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This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological

parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR),

principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks

(ANN). The pathway of mammalian gluconeogenesis was analyzed using [U)13C]glucose as tracer. A set of data was simulated by

randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The

isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent

variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict

the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior,

capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the

ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the

addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most

influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of

isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the

underlying physiology is complex or unknown.
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1. Introduction

Complex interactions of genes, proteins and metab-
olites underlie physiological regulation. A major chal-
lenge for physiologists today is to develop practical
models reflecting regulatory relationships among system
variables. The term systems variables refers to the large
sets of data that are now routinely generated in the
course of a single experiment. For example, a single
microarray chip generates thousands of transcription
measurements, while a two dimensional gel produces
thousands of bits of proteomic information. With regard
to metabolism, the emerging field of metabolomics will
generate systems variables in the form of the concen-
trations of large number of metabolites (Raamsdonk
et al., 2001; German et al., 2002). Analyzing these large
volumes of data is becoming the main challenge in
generating new knowledge from high throughput
experiments. There is a clear need for computational
methods that can integrate large sets of physiological
data into a structured picture. The goal of these models
will be to capture the complex relationships that are at
the heart of the functioning of living cells and organisms
with limited a priori knowledge of the structure of these
interactions.

Recently, several data mining algorithms based on
projection methods have been successfully applied to the
analysis of large amounts of microarray data. Gene
clustering, identification of discriminatory genes, and
determination of characteristic gene expression patterns
are examples of such applications (Misra et al., 2002;
Stephanopoulos et al., 2002). The principal component
analysis (PCA) projection method is of particular
interest as an unsupervised method that can be applied
to reveal the true dimensionality of data, identify
redundancies and conveniently represent data in a
reduced dimensional space. An introduction to PCA for
the physiological oriented researcher has been provided
by Benigni and Giuliani (Benigni and Giuliani, 1994).
On the other hand, regression analysis is the major tool
for obtaining models from measured data. Combination
of PCA and regression modeling yields predictive
models in lower dimensions that capture aspects of the
physiology of the system. In this paper we critically
evaluate the potential use of three linear regression
modeling methods, multiple linear regression (MLR),
principal component regression (PCR) and partial least
squares regression (PLS), and one non-linear regression
model based on artificial neural networks (ANN), for
the analysis of data derived from a system with complex
underlying structures. Currently PCR and PLS models
are increasingly used in medicine and industry for the
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determination of concentrations of chemical compounds
from complex mixtures based on near-infrared spec-
troscopy data (Irudayaraj and Tewari, 2003). For
example, a PLS model has been applied to estimate the
concentration of urea in dialysate samples from he-
modialysis patients utilizing the near-infrared spectral
data of the dialysate (Eddy et al., 2003). Neural network
models have been successfully trained to perform com-
plex functions in various fields of application including
pattern recognition, speech and image analysis, classifi-
cation, and control (Bishop, 1996; Haykin, 1998). For
example, an ANN was used for prediction of the che-
motherapeutic response of human cancer cells from
NMR spectroscopy data (El-Deredy et al., 1997). ANN
was also recently applied to solve an inverse metabolic
problem, that is, to determine kinetic parameters in
metabolic models with known structures given steady-
state metabolite levels (Mendes and Kell, 1996).

Many uses of multivariate statistical tools have
recently appeared, especially for the analysis of micro-
array data. While these studies are often provocative,
they rarely include an objective mechanism to determine
how well the model works. Thus, it is difficult to
determine if a specific multivariate technique is opti-
mally designed to discover quantitative relationships
between gene expression levels and a phenotype such as
insulin resistance because we lack detailed knowledge of
the quantitative relationship between gene expression
and physiological phenotypes. We cannot create a
realistic test case for this complex relationship. In con-
trast, the pathway of mammalian glucose metabolism is
much better understood. Metabolic simulations can
provide precise data for isotopic labeling of intermedi-
ates and for glucose production. This data can serve as a
test case. Here, we present the first use of multivariate
regression models in mammalian physiology to estimate
fluxes from 13C labeling patterns of metabolites and to
identify relationships between the labeling patterns of
key metabolites and fluxes. We chose a familiar meta-
bolic system, mammalian gluconeogenesis as assessed by
constant infusion of [U)13C]glucose. To this end, we
first created a metabolic simulation of the gluconeogenic
pathway (comprising of key intra-hepatic metabolites
and fluxes) to generate data in the form of isotopic
metabolite labeling patterns and metabolic fluxes for
this system. We then trained various regression models
on this data to allow the model to develop quantitative
relationships between mass isotopomers and metabolic
fluxes. We evaluated the trained regression models for
their ability to predict fluxes using new data not part of
the training set. The accuracy of predictions was eval-
uated by comparing the fluxes predicted by the regres-
sion model with those from the metabolic simulation.
We also evaluated the sensitivity of model predictions to
measurement errors and to noise. Finally, we use this
example to demonstrate how physiological insight is
obtained from the analysis of the relative values of

model parameters. The application of multivariate sta-
tistics to a metabolic network of isotopic fluxes dem-
onstrated here serves as a model for the broader
application of these techniques in the emerging fields of
metabolomics and systems biology.

2. Methods

2.1. Notation

We identify mass isotopomers as M0, M1, etc., where
the numerical subscript denotes the mass increase over
the non-enriched molecule. In keeping with previous
conventions, we represent mass isotopomers of glucose
as Mi and mass isotopomers of lactate as mi.

2.2. Metabolic system

As a familiar metabolic system for this analysis we
chose mammalian gluconeogenesis at metabolic and
isotopic steady state evaluated by constant infusion of
[U)13C]glucose (figure 1). The infusion of [U)13C]
glucose under gluconeogenic conditions leads to recy-
cling of the tracer to plasma glucose that generates a
distinct metabolite labeling pattern that can be detected
by GC/MS. While the infused glucose is comprised of the
fully labeled, M6 isotopomer, the isotope is diluted in the
pathway, and the process of gluconeogenesis produces
newly synthesized glucose that is labeled in one of the two
triose moieties. Thus, newly synthesized glucose is com-
prised of glucose isotopomers containing zero to three
enriched atoms, M0 through M3. The glucose to glucose
pathway diagramed in figure 1 represents an idealized
case that does not include all relevant fluxes in vivo.
Among the missing fluxes are the contributions to
gluconeogenesis of glycerol and of amino acids not
equilibrated with plasma lactate. Indeed, the failure to

Figure 1. Schematic representation of mammalian glucose metabo-

lism evaluated by constant [U)13C]glucose infusion. Abbreviations of

metabolites: G6P, glucose-6-phosphate; Pyr, pyruvate; OAC, oxalo-

acetate; Fum, fumarate; AcCoA, acetyl coenzyme A; PEP, phospho-

enolpyruvate; TP, triose phosphates.
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consider such fluxes has led Landau and colleagues to
conclude that the [U)13C]glucose method leads to
underestimates of gluconeogenesis in vivo (Landau et al.,
1998). Despite these limitations we utilized the
[U)13C]glucose protocol to explore the use of multivar-
iate regression models in the analysis of isotopic flux data
using pathways familiar to metabolic researchers. In this
idealized model, the label distribution of all metabolites
in the system is strongly dependent on the specific values
of fluxes in the metabolic system. Different flux distri-
butions result in significant tracer redistribution and
yield different metabolite labeling patterns. We have
constructed a mathematical model that describes the
relationship between metabolite labeling patterns and
fluxes (see Appendix A). This model allows us to simulate
the labeling patterns of all metabolites in the network for
any set of steady state fluxes. We quantify the labeling
of metabolites in the pathway in terms of fractional
abundances of isotopomers, where the sum of all iso-
topomers of a specific metabolite is 1. Under isotopic
steady state condition, isotopomer balances describe
labeling distribution in metabolites as a function of
fluxes. Equation (1) illustrates the type of relationship
that can be written for a particular isotopomer of plasma
glucose:

vinfusion � ½U-13C�Glucð000000Þ þ vHGO �G6Pð000000Þ

¼ ðvmuscle þ vbrainÞ �Glucð000000Þ: ð1Þ

In equation (1), [U)13C]Gluc(000000) refers to the
fractional abundance of one particular positional iso-
topomer of infused glucose, in this case the isotopomer
with no enriched carbon atoms. In general, 2N of such
equations are constructed for an N-carbon atom
metabolite, one equation for each positional isotopomer
(i.e. each possible labeling pattern of the carbon atoms
of the metabolite). For example, there are 64 (=26)
model equations for plasma glucose isotopomers. Our
metabolic simulation consists of the complete set of
isotopomer balance equations for all metabolites in the
system. Isotopomer mapping matrices were used to
create a model that properly considers all isotopomer
conversions in the system (Zupke and Stephanopoulos,
1994; Schmidt et al., 1997). These models are non-linear
because the full set of equations contains product terms
of fluxes with isotopomers and product terms of iso-
topomers with isotopomers due to linear and conden-
sation reactions in the system. Recently, an elegant
solution algorithm was introduced by Wiechert et al.
(Wiechert et al., 1999) that greatly facilitates the deri-
vation of the unique solution for this non-linear prob-
lem. For a given set of fluxes, the non-linear model was
solved using Wiechert’s approach to yield the positional
isotopomer fractions for all compounds. Mass isoto-
pomer fractional abundances were then obtained by a
linear transformation from the positional isotopomer

fractions. To simplify calculations, the model assumes
that all data have been corrected for natural isotope
abundances.

2.3. Data generation

The metabolic system in figure 1 contains 9 inde-
pendent fluxes and a total of 29 independent mass iso-
topomer fractional abundances (tables 1, 2). We
simulated 2500 random sets of fluxes that satisfy the
steady state condition. For each set of fluxes the isoto-
pomer balances were then solved to yield the corre-
sponding metabolite labeling patterns from which we
generated the corresponding 2500 sets of GC/MS data
of mass isotopomer abundances. The simulated data
was divided into a training set for the calibration of
regression models (1000 simulations), a validation set to
check the calibration (500 simulations), and a test set to
determine the prediction accuracy of the models (1000
simulations). Table 1 summarizes the ranges of flux
values that were used to generate the random fluxes. The
TCA flux was arbitrarily set to 1. The other 8 fluxes are
expressed as fluxes relative to the TCA flux. The mass
isotopomer data was corrupted with random noise of a
standard deviation of 0.05 mol% enrichment, reflecting
the detection limit of GC/MS measurements. The sim-
ulated data was collected into matrices X (with isotopic
data in columns) and Y (with fluxes in columns). Each
row in X and Y contains data collected from one
simulation.

Model training can be made more efficient if certain
preprocessing steps are performed on the raw data. In
regression analysis it is customary to normalize the
mean and standard deviation of the training set, espe-
cially if the variables have different (or arbitrary) units
and scales. By transforming variables in this way all
variables are treated equally, thus preventing any bias
towards variables with large numerical values and large
variances. For our analysis all variables were mean-
centered and variance scaled, also known as autoscaling:
the average value for each variable was calculated and
then subtracted from each corresponding variable;
scaling was accomplished by dividing all values for a

Table 1

Range of flux values used for the generation of random fluxes

Flux Range

TCA Cycle 1

Gluconeogenesis 0.4–0.7

Glycogenolysis 0.1–1.7

Pyruvate carboxylase (y) 0.5–2.5

Cori cyclea 0.3–2.0

Label scrambling in muscle due to pentose pathway 0.1–1.0

Label scrambling in liver due to fumarase 1.0–4.0

Tracer infusion rate 0.05–0.3

Plasma lactate dilution 0.7–1.5

aCori cycle refers to flux from plasma glucose to plasma lactate.
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particular variable by the standard deviation for that
variable, so that the variance for each variable is one.

2.4. Regression modeling

The main goal of any regression model is to predict
the dependent (response) variables y from independent
(predictor) variables x. Typically, independent variables
are routine measurements that are easily available and
provide a low resolution description of the state of the
system. Dependent variables, on the other hand, are
usually harder to obtain and have higher information
content. In the example used here, mass isotopomer
fractional abundances are the independent variables that
we might obtain experimentally and fluxes are the
dependent variables with a higher information content
that we want to predict from isotopic data. Regression
analysis consists of two steps. First, a mathematical
model for the behavior of the system is proposed. Next,
optimal values for model parameters are determined
based on training samples. This is the training or cali-
bration step. Note that for the training step both the
independent and dependent variables are required. In
the second step the trained model is used to predict
values of dependent variables, given the values of inde-
pendent variables for one or more new samples. This is
the prediction step. For the prediction step only inde-
pendent variables are required as input.

2.5. Multiple linear regression (MLR)

Suppose we can measure values for m predictor
variables xi (i=1...m) and one response variable y1, then
the simplest model we can propose assuming no prior
knowledge of the structure of the system is a linear (or
first-order) relationship:

y1 ¼ x1 � b1 þ x2 � b2 þ x3 � b3 þ . . .þ xm � bm þ e:

ð2aÞ

In terms of the model used here an example might be:

gluconeogenesis flux¼ðplasma lactate m0Þ �b1
þðplasma lactate m1Þ �b2
þ . . .þðhepatic G6PM6Þ

�bmþ e: ð2bÞ

In equation (2) bi (i=1...m) are the sensitivities or
model parameters, and e is the modeling error or
residual. This equation describes the multilinear depen-
dencies for one sample with one response variable. For k
response variables and n number of samples equation (2)
may be written in the following matrix form:

Y ¼ XBþ E ð3Þ

here, Y is an n � k matrix, X is an n � m matrix, B is an
m � k matrix and E is an n � k matrix. Each row in
matrices X and Y contains data from one particular
sample. In our model system each row of the Y matrix
contains all 8 independent fluxes and each row of
the matrix X contains all 29 isotopomer abundances.
The best regression model is the one that minimizes the
modeling errors in matrix E. We find the best model by
choosing appropriate values for the model variables in
matrix B based on the training data. Note that there are
a total of mÆk model variables that need to be deter-
mined. In our example this is 29Æ8=232. Each sample
provides k relations of the form of equation (2), one
such relation for each response variable yj ( j=1...k).
Therefore, in order to determine all model parameters
we require at least m number of samples for the training
step. If n<m then equation (3) is underdetermined and
infinite number of solutions minimize the residuals in
matrix E. Thus, MLR cannot work when the number of
variables exceeds the number of samples. For n ‡ m we
obtain the following familiar least-squares estimate for
model parameters:

B ¼ ðXTXÞ�1XTY: ð4Þ

Once the optimal values for the model parameters
have been determined we can apply equation (2) to
predict the values of response variables given values for
predictor variables from a new sample. In our system we
would estimate fluxes from isotopomer abundances
using equation (2b). A major concern with the applica-
tion of MLR is the large number of samples required for
the training step. In many cases the number of inde-
pendent variables is much greater than the number of
samples. For example, consider the measurement of a
few thousand transcription levels as predictors. In order
to train the MLR model we would require at least as
many calibration samples which may not be feasible.
Another frequent problem with MLR is that the inverse
of XTX in equation (4) may not exist. This occurs when
two or more variables behave in very similar fashion, a
problem known as collinearity. Reduced space regres-

Table 2

Independent mass isotopomers in the metabolic system.

Metabolite Number of independent

mass isotopomersa

Plasma glucose 6

Plasma lactate 3

Hepatic pyruvate 3

Hepatic oxaloacetate 4

Hepatic fumarate 4

Hepatic phosphoenolpyruvate 3

Hepatic glucose-6-phosphate 6

Total 29

aMass isotopomers values are modeled as fractional abundances. For

each metabolite one isotopomer is not independent but known as 1 –

sum of all other isotopomers.
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sion models provide a practical solution to the above
problems and this leads us to principal component
analysis.

2.6. Principal component regression (PCR)

When measuring m independent variables, we obtain
an m-dimensional description of the state of the system.
However, some variables may be interrelated or in fact
contain exactly the same information. The amount of
redundancy is likely to be large in a sizable data set.
Therefore, an equally satisfactory description of the
data may be possible with fewer dimensions. One par-
ticular data reduction technique called principal com-
ponent analysis (PCA) is used to reveal the true
dimensionality of a data set. PCA defines a new lower-
dimensional space spanned by variables that are linear
combinations of the original variables and account for
as much of the original total variation as possible. The
new variables are called latent variables or principal
components. The PCA projection of matrix X is repre-
sented as follows:

X ¼ TPT þ E: ð5Þ

Here, matrix T (size n � d) is called the scores
matrix and matrix P (size m � d) is called the loadings
matrix, where d is the number of principal compo-
nents. Matrix E is the residuals matrix. PCA is a
stepwise optimization procedure where the successive
principal components are extracted in such a way that
they are uncorrelated with each other and account for
successively smaller amounts of the total variation. It
is possible to extract as many principal components as
there are original variables, however, in most PCA
applications the goal is to account for most of the
total variation with as few principal components as
possible.

The main goal of PCA with regard to regression
analysis is to reduce the dimensionality of matrix X
from m initial variables to a (significantly) smaller
number d. The principal component regression (PCR)
model then considers the linear (or first-order) rela-
tionship between the response variables summarized in
matrix Y and the scores matrix T:

Y¼TBþEðleast-squares solution: B¼ðTTTÞ�1TTYÞ:
ð6Þ

Note the similarity between the MLR model (equa-
tion (3)) and the PCR model (equation (6)). The sig-
nificant difference is the reduced number of model
parameters, which allows reduction of the number of
experiments required for model training. PCR also
solves the collinearity problem by guaranteeing an
invertible (TTT) in equation (6). For new unknown

samples the value for any response variable is predicted
with:

Y ¼ X � P � B: ð7Þ

2.7. Partial least-squares regression (PLS)

PLS is closely related to PCR, with the addition that
now both the independent matrix X and dependent
matrix Y are decomposed into lower dimensional space:

X ¼ TPT þ E; ð8Þ

Y ¼ UQT þ F: ð9Þ

Equations (8) and (9) are called the outer relations.
There is also a linear inner relationship constructed
between the scores matrices U and T. The PLS model is
established as the combined or mixed relation given by:

Y ¼ TBQT þ E: ð10Þ

Thus, equation (10) captures the relationship between
the response and independent variables in the lower
dimensional spaces defined by equations (8) and (9). It
has been suggested that PLS is a good alternative to
PCR that yields more robust model parameters, i.e.
model parameters that do not change very much when
new calibration samples are included in the training set
(Geladi and Kowalski, 1986).

2.8. Optimal number of components

For the construction of reduced space models the
optimal number of principal components (or the opti-
mal dimensionality of the new space) needs to be
determined from available calibration data. Using too
few components results in significant information loss.
On the other hand, since measured data is never noise
free, some components will only describe noise. There-
fore, using too many dimensions will cause overfitting of
data and yield inaccurate predictions as well. A number
of criteria have been proposed for the rational selection
of the optimal number of principal components; a cross-
validation method is the preferred choice for the con-
struction of predictive models. In this approach, each
sample is in turn omitted from the training set and the
model is trained using the remaining n)1 samples. The
trained model is then used to predict the values of the
response variables in the sample that was left out, and
residuals are calculated as the difference between the
actual observed values and the predicted values. The
prediction residual sum of squares (PRESS) is then
calculated as the sum of all squared residuals. This
PRESS value is determined for varying number of
components (i.e. dimensions), as one searches for the
number of components that gives the minimum PRESS
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value. However, the location of the minimum is not
always well defined and models with varying number of
components may yield similar magnitude PRESS values.
In this study, the optimal number of principal compo-
nents was defined as the fewest number of components
yielding a PRESS value within 5% of the minimal
observed PRESS value. Figure 2 gives an example plot
of the PRESS value against the number of components
for the training of a PLS model used in this study. The
optimal number of dimensions in this case was 10.

An alternative method for optimizing the number of
components is to use a separate validation set to check
the calibration. Note that this validation set has to be
independent of the training set; as such, this method
may be less practical when the number of samples is
limited. Since we can generate enough samples in this
study, we applied both methods for optimizing the
number of components and compared the results. Here,
we used 500 independent simulations as the validation
set.

2.9. Artificial neural networks (ANN)

Neural networks are a general method of modeling
non-linear systems. They are composed of simple com-
putational elements (i.e. neurons) operating in parallel.
In short, each neuron produces one output through a
transfer function, typically a sigmoid function, which
takes the weighted sum of the input arguments and a
constant term called the bias (Haykin, 1998). The inputs
and outputs may be to and from external variables, or
other neurons. Multiple neurons are combined into a
layer, and a particular network can contain one or more
(hidden) layers. ANN have been demonstrated to fit any
arbitrary function given enough neurons in the hidden
layers (White, 1992). In this study, we have applied fully
connected feedforward networks with one or more

hidden layers, updated via the backpropagation algo-
rithm. The inputs to the neural network were compo-
nent scores from PCA analysis of matrix X, and the
outputs were fluxes. The optimal number principal
components, i.e. the number of inputs to the neural
network, was determined as described above. In the base
case we considered two network architectures: ANN
with one hidden layer with 20 neurons, and ANN with
two hidden layers with 10 neurons in each layer. For
both topologies the following sigmoidal transfer func-
tion was used in the hidden nodes:

output ¼ tanhðW � inputsþ biasÞ: ð11Þ

Alternatively,we used radial basis functions in the hid-
den layer, as indicated in the text. For the output nodes
we used a linear transfer function, which is recom-
mended to prevent artifacts introduced by sigmoidal
transfer functions in the output layer (Mendes and Kell,
1996). Thus for example, when the number of principle
components was 9, we considered the following two
neural network architectures: ANN with a 9-20-8
topology, i.e. with 9 input nodes, 20 hidden neurons,
and 8 output neurons; and ANN with 9-10-10-8 topol-
ogy (9 inputs, 10 nodes on the first hidden layer, 10
nodes on the second hidden layer, and 8 outputs).
Finally, we also considered ANNs with a single output
node (one ANN for each flux), i.e. 8�ANNs with 9-20-
1, or 9-10-10-1 topology. We used Matlab 6.5 and
Matlab Neural Network Toolbox to train the neural
networks. For the training we used backpropagation
training (Matlab’s trainlm function), and applied an
early stopping technique to prevent overfitting of the
neural network model, which is the default setting in the
Matlab Neural Network Toolbox.

2.10. Calculation methods

The commercially available PLS Toolbox 2.1
(Eigenvector Research Inc.) and Matlab Neural Net-
work Toolbox (Mathworks Inc.) were used for all cal-
culations. The above discussion on linear regression and
reduced space regression modeling was not meant to be
comprehensive. See Dillon and Goldstein (Dillon
and Goldstein, 1984), Geladi and Kowalski (Geladi and
Kowalski, 1986) and several good books (Chatfield
and Collins, 1981; Causton, 1987; Martens and Naes,
1989; Manly, 1994; Tabachnick and Fidell, 2001) for a
more complete treatment of these subjects.

3. Results and discussion

3.1. Model training

The first step in our analysis is the training of the
regression models to correlate fluxes summarized in
matrix Y with isotopic labeling data similarly summa-
rized in matrix X assuming no prior knowledge of the

Figure 2. Determination of the optimal number of principal compo-

nents by the leave-one-out cross-validation method. The optimal

number of principal components is defined as the fewest number of

components yielding a PRESS value within 5% of the minimal ob-

served PRESS value; in this case 10 principal components.
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structural connection between data in the X block and Y
block. We are particularly interested in the influence of
the size of the training set on the accuracy of model
predictions, and the impact of measurement errors on
precision. It is naturally expected that larger training
sets will produce better models. To determine the min-
imal number of samples required to obtain acceptable
predictions from the models we varied the size of the
training data set between 10 and 1000 samples when
performing the training step. Note that training of the
MLR regression model required a minimum of 29
samples since there are 29 mass isotopomers variables in
our model. The PCR, PLS and ANN regression models
did not have this limitation due to the reduced number
of dimensions.

If the underlying model for the relationship between
X and Y is a linear model, then the number of principal
components needed to describe the system equals the
number of degrees of freedom for that system. How-
ever, non-linear models are expected to require extra
dimensions to describe non-linearities. In figure 3, the
optimal number of principal components for the con-
structed PCR, PLS and ANN models is plotted against
the size of the training set. Here, the number of com-
ponents was determined using the leave-one-out
method. We also optimized the number of components
using an independent validation set. Virtually the same
number of components were predicted by both methods
(results not shown); we used the leave-one-out method
for all subsequent examples in this study. The optimal
number of principal components increased with the size
of the training set, but eventually reached a maximum
of 17, 16, and 9 principal components for the PCR, PLS
and ANN models, respectively. The ANN model

typically required fewer components to capture the
same amount of information as the PCR and PLS
models. When comparing different ANN topologies we
did not find significant differences between ANNs with
one or two hidden layers, and ANNs with radial basis
functions. The same number of input components were
predicted. Note that the number of principal compo-
nents constituted a significant reduction from the ori-
ginal 29 mass isotopomer variables. This result indicates
that redundant information is present in mass isoto-
pomer data.

3.2. Model testing

In the testing phase of our analysis, the trained MLR,
PCR, PLS and ANN models were used to predict spe-
cific fluxes given a new set of simulated mass isotopo-
mers as described in the Methods section. Note that this
data was not included in the training stage, but used
only to test the predictive power of models. We calcu-
lated the correlation coefficient R2 as an indicator of the
accuracy of predictions. The R2 value indicates the
fraction of variation that is accounted for by regression.
Figure 4 summarizes the calculated correlation coeffi-
cients as a function of the size of training set for all
regression models. This plot shows a strong influence of
the number of training samples on the prediction accu-
racy. For smaller training sizes the PCR and PLS
models perform better than the ANN (with one hidden
layer) model, and significantly better than the MLR
model. The former two regression models have a R2 of
0.58 for training data of 10 samples, while the ANN and
MLR models required at least 35 and 75 training sam-
ples, respectively, to allow predictions of similar quality.

Figure 3. Optimal number of principal components in the PCR and

PLS models for varying sizes of training data set. Larger training sets

allow more principal components to be included in the model to

capture the finer details of the system. ANN models typically required

fewer principal components than PCR and PLS models.

Figure 4. Observed prediction accuracy of the gluconeogenesis flux as

a function of the number of samples used in training. For small

number of training samples the PCR and PLS models produce the best

predictions; for larger number of training samples ANN yields the best

predictions.
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However, for training data consisting of 50 or more
samples it was the ANN model that produced the best
predictions. For training sizes larger than 200 samples
we found no significant difference in prediction accuracy
between the three linear regression models (MLR, PCR
and PLS). As expected, larger training sets yielded better
predictions, but after a certain point the correlation
coefficient reached a maximum value of 0.95 for the
ANN model, and 0.75 for the linear MLR, PCR and
PLS models, indicating that 95% and 75% of the vari-
ability in the gluconeogenic flux is captured by the
models. The 20% difference is caused by the inherent
limitation of linear models to capture non-linearities.
The maximum correlation coefficients for the other
fluxes in the system varied between 0.59 for the pyruvate
carboxylase flux, and 0.99 for the tracer infusion flux
(Table 3). Thus, the regression models clearly performed
well for some fluxes, but not for all of them. The accu-
racy of prediction was similar for ANNs with one and
two hidden layers. i.e. the additional hidden layer did
not improve predictions. The number of neurons in the
hidden layer could be reduced to 5 without affecting the
quality of predictions, i.e. a 9-5-8 ANN yielded similar
results as 9-20-8 ANN. For the two layer topology the
number of neurons could be reduced to 3 in each hidden
layer, i.e. a 9-3-3-8 ANN yielded similar results as 9-10-
10-8 ANN. ANNs with a single output node, i.e. one
ANN for each flux, performed only slightly better than
one neural network with 8 output nodes (less than 3%
improvement). Furthermore, ANNs with radial basis
functions performed slightly worse than ANNs with
sigmoidal basis functions, for example, the maximum
correlation coefficient for gluconeogenesis flux was 0.93
when radial basis functions were used. In this study,
autoscaling did not improve the results, i.e. the accuracy
of predictions was the same with and without auto-
scaling of the data. This was true for MLR, PCR, PLS
and ANN models.

To analyze the effect of measurement errors on
prediction accuracy, the above analysis was repeated
with data corrupted with random errors with a 10%

coefficient of variation. The prediction accuracy of the
MLR, PCR and PLS models was only slightly reduced
compared to noise-free data. The ANNon the other hand
showed a larger reduction in prediction accuracy. The
correlation coefficient for the predicted gluconeogenesis
flux reached a maximum value of 0.80 for the ANN
model and 0.70 for the MLR, PCR and PLS models,
compared to 0.95 and 0.75, respectively, for noise-free
data. Similar reduction inR2 values were observed for the
other fluxes (results not shown). The relatively larger
reduction in prediction accuracy of ANNs is due to
inherent limitations of estimating fluxes with noisy data.
Even a fully deterministic flux model, i.e. the model that
was used to generate our data, estimated gluconeogenesis
flux with a correlation coefficient of 0.83 for noisy data,
and 1.00 for noise-free data, i.e. perfect predictions
(results not shown). Thus, the R2 value of 0.80 indicates
that the ANN model performed well with noisy data.

In most studies a number of the measured variables
will only describe noise and may not necessarily be rel-
evant as predictor variables. Therefore, we tested the
effect of having noisy irrelevant variables as part of the
training set. To this end, we added 29 randomly gener-
ated variables to the 29 mass isotopomers as predictor
variables in each sample, and repeated the analysis. The
correlation coefficient for the predicted gluconeogenesis
flux was reduced to 0.86 for the ANN model and 0.74
for the MLR, PCR and PLS models. Thus, all models
were robust with respect to noisy data. Finally, we tested
the robustness of results with respect to incomplete data
by randomly leaving out half of the predictor variables
from the data set. No significant differences were found,
which indicates that significant redundancy is present in
the isotopomer data.

3.3. Model interpretation

To obtain physiological insight from these models we
evaluated the relative values of model parameters in the
PLS model. In this study, model parameters are sensi-
tivities of fluxes with respect to isotopomer data (see

Table 3

Correlation coefficients and most sensitive flux predictors based on the PLS model trained with 1000 samples

Flux R2 Most sensitive mass isotopomer predictorsa

Gluconeogenesis 0.75 PEP M3 (0.772), M1 ()0.368); Gluc M3 ()0.721), M1 (0.462), M2 (0.439); OAC M3 (0.454)

Glycogenolysis 0.76 PEP M3 ()0.755); Gluc M3 (0.724), M0 (0.507), M6 ()0.488),
M1 ()0.439), M2 ()0.407); OAC M3 ()0.444)

Pyruvate carboxylase (y) 0.59 Pyr M3 ()1.781), M3 (1.032); PEP M3 (0.955); Gluc M1 (0.858), M3 ()0.652)
Cori cycle 0.69 Gluc M6 ()0.822), M3 (0.771), M0 (0.685); PEP M3 ()0.517)
Labeling scrambling in muscle 0.68 Gluc M3 ()1.500); PEP M3 ()1.279); Lact M1 (0.848)

Labeling scrambling in TCA 0.66 Gluc M3 ()1.135), M2 (0.936); G6P M3 ()0.787), M2 (0.761)

Tracer infusion rate 0.99 Gluc M6 (0.665), M0 ()0.461)
Plasma lactate dilution 0.73 Gluc M6 (1.338), M0 ()0.968); Fum M1 ()0.532); PEP M1 ()0.443); OAC M1 ()0.443)

Values between parentheses are the model sensitivities obtained from the matrix multiplication P�B (see equation (7)).
aMetabolite abbreviations as in figure 1.
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equation (2a)). Sensitivity values for PCR and PLS
models were obtained from the matrix multiplication
P�B (see equation (7)). Here, we compared for each flux
the relative values of these sensitivities. High values
indicate significant correlation between a flux and a
particular mass isotopomers suggesting a structural
connection. Table 3 lists for each flux the mass isotop-
omers with the highest sensitivities obtained from the
PLS model trained on 1000 samples. When this analysis
was conducted including the 29 random variables in
addition to the model-generated variables, the random
variables were consistently lowest in this ranking. This
clearly indicates that the PLS model was able to differ-
entiate between informative variables and irrelevant
data. The rankings in Table 3 generally reflect the
expected importance of various isotopomers in deter-
mining flux. For example, the tracer infusion flux cor-
relates with the M0 and M6 isotopomers of plasma
glucose. It is clear that these isotopomers are directly
affected by infusion of [U)13C]glucose tracer. However,
an interesting point is that the gluconeogenic flux is
mainly determined by hepatic phosphoenolpyruvate
mass isotopomers M1, M3 and plasma glucose mass
isotopomers M1, M2 and M3. A number of algebraic
expressions have been proposed for the estimation of
gluconeogenesis upon constant infusion of [U)13C]
glucose (Tayek and Katz, 1997; Landau et al., 1998;
Kelleher, 1999; Haymond and Sunehag, 2000). In these
studies the gluconeogenic flux is calculated based on
measurements of the accessible isotopomers, plasma
glucose mass isotopomers M1, M2, M3, and M6, and
plasma lactate mass isotopomers m0, m1, m2 and m3.
Our results, indicating that hepatic phosphoenolpyr-
uvate isotopomers are more sensitive predictors of glu-
coneogenesis than plasma lactate isotopomers may
reflect the inherent limitations of gluconeogenic predic-
tions models based on plasma lactate rather than a more
direct intrahepatic precursor, phosphoenolpyruvate.

PLS and other linear models are widely used today
for the analysis of gene expression and other ‘‘omics’’
data. Part of the attraction of these models is the ability
to quantify the relationship between the independent
and dependent variables. In contrast with linear models,
the internal workings of ANN are typically hard to
decipher. One cannot easily ascertain how they produce
their results. Rule extraction in neural networks is a
growing scientific field that deals with the opacity
problem of neural networks by casting network weights
in symbolic terms, and several types of methods have
been proposed to achieve this goal (Ishikawa, 2000;
Saito and Nakano, 2002). In this study, we did not
attempt to extract physiological meaning from the
trained neural networks. The relationship between iso-
topomers and fluxes, like many relationships in regula-

tory biology, is highly non-linear. The superior
performance of ANN (figure 4) suggests that non-linear
modeling approaches merit more attention as multi-
variate modeling efforts are developed for physiological
processes.

The use of regression models described here repre-
sents a novel application of stable isotope labeling data.
Our analysis with simulated data indicates that stable
isotope tracer data may provide a rich resource for the
estimation of physiologically relevant metabolic depen-
dent variables. However, a regression model is not
required to estimate a parameter such as gluconeogen-
esis, which can be defined by a mathematical relation-
ship among the variables. Looking to the future we
envision the application isotopic flux data regression
models in situations where no known algebraic rela-
tionship exists between isotopic labeling data (X vari-
ables) and physiologically relevant Y variables. Consider
Y variables such as insulin resistance, ketosis or hyper-
lipidemia. These variables are clearly dependent on
metabolic fluxes but they are currently estimated by
techniques not involving isotopes, for example, the
glucose clamp for insulin resistance. If isotopic data is
collected simultaneously with the standard measurement
of these physiologically important dependent variables,
a regression models could be constructed as described
here. This regression model could be used to enhance
our understanding of metabolic physiology. For exam-
ple one could evaluate the true dimensionality of the
relationship between isotopic labeling and the Y vari-
ables by extracting principal components as shown in
figure 3. Additionally, by determining the sensitivities of
the isotopomers to the Y variables one could find those
isotopomers that are highly correlated to the physio-
logical parameter as demonstrated in Table 3. These
analyses may lead to new insights about the fluxes
underlying the physiology. To move in this direction will
require a sizable amount of data (100 data sets or more)
as shown in figure 4. Just as databases of gene expres-
sion profiles are valued today because they may be
mined with multivariate techniques, perhaps we are fast
approaching a time when investigators will value data-
bases of metabolomics (Jenkins et al., 2004) and meta-
bolic isotopic labeling. Probing these databases with
multivariate models may provide a new opportunity to
supplement our understanding of the complexities reg-
ulating carbon fluxes in metabolic pathways. Our study
using simulated data and a well-defined pathway serves
as an example to show the potential of this approach.
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Appendix A

Metabolic system and model equations

The first step in developing the simulation model is to
write the list of reactions and corresponding carbon
transformations in the metabolic system. Table A1 lists
all reactions in figure 1, including corresponding carbon
transformations represented using a letter code. For
example, in reaction 3 glucose-6-phosphate (G6P) is
split into two triose phosphate (TP) moieties. The first
three carbon atoms of G6P (atoms abc) become the first
TP moiety (atoms cba), i.e. the first C-atom of G6P
becomes the third C-atom of TP, the second C-atom of
G6P becomes the second C-atom of TP, and the third
C-atom of G6P becomes the first C-atom of TP; the last
three carbon atoms of G6P (atoms def) become the
second TP moiety. Note that in our model we do not
require the labeling of muscle pyruvate to depend only
on the labeling of plasma glucose. Reaction 4 has been
included to describe exchange of 13C with 12C in muscle
metabolism. Multiple pathways may be responsible for
exchange of isotopes, for example the pentose phosphate
pathway and TCA cycle. The transketolase reaction
(reaction 4) was used here to model the combined effect
of all these pathways.

The metabolic system has several sources and sinks
for labeled and unlabeled mass. The infusion of
[U)13C]glucose is the input of tracer into the system
(reaction 1), while naturally labeled mass enters the
system from unlabeled sources of lactate (reaction 7),
through the breakdown of glycogen (reaction 16), and

through carboxylation in reaction 10. The exit points of
mass are reactions 8, 18 and the TCA cycle reaction 11.
Reversible reactions 4 and 12 are modeled as separate
forward and backward fluxes. There are a total of 20
reactions in the metabolic model. Under steady state
condition fluxes around 11 intermediate metabolites are
balanced, which leads to 9 (=20)11) independent fluxes
in the system (Table 1).

The mathematical model used for isotopic simulations
consists of the complete set of isotopomer balances,
which were derived using a matrix based method. First,
atom mapping matrices (AMMs) were constructed for
each reaction as described by Zupke and Stephanopou-
los (Zupke and Stephanopoulos, 1994), followed by the
construction of corresponding isotopomer mapping
matrices (IMMs) using the algorithm by Schmidt et al.
(Schmidt et al., 1997). IMMs describe the transforma-
tion of isotopomers of one molecule into another. For
example, IMMLact>Pyr is the transformation matrix that
describes how the isotopomers of lactate are transformed
into isotopomers of pyruvate. Isotopomer distribution
vectors (IDV) collect fractional abundances of all iso-
topomers for the metabolites in the system. The order of
isotopomers in IDVs matches the order of isotopomers
in IMMs. Conventionally, ordering based on the bino-
mial description of labeling patterns of isotopomers is
applied. It has been previously described how IMMs and
IDVs can be applied to derive all isotopomer balances
for a given metabolic system (Schmidt et al., 1997). The

Table A1

Carbon transformations for reactions in the metabolic system

Reaction number Reaction Carbon transformationsa

1 [U)13C]Gluc > Gluc abcdef > abcdef

2 Gluc > G6P[M] abcdef > abcdef

3 G6P[M] > TP[M] + TP[M] abcdef > cba + def

4 G6P[M] + TP[M] <> E4P[M] + R5P[M] abcdef + ABC <> cdef + abABC

5 TP[M] > Pyr[M] acb > abc

6 Pyr[M] > Lact abc > abc

7 Lact[O] > Lact abc > abc

8 Lact > other abc > abc

9 Lact > Pyr[L] abc > abc

10 Pyr[L] + CO2[L] > OAC[L] abc + A > abcA

11 OAC[L] + AcCoA[L] > Fum[L] + 2 CO2 abcd + AB > ABbc + a + d

12 Fum[L] <> OAC[L] (1/2 abcd + 1/2 dcba) <> abcd

13 OAC[L] > PEP[L] + CO2 abcd > abc + d

14 PEP[L] > Pyr[L] abc > abc

15 PEP[L] + PEP[L] > G6P[L] abc + ABC > cbaABC

16 Glycogen[L] > G6P[L] abcdef > abcdef

17 G6P[L] > Gluc abcdef > abcdef

18 Gluc > other abcdef > abcdef

aFor each compound carbon atoms are identified using lower case letters to represent successive carbon atoms of each compound. Uppercase

letters represent a second compound in the reaction. Because fumarate is a rotationally symmetric molecule no distinction can be made between

carbon atoms 1 and 4, and carbon atoms 2 and 3.
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complete set of isotopomer balances for our network is
given below. Each expression represents the set of iso-
topomer balances for a particular metabolite in the sys-
tem. For example, the first expression represents 64
isotopomer balance equations for plasma glucose. If
written out in full, the first of these 64 expressions is the
balance equation for the unlabeled plasma glucose iso-
topomer, shown above in equation (1).

v1 � IMM½U13C�Gluc>Gluc � IDV½U13C�Gluc

þ v17 � IMMG6P½L�>Gluc � IDVG6P½L�

¼ ðv2 þ v18Þ � IDVGluc

v2 � IMMGluc>G6P½M� � IDVGluc

þ v4b � IMME4P½M�>G6P½M� � IDVE4P½M�

þ v4b � IMMR5P½M�>G6P½M� � IDVR5P½M�

¼ ðv3 þ v4fÞ � IDVG6P½M�

v3 � IMMG6P½M�ð123Þ>TP½M� � IDVG6P½M�

þ v3 � IMMG6P½M�ð456Þ>TP½M� � IDVG6P½M�

þ v4b � IMMR5P½M�>TP½M� � IDVR5P½M�

¼ ðv4f þ v5Þ � IDVTP½M�

v4f � IMMG6P½M�>E4P½M� � IDVG6P½M�

¼ v4b � IDVE4P½M�

v4f � IMMG6P½M�>R5P½M� � IDVG6P½M�

þ v4f � IMMTP½M�>R5P½M� � IDVTP½M�

¼ v4b � IDVR5P½M�

v5 � IMMTP½M�>Pyr½M� � IDVTP½M�

¼ v6 � IDVPyr½M�

v6 � IMMPyr½M�>Lact � IDVPyr½M�

þ v7 � IMMLact½O�>Lact � IDVLact½O�

¼ ðv8 þ v9Þ � IDVLact

v9 � IMMLact>Pyr½L� � IDVLact

þ v14 � IMMPEP½L�>Pyr½L� � IDVPEP½L�

¼ v10 � IDVPyr½L�

v10 � ðIMMPyr½L�>OAC½L� � IDVPyr½L�Þ
� ðIMMCO2½L�>OAC½L� � IDVCO2½L�Þ
þ v12f � IMMFum½L�>OAC½L� � IDVFum½L�

¼ ðv11 þ v12b þ v13Þ � IDVOAC½L�

v11 � ðIMMOAC½L�>Fum½L� � IDVOAC½L�Þ
� ðIMMAcCoA½L�>Fum½L� � IDVAcCoA½L�Þ
þ v12b � IMMOAC½L�>Fum½L� � IDVOAC½L�

¼ v12f � IDVFum½L�

v13 � IMMOAC½L�>PEP½L� � IDVOAC½L�

¼ ðv14 þ v15Þ � IDVPEP½L�

v15 � ðIMMPEP½L�>G6P½L�ð123Þ � IDVPEP½L�Þ
� ðIMMPEP½L�>G6P½L�ð456Þ � IDVPEP½L�Þ
þ v16 � IMMGlycogen½L�>G6P½L� � IDVGlycogen½L�

¼ v17 � IDVG6P½L�

A consequence of the balances and the matrix repre-
sentation is that the entire model describing all isotop-
omers and fluxes is represented simply as the above set
of 12 relationships.
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