4–6)

ADP3− in, ATP4− out Electrogenic Atractyloside, Carboxyatractyloside
Bongkrekic acid

Phosphate (PiC; Slc25a3) H2PO4
− in, OH− out Electroneutral SH-reagents

Dicarboxylate (DIC; Slc25a10) Malate2− in, HPO4
2− out Electroneutral Butylmalonate

2-Oxoglutarate (OGC;
Slc25a11)

2-Oxoglutarate2− in, malate2−

out
Electroneutral Phenylsuccinate

Glutamate–Aspartate Glutamate− + H+ in, Electrogenic —
(AGC1/2; Slc25a12/13) Aspartate− out
Glutamate–Hydroxide (GC1/2;
Slc25a22/18)

Glutamate− in, OH− out Electroneutral —

Tricarboxylate / Citrate (CIC;
Slc25a1)

Citrate3− + H+ in, malate2− out Electroneutral 1,2,3-Benzenetricarboxylate, triethyl citrate

Monocarboxylate(MCC) Pyruvate− in, OH− out Electroneutral Cyanohydroxycinnamate
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