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Abstract

The development and progression of microvascular complications have been extensively
documented in a cohort of type 1 diabetic subjects enrolled in the Diabetes Control and Complications
Trial (DCCT) and followed in the Epidemiology of Diabetes Interventions and Complications
(EDIC) study. We describe the association of genetic variation in the ACE gene in 1,365 DCCT/
EDIC subjects with incident persistent microalouminuria (n = 312) and severe nephropathy (n = 115).
We studied three markers (rs1800764, insertion/deletion, and rs9896208) in the ACE gene that
allowed us to capture genetic variation in the common haplotypes occurring at frequencies of >5%
in Caucasians. Compared with the more frequent genotype (D/1) for the insertion/deletion
polymorphism, in multivariate models, the I/l genotype conferred a lower risk for persistent
microalbuminuria (hazard ratio [HR] 0.62 [95% CI 0.43-0.89], P = 0.009) and severe nephropathy
(0.56 [0.32-0.96], P = 0.033). Variation at the two other markers, rs1800764 and rs9896208, were
also associated with these renal outcomes. In addition, homozygosity for the common haplotype TIC
(which corresponded to the T, insertion, and C alleles at the three markers, rs1800764, insertion/
deletion, and rs9896208, respectively) versus the CDT/TIC haplotype pair was associated with lower
risk for development of persistent microalbuminuria (HR 0.49 [0.32-0.75], P = 0.0009) and severe
nephropathy (0.41 [0.22-0.78], P = 0.006). Our findings in the DCCT/EDIC cohort provide strong
evidence that genetic variation at the ACE gene is associated with the development of nephropathy
in patients with type 1 diabetes.
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Microvascular and neurologic complications of type 1 diabetes result in significant morbidity
and mortality. The Diabetes Control and Complications Trial (DCCT) demonstrated that
intensive therapy aimed at reducing glycemic exposure reduced the development and
progression of long-term complications by as much as 76% compared with conventional
therapy (1). In addition to the importance of intensive diabetes management, it is clear that
there are other factors, including genetic ones, that contribute to the development of these
complications. Epidemiologic studies (2,3) conducted before the use of intensive therapy
suggested that ~30% of patients with type 1 diabetes developed diabetic nephropathy after 20
years of diabetes; however, modern diabetes care has markedly reduced the incidence of
diabetic nephropathy to 13-16% (4-6) after 20 years’ diabetes duration. A number of studies
have documented familial clustering of diabetic nephropathy (7-9). In the DCCT, there was
an increased risk of microalbuminuria (albumin excretion rate [AER] >28 pg/min) in diabetic
relatives of microalbuminuria-positive versus -negative DCCT subjects in the secondary
intervention cohort (odds ratio 5.4 [95% CI 2.2-13.7], P < 0.001) after adjustment for
covariates (10). Given the evidence for familial clustering of diabetic nephropathy, we have
begun a systematic study of candidate genes associated with the development of nephropathy
in the DCCT subjects.

ACE plays animportant role in the renin-angiotensin-aldosterone pathway and has been studied
extensively as a putative mediator of diabetic nephropathy. This enzyme cleaves the COOH-
terminal dipeptide of angiotensin | to produce angiotensin Il and inactivates bradykinin by
removal of COOH-terminal peptides. Increased ACE activity increases intraglomerular
pressure (11) and can lead to glomerulosclerosis (12). Plasma ACE activity, a highly heritable
trait, is encoded by one of the three known isozymes transcribed from the ACE gene, which is
composed of 26 exons located on chromosome 17923 (13). There are many biallelic single
nucleotide polymorphisms (SNPs) within and flanking this gene (14) that are associated with
ACE activity; however, the exact etiologic variant(s) is/are as yet undetermined, as these
polymorphisms are in strong linkage disequilibrium with each other (15). The most extensively
studied polymorphism is the insertion/deletion of a 287-bp Alu repeat in intron 16 (16).

Since the initial report of the protective effect of the I/ insertion/deletion genotype in the
development of diabetic nephropathy in type 1 diabetes (17), there have been many other
studies of the association of this polymorphism with elevated urinary excretion of albumin and/
or nephropathy in patients with type 1 and type 2 diabetes. Meta-analyses (18-20) have
suggested that discrepant results among studies may be partially attributed to differences in
study design, diabetes phenotype (type 1 diabetes versus type 2 diabetes), ethnic composition,
methods of quantitation, and estimation of AER (e.g., single measures of AER versus sustained
elevations in AER) and definitions of diabetic nephropathy (microalbuminuria versus
macroalbuminuria).

The DCCT and its long-term follow-up, the Epidemiology of Diabetes Interventions and
Complications (EDIC) study, have measured renal function, alouminuria, and the development
of nephropathy for up to 17 years using standardized methods. We have analyzed the
association of the insertion/deletion polymorphism of the ACE gene with the time to
development of persistent elevation of microalbuminuria and severe nephropathy in 1,365
Caucasian subjects in the DCCT/EDIC study. To capture the genetic variation in the most
common Caucasian haplotypes at the ACE locus occurring at frequencies >5% (15), we also
genotyped two SNPs (http://www.ncbi.nlm.nih.gov/SNP/), rs1800764 and rs9896208,
flanking the insertion/deletion polymorphism in the 5’and 3’ untranslated region and analyzed
the association of variation at these three loci with nephropathy outcomes using Cox
proportional hazards models of complication-free survival. To reduce population
heterogeneity, we restrict the analysis to self-identified “white” subjects only, which represent
96% of the original cohort.
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RESEARCH DESIGN AND METHODS

The DCCT study design (21) is described in the online appendix (available at
http://diabetes.diabetesjournals.org).

Phenotypic characterization of nephropathy

Two nephropathy outcomes, persistent microalbuminuria and severe nephropathy, were
defined using repeated 4-h AER measurements obtained yearly during the DCCT and every
2nd year during EDIC. Persistent microalbuminuria was defined as an AER >20.8 pug/min on
two consecutive assessments. The definition of severe nephropathy is also based on repeated
measures of AER and represents the progression from persistent microalbuminuria to an AER
>208 pg/min or renal replacement therapy (dialysis or transplant). Time to outcome
development or censoring was determined as number of visit years from DCCT baseline up to
and including the 8th year of EDIC follow-up (2001); mean (£SD) follow-up from DCCT entry
was 13.5 £ 2.6 years. Subjects meeting the criteria for persistent microalbuminuria at DCCT
baseline and DCCT year 1 (n = 66) were excluded from subsequent analyses of that outcome.
Due to the DCCT exclusion criteria, no subjects had severe nephropathy at baseline.

Determination of ACE genotypes

Genetic variation at the ACE gene has been extensively studied, and haplotypes have been
determined (15,22). Fifteen haplotypes were identified by measured haplotype analysis in
families, but because of extensive linkage disequilibrium between markers, only four common
haplotypes had frequencies >5% (15). In addition to the insertion/deletion polymorphism, we
genotyped two SNPs that allowed us to capture the four most common haplotypes occurring
with frequency >5% in Caucasian populations. The intermarker distance between the 5" SNP,
rs1800764 (T7715C) (15), and the insertion/deletion is 15.4 kb and between the insertion/
deletion and the 3’ SNP, rs9896208 (T33569C) (15), is 10.4 kb (see online appendix for
genotyping protocol).

Statistical analysis

RESULTS

The primary analysis was to evaluate the association between each of the ACE markers and
the risk of complications, taking into account the DCCT/EDIC study design and potential
confounding factors, including all physiological traits known to be associated with variation
in risk of renal complications. The relative risks associated with different marker genotypes
were estimated by the hazard ratio (HR) in the Cox proportional hazards model, with and
without including explanatory covariates in the model (see online appendix for further
description of analysis).

Examination of the distribution of baseline covariates among genotype groups (Table 1)
revealed a significant association between BMI and two of the ACE variants, as well as a weak
association between triglyceride level and the insertion/deletion genotype. A significant
association (P = 0.03) was also present between use of ACE inhibitors during EDIC and the
genotype at rs1800764 (Table 1). Due to the clinical correlation of the development of
microalbuminuria and the subsequent institution of an ACE inhibitor, we repeated this analysis
after exclusion of the individuals who received an ACE inhibitor after the development of
persistent microalbuminuria. There was no significant association of ACE inhibitor use with
the rs1800764 genotype in subjects with persistent microalbuminuria (P = 0.30) or severe
nephropathy (P = 0.07). There was also no association of non-ACE inhibitor antihypertensive
medications with any of the markers (P = 0.59). As expected, many of these baseline covariates
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were significantly associated with persistent microalbuminuria and severe nephropathy (online
appendix Tables Al and A2).

During follow-up between DCCT entry and EDIC year 8, 312 subjects developed persistent
microalbuminuria (of which 66 had events at DCCT baseline and were excluded from
analyses). Of these individuals, 115 also developed a more severe renal phenotype, including
clinical grade proteinuria with an AER >208 pg/min (n = 114) and/or a renal end point (n =
12 patients with either dialysis or transplant).

The quality characteristics of the genotype data were assessed by replicate Centre d’Etude du
Polymorphisme Humain (CEPH) control samples, and of 498 replicate genotypes at the three
markers, only two genotyping errors occurred corresponding to an observed genotyping error
rate of 0.4%. The minor allele frequencies for rs1800764, insertion/deletion, and rs9896208
were 0.45, 0.47, and 0.37, respectively. No significant deviations from Hardy-Weinberg
equilibrium were observed.

Proportional hazards analysis of the ACE polymorphisms adjusted for DCCT year of entry,
cohort, and treatment strata indicate that genotype variation at each of the markers was
significantly associated with the risk of developing persistent microalbuminuria (Table 2).
Specifically, as depicted in Fig. 1, individuals with either the T/T, I/l, or C/C genotypes at
rs1800764, insertion/deletion, and rs9896208, respectively, had a lower risk of progression to
persistent microalbuminuria during a maximum of 17 years of follow-up from DCCT baseline.
Individuals with the C/C genotype at rs9896208 had a significantly lower risk of development
of persistent microalbuminuria (HR 0.70 [95% CI 0.53-0.93], P = 0.015) (Fig. 1 and Table 2)
and severe nephropathy (0.60 [0.39 — 0.92], P = 0.020) (online appendix Fig. Al and Table
A2). Genotypes at rs1800764 and insertion/deletion, however, were not significantly (P > 0.05)
associated with severe nephropathy in analyses that did not take any of the DCCT baseline
physiological trait variables into account (Table 2).

Three-locus haplotypes were estimated using a Bayesian reconstruction algorithm
implemented in the PHASE (version 2.1) software (see online appendix for haplotype
construction). In the DCCT/EDIC cohort, 92% of chromosomes had one of the four common
haplotypes previously reported. In univariate analysis, individuals homozygous for the TIC
haplotype (which corresponded to the T, insertion, and C alleles at the three markers,
rs1800764, insertion/deletion, and rs9896208, respectively) had a lower risk of persistent
microalbuminuria and severe nephropathy when compared with individuals with the most
common CDT/TIC haplotype pair (Table 2).

When we adjusted for the additional covariates (Table 3 legend), the association of each of the
three ACE variants with the development of persistent microalbuminuria remained significant
(Table 3). Values of R? indicating the proportion of explained variability in survival times to
persistent microalbuminuria were calculated as 0.8, 0.6, and 0.8% for rs1800764, insertion/
deletion, and rs9896208 markers, respectively. For severe nephropathy, adjustment for
covariates in the multivariate model strengthened the genotype associations (Table 3). At
rs1800764, individuals with the T/T genotype had a lower risk than C/T heterozygotes.
Individuals with the I/l genotype at the insertion/deletion also had lower risk for severe
nephropathy than the D/I heterozygotes, and similarly at rs9896208, individuals with the C/C
genotype had a lower risk than those with the C/T genotype. As measured by the R? statistic,
genotypes at rs1800764, insertion/deletion, and rs9896208 accounted for 0.4, 0.4, and 0.6%,
respectively, of explained variability in risk for severe nephropathy.

In multivariate proportional hazards analysis, individuals homozygous for the TIC haplotype
compared with individuals with CDT/TIC had a HR of 0.49 (95% CI 0.32-0.75, P = 0.0009)
and 0.41 (0.22-0.78, P = 0.006) for development of persistent microalbuminuria and severe

Diabetes. Author manuscript; available in PMC 2006 October 24.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Boright et al.

Page 5

nephropathy, respectively (Table 3). These three marker haplotypes explained 1.2% of
variability in risk for persistent microalbuminuria and 0.8% for severe nephropathy. It appears
that homozygosity for the C allele at the last marker, rs9896208, alone does not confer the
substantially lower risk associated with the TIC/TIC haplotype, as the haplotype pair CDC/
TIC, which is also homozygous for the C allele at rs9896208, is not distinguishable from CDT/
TIC in these models (P = 0.09). The significantly lower risk of the TIC haplotype therefore
appears to reside primarily in the homozygosity of the T allele and the insertion allele of
rs1800764 and insertion/deletion or other unmeasured variation on that haplotype.

DISCUSSION

Given the previous contradictory or weakly positive cross-sectional studies of the ACE gene
polymorphisms, we examined their role in the development of microalbumin excretion and
severe nephropathy in the DCCT/EDIC cohort. Because of the extensive linkage
disequilibrium within this genomic region, there are relatively few common haplotypes in
Caucasians. Using only the insertion/deletion and two SNPs, we are able to capture the genetic
variation that is present in the four most common haplotypes occurring at frequencies >5% in
Caucasian subjects. This approach is superior to measurement of variation at only a single
marker locus (such as the insertion/deletion, on which many of the previous cross-sectional
studies are solely based) because it captures the common variation spanning ~25 kb of genomic
sequence encompassing the ACE gene. Using this approach, we are less likely to miss an
association between polymorphic variation at a gene and nephropathy outcomes if it exists. At
the same time, we are spared the task of genotyping all polymorphic variants in each haplotype
to capture this variation.

When the ACE polymorphisms were examined against our nephropathy outcomes during a
period of up to 17 years of observation, we determined that subjects with certain ACE
genotypes had a significantly lower risk in progression to persistent microalbuminuria as well
as severe nephropathy, which included subjects with AER >208 pug/min, dialysis, or transplant.
The effect of the ACE genotypes persisted even when controlling in multivariate models for
known covariates that are associated with microalbumin excretion in the DCCT/EDIC cohort,
which specifically included sex, age at diagnosis, diabetes duration, DCCT baseline BMI, mean
blood pressure, triglycerides, total cholesterol, HDL cholesterol, time-dependent updated
HbA 1. weighted mean, cohort, and treatment.

A major quantitative trait loci for circulating ACE activity lies within a 16-kb region between
intron 5 and downstream of exon 26 of the ACE gene (15). We speculate that genetic variation
at the markers that we have analyzed, or at other loci in strong linkage disequilibrium with
these markers, affects ACE enzyme activity, which in turn contributes to the development of
diabetic nephropathy. Supporting this hypothesis are data from studies of transgenic diabetic
mice engineered to have three copies of the Ace gene with resultant ACE enzyme activity 153%
relative to two copy diabetic mice (23). The three copy mice had increased blood pressure and
overt proteinuria compared with the two copy mice after 12 weeks of streptozotocin-induced
diabetes, supporting the hypothesis that a genetic increase in ACE activity was sufficient to
accelerate diabetic nephropathy in animal models (23).

The current study provides more definitive support for the role of ACE polymorphisms in
diabetic nephropathy than the many previous cross-sectional studies (18,20). Based on our
multivariate models adjusted for covariate effects, the three-marker ACE haplotypes explain
0.8% of variability in persistent microalbuminuria and 0.5% of variability in severe
nephropathy. The previous studies may therefore lack statistical power to detect small effects
of the ACE insertion/deletion polymorphism on renal outcomes. The pooled odds ratios for
elevated urinary albumin excretion for 1/1 versus I/D and D/D genotypes in a meta-analysis
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(including different ethnic groups) in type 1 diabetes was 0.72 (95% CI1 0.51-1.01) with a
borderline significant P value of 0.06 (20). Three type 1 diabetes studies (17,24,25) in that
meta-analysis reported odds ratios with 95% Cls excluding unity that indicated a protective
effect of the I/l genotype on nephropathy.

The DCCT clinical trial was not initially designed as a genetic study, and to guard against
population stratification, a potential source of bias, analyses were limited to subjects self-
reported as “white.” In addition, the modest number of severe renal end points limits our power
to detect small genetic effects. Despite this, there are many strengths of this study. The DCCT/
EDIC cohort represents one of the largest collections of genetic and clinical information on
subjects with type 1 diabetes. Biochemical measures were performed in one central laboratory,
and the cohort is phenotypically well characterized, with longitudinal prospective clinical data
on complication status for up to 17 years. The attrition from the EDIC study has been very low,
and clinical data continues to be acquired on >90% of those DCCT participants who took part
in EDIC. Finally, our genotyping strategy is superior to the many previous cross-sectional
studies that only genotyped one polymorphic variant (i.e., insertion/deletion) and subsequently
were unable to capture the common variation spanning the entire ACE gene.

Our findings in the DCCT/EDIC cohort therefore offer definitive evidence that in Caucasians,
genetic variation at the ACE gene is associated not only with the onset of microalbuminuria
but also with severe diabetic nephropathy in subjects with type 1 diabetes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
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Cumulative incidence of persistent microalbuminuria according to ACE genotype. The time
was calculated from DCCT baseline to the first consecutive timed AER collection >20.8 pg/

min in the DCCT or EDIC follow-up periods in individuals genotyped for three ACE

polymorphisms: rs1800764, insertion/deletion, and rs9896208. For univariate analysis, see

Table 2.
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