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Abstract
In neurophysiology, psychophysics, optical imaging, and functional imaging studies, the investigator
seeks a relationship between a high-dimensional variable, such as an image, and a categorical
variable, such as the presence or absence of a spike or a behavior. The usual analysis strategy is
fundamentally identical across these contexts – it amounts to calculating the average value of the
high-dimensional variable for each value of the categorical variable, and comparing these results by
subtraction. Though intuitive and straightforward, this procedure may be inaccurate or inefficient,
and may overlook important detail. Sophisticated approaches have been developed within these
several experimental contexts, but they are rarely applied beyond the context in which they were
developed. Recognition of the relationships among these contexts has the potential to accelerate
improvements in analytic methods and to increase the information that can be gleaned from
experiments.

Introduction
Many systems neuroscience experiments are based around a common basic design–identifying
an association between a high-dimensional variable, such as a complex stimulus, and a variable
that can be easily categorized, such as the presence or absence of neural spiking. For example,
in receptive field analysis, the investigator presents stimuli drawn from a large set of
images1–8 (or sounds9,10), and records one of two neuronal responses – the presence or
absence of a spike. Psychophysical “classification image” 11,12 studies take a conceptually-
related approach. In this case, the response is a subject’s detection or lack of detection of a
target, embedded in experimentally-controlled noise. The response being measured is different,
but the goal of the analysis is similar -- to determine which aspects of the stimuli lead to a
particular neural or behavioral response (Fig. 1a). Functional imaging studies also share this
basic design, but the high dimensional variable is no longer under the experimenter’s control
– so some aspects of the problem are reversed. Here, for example, the investigator repeatedly
presents stimuli from one of two categories, and records many examples of images elicited by
the two stimuli. In a simple optical imaging experiment13 in visual cortex, the two stimuli
might consist of vertical and horizontal gratings; in a functional brain imaging experiment14,
the two categories might consist of a behavioral task and a baseline state, or two contrasting
sets of sensory stimuli. In these experiments, the goal of the analysis is to determine which
aspects of the brain image are associated with particular stimuli (Fig. 1b).

These are only the simplest prototypes. The multivariate quantity may be spatiotemporal
sequences, and not just static spatial images. The categorical quantity may have more than two
possible values (e.g., multiple orientations presented in an imaging experiment in visual cortex,
or, temporal sequences of spikes in receptive field mapping). However, the essence of the
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analytic challenge in all of these experimental approaches remains one of relating a highly
multivariate quantity to a categorical quantity. By far the most common, and perhaps most
intuitive, strategy is fundamentally identical across these different experiments – it amounts
to calculating the average value of the high dimensional variable for each value of the
categorical variable and subtracting one average from the other. This is also the heart of reverse
correlation techniques, which is pervasive in receptive field mapping or differential imaging.

However, intuitive methods may be inaccurate or inefficient, and may overlook important
detail. In this article, we will consider this class of problems abstractly, highlighting certain
similarities and differences of the problems faced by the different experimental approaches.
Our first goal is to illustrate the reasons that the intuitive analysis strategy may not be the best,
and the conceptual challenges that must be faced. We will then describe (without technical
detail) several approaches to these challenges that have been recently developed and applied
within individual experimental approaches. I suggest that wider recognition of the common
conceptual problem being solved in the different contexts, including both a focus on aspects
that are specific to one approach as well as application of methods beyond their original context,
will benefit both the development of analytic tools and the analysis of data.

Why analysis is challenging
To understand what analysis of these datasets might entail, consider a geometric view of a
highly reduced experiment, in which the goal is to categorize an image consisting of only two
pixels (Fig. 2). In each panel, each image is represented by a point, whose horizontal (X) and
vertical (Y) coordinates represent the image value in the two pixels. The color assigned to the
pixel corresponds to one of the two categories associated with that image, as determined
experimentally.

For definiteness, I will discuss the problem in terms of receptive field analysis, but the ideas
apply equally well to classification image analysis. Consider an idealized (and highly
simplified) receptive field mapping experiment (Fig. 2a) where the stimulus consists of
uncorrelated Gaussian noise at two pixels, and the neuron responds only to one pixel. The value
of the stimulus in the pixel that drives the neuron is represented by the horizontal coordinate
in Fig. 2a. Since the pixel values in the stimuli are assumed to be uncorrelated, the stimuli form
a circularly-symmetric cloud. The neuron is assumed to respond only to one pixel, so the
probability that a point is assigned to the two response categories depends only on its horizontal
position. The demarcation between “blue” responses (left half) and “red” responses (right half)
is not sharp, to represent the presence of neural noise that combines additively with the stimulus.

The red and blue circles represent the results of analyzing these data by determining the average
stimulus that led to each response. This is the approach taken in the standard method of reverse
correlation. The horizontal displacement of these circles properly reveal a dependence of the
neural response only on one pixel value. Moreover, the best partitioning of the stimuli into
subsets that are associated with the two responses (based on the experimental data) is given by
the perpendicular bisector of the line between these averages. This line separates the points
that are closest to the center (average) of the red cloud from those that are closest to the center
of the blue cloud. Thus, averaging suffices to answer two basic questions: Qcenter -- what is
the average stimulus corresponding to each response? and Qrule -- what is the best way to
determine which response a particular stimulus will elicit? Averaging will answer these
questions when the multivariate data are independent and identically distributed, the system is
linear, and noise is additive. As the next panels show, relaxation of these conditions can lead
to very different results.
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In cases where there is correlation between the two pixel values (Fig. 2b), averaging fails to
capture the full relationship between stimulus and response. Such correlations typically are
present in natural images. Even though the neuron only responds to the horizontal coordinate
of the pixel, the average stimulus corresponding to each response class (circles) is now
displaced along the diagonal, as a consequence of the pixel-to-pixel correlation present in the
stimulus. Thus, the perpendicular bisector between the centers of the clouds, which is oblique,
no longer represents the best rule for determining which response will be elicited by a given
stimulus. Rather, the best rule remains a vertical line, as in Fig. 2a. In short, correlations within
the stimulus set induce bias when averaging or reverse correlation is applied. This bias can be
corrected if the stimulus correlations are known, and have a sufficiently simple form (for
example, if the correlation is Gaussian). However, for stimulus sets such as natural stimuli,
these conditions do not apply6,7. When the correlation structure of the stimulus set is
sufficiently complex, bias correction is problematic and the “average” stimulus may not be
typical of any stimuli (Fig. 2b inset).

Even if the stimuli are uncorrelated, averaging will still be inadequate if the neuron is nonlinear,
as the next examples show (Figs. 2c–e). Consider a neuron whose response depends only on
one pixel, but this dependence has a small quadratic contribution in addition to the linear
response (Fig. 2c). Because of this nonlinearity, stimuli with a large negative value at pixel X
also lead to a red response. More importantly, the optimal partitioning of the stimuli into classes
corresponding to the two responses (i.e., the description of what the two responses “represent”)
consists of two vertical lines, not one. Averaging gives no hint of the bipartite distribution of
red responses but rather misleadingly summarizes the distribution of red responses by a single
point – which might even lie within the blue distribution. The latter situation would arise if the
nonlinearity dominates, as would be the case in a stereotypical neuron with a symmetrical on-
off response.

In another example of nonlinearity, the model neuron is an “energy” unit15 (Fig. 2d). It
produces one response if X2+Y2 (the energy) exceeds a criterion, and the other response if not
The optimal partitioning of the stimuli into the two classes is a circle that lies on the energy
threshold. Yet another example of nonlinearity is an idealized edge detector (Fig. 2e): this
neuron produces one response if X and Y have opposite sign, and the other response if not –
i.e., its response is determined by an interaction of the two pixel values, the product XY. In
this case, the optimal rule for partitioning stimuli is described by intersecting lines that run
along the axes. For both types of neuron, however, the means of the stimulus subsets that
correspond to the two response classes coincide (red and blue circles in Figs, 2d,e). This means
that a correlation analysis will fail to detect any signal at all, even though there is simple (but
nonlinear) relationship between stimuli and response. When there is a mixture of linear and
nonlinear contributions (Fig. 2c), a correlation analysis properly indicates the neuron’s
dependence on input stimuli, but the signal-to-noise (i.e., the separation of the mean stimuli of
each class) is less than in Fig. 2a, because of the inclusion in the average of stimuli with large
negative X-values.

For the converse problem, where the stimulus is the categorical variable and the multivariate
quantity is measured (i.e. optical or functional imaging), analogous situations can arise (Figs
2f–i). In the simple, ideal situation in which the stimulus activates only one pixel and there is
uncorrelated, additive, Gaussian measurement noise in both pixels (Fig. 2f), the cloud of
responses elicited by each stimulus is circularly symmetric, and the horizontal displacement
of these clouds represents the mean response. As in Fig. 2a, the mean response to each stimulus
provides an unbiased estimate of the positions of these clouds, and the perpendicular bisector
between these means is the optimal partitioning of the responses into two categories.
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Fig. 2g shows a situation in which a stimulus-driven response confined to one pixel adds to
noise that is correlated across the two pixels – for example, by vascular pulsations. Because of
this background correlation, the cloud of points that represents the pairs of pixel values
corresponding to each stimulus becomes elongated and oblique. The mean image elicited by
each stimulus category is no different than that of Fig. 2f. However, the optimal way to
discriminate between these sets of images is no longer a vertical line: it is an oblique line,
whose slope is determined by the degree of correlation of the noise background. There is a
second, more subtle, effect of the fact that the sets of images elicited by each stimulus forms
an elongated cloud. The oblique axis does not contribute to separation of the two clouds, but
variability along it reduces the reliability of the estimates of the clouds’ centers. Thus, noise
correlation has two effects: the optimal rule for discriminating the two image classes does not
correspond to the perpendicular bisector of the line between their means, and a more reliable
estimate of the difference between the means can be obtained by eliminating dimensions that
contain large variance and small signal.

As is the case for receptive field mapping, a nonlinear relationship between the stimulus and
the multivariate response makes straightforward averaging inadequate for capturing the
relationship between signal and the stimulus that drove it (Figs. 2h–j). There is evidence that
brain states are manifest not only by mean activity, but also by changes in power and correlation
structure16–18, suggesting that such nonlinear relationships indeed exist. These nonlinear
relationships affect the mean position of each cloud of points, and the lines and curves that
optimally separate the clouds, in a way similar to the analogous nonlinear relationships shown
in Figs. 2c–e.

The challenges of analyzing a real dataset are substantially greater than these simple examples
would suggest for several reasons. First, in a real dataset, variability would be much higher
than what is illustrated in Fig. 2, so that the clouds would overlap to a much greater extent.
Second, although we considered separately the effects of deviations from Gaussian
uncorrelated noise (Figs. 2b,g), local nonlinearities (Figs. 2c,h), and spatial interactions (Figs.
2d,e,i,j), these phenomena are typically all present, in one degree or another. Third, the
dimensionality of the multivariate dataset is typically large: 100 to 1000 in receptive field
mapping or classification image experiments, 105 or larger in optical or functional imaging
experiments. Figure 2 considers only two-dimensional datasets. As a result, a typical dataset
represents only a sparse sample of the multivariate distribution. Thus, in contrast to these
examples where the dataset provides a good estimate of the shape of the distribution of the
multivariate quantity, good estimates of the distribution of the multivariate quantity may not
be available.

These various considerations have led to the development of sophisticated methods for analysis
of such datasets. However, development of methods to deal with the effects of correlations
have generally proceeded along separate lines in for receptive field mapping/classification
image and imaging contexts. Attempts to analyze nonlinearities have been primarily developed
for the purposes of receptive field mapping only.

Two basic questions
As highlighted in Figure 2, there are two basic questions that can be asked about the
correspondence between a multivariate quantity and a categorical one: Qcenter -- what is the
most typical value of the multivariate quantity that corresponds to each value of the categorical
variable (i.e., where is the center of each cloud)? and Qrule -- what is the best rule for
distinguishing these clouds. We do not mean to imply that the answers to these questions are
the endpoints of the analysis or suffice to draw scientific conclusions, merely that they are
common conceptual places to begin.
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For receptive field analysis, it is natural to focus on Qrule. Even for a neuron with very simple
properties, the center of the cloud will depend on the choice of stimuli used in an experiment.
But the rule, which can be thought of as a computation performed on the stimuli and an
indication of what a neuronal response represents, can in principle represent a more universal
characterization of the neuron.

For imaging experiments, Qcenter and Qrule are interesting and quite distinct, even if the
stimulus-response relationship is linear (Fig. 2g). This is because the multivariate quantities
(the pixel values) are typically highly correlated, both by the underlying physiology and the
physics of imaging. The center of each cloud indeed indicates the average response to each
stimulus. However, the answer to Qrule provides additional information – how best to “read
out” a pattern of activity. The distinction between the two questions cannot be avoided, because
the experimenter cannot control the correlation structure of the multivariate data.

The answers to Qcenter and Qrule are usually displayed as maps – but it is important to emphasize
that these maps represent very different things. For Qcenter , the map is simply an instance of
the multivariate quantity. But the answer to Qrule is a rule, not an instance of the multivariate
quantity. If the rule is linear, it can be rendered as a map, as follows. A linear rule is
characterized as an assignment of weights (“sensitivities”) that multiply each pixel of the
stimulus; the partitioning is based on a sum of these products. Thus, the map that portrays a
linear rule is a map of sensitivities, i.e., quantities whose units are the reciprocal of the units
of the multivariate data. Nonlinear rules can also be displayed in a map-like fashion, but here
too, the map describes rules to be applied to stimuli, not stimuli themselves.

In the following sections, we consider a variety of approaches to answer Qcenter and Qrule.

Uncorrelated multivariate data
Standard analysis (subtraction of mean responses for imaging13, cross-correlation for receptive
field3,19 or classification image11 analysis), address Qcenter. As we have seen in Figure 2,
Qcenter and Qrule are equivalent only under very special circumstances. When the linearity
condition is relaxed but the multivariate quantity remains independent and identically
distributed (Figure 2C, D, E), Qrule can be determined by generalizations of the cross-
correlation approach. The desired characterization corresponds to the “kernels” of Wiener-
like2,3,19 procedures. For example, the basic computation in the recently developed spike-
triggered covariance method4,5,8 is equivalent to the standard Lee-Schetzen cross-correlation
estimate for the second-order kernel19,20, followed by diagonalization.

In settings such as receptive field/classification image analysis, in which the investigator has
control over the multivariate quantity, the use of “designer” stimulus sets (sinusoidal sums21
and m-sequences1) are particularly advantageous. Such approaches are often effective in
characterizing nonlinear (as well as linear) response properties. This is because these finite
stimulus sets are, in some sense, more nearly uncorrelated than a random sample drawn from
a large uncorrelated ensemble.

However, “designer” methods cannot be applied to imaging data, nor to situations in which
natural scenes6,7,22 or sounds10,23 are used for receptive field determination: these
multivariate stimulus sets typically contain strong correlations that cannot be controlled or fully
characterized. Here, the answer to Qrule provides information about the stimulus-response
relationship that is not available from Qcenter. Moreover (see below), Qrule, along with the
covariance structure of the stimulus, can provide a better estimate of Qcenter than averaging.
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Correlated multivariate data, linear relationship
Whether or not correlations within the high-dimensional variable are present, linear regression
identifies the linear function of a stimulus sequence that does the best job (in the mean-squared
sense) of predicting the binary response (spike vs. no spike; target seen vs. target not seen).
Thus, it is a natural approach to finding Qrule under the assumption that the stimulus-response
relationship is linear, and it can be extended in a Wiener-like fashion to nonlinear relationships,
as has been done in the context of receptive field analysis24. Of note, linear regression was
used in the original description of the classification image method12. Other than a few
exceptions25, this approach is not often taken because there are statistical difficulties that
confound direct application of linear regression to the experimental contexts we are
considering. However, as we next describe, there are recently developed techniques that can
surmount these difficulties.

In essence, finding Qrule via linear regression requires two steps (see Appendix): (i) estimating
the covariance matrix S of the multivariate set, and (ii) multiplication of the mean difference
between the two multivariate clouds by S−1, the matrix inverse of S. The covariance matrix S
is a symmetric array, whose entires sjk are the correlations of the jth and kth pixels. For
independent identically distributed data, S is proportional to the identity matrix, and linear
regression reduces to simple subtraction, since S−1 is also proportional to the identity. In
imaging data, pixel values are coupled by motion, light scatter, blood flow, and other
physiologic factors; in receptive field analysis, pixel values are coupled by the statistics of
natural scenes23,26. Thus, linear regression and the related approaches described below differ
fundamentally from the subtraction method, since S is far from the identity matrix.

The main pitfall in linear regression is that of overfitting – namely, the estimated answer to
Qrule may work well for the particular experimental sampling of the multivariate dataset, but
does not generalize to a larger sample. Linear regression only provides an answer to Qrule that
generalizes if the correlation structure of the multivariate data is well-characterized by the
experimental sample. This characterization requires enough samples to estimate its covariance
matrix S, along with an assumption, typically Gaussianity, to determine higher-order
correlations from second-order correlations. For optical or functional imaging data, there are
typically many more pixels (105 to 106) than samples (ca. 104). For receptive field/classification
image data, the undersampling problem is present but less severe (103 to 104 pixels; number
of samples in the same range), but the correlation structure (especially of natural images) is
likely to be very non-Gaussian. Because of undersampling and/or non-Gaussian characteristics
of the multivariate data, direct application of standard linear regression is likely to produce
results that are worse than simple subtraction.

However, extensions of linear regression27–29 developed for imaging are applicable to the
undersampled regime, by recasting the problem in a form that does not require explicit
inversion of S. These approaches focus on the eigenvectors of the covariance matrix S and
related matrices (see Appendix). The eigenvectors of S (which are its “principal components”)
are a small set of images, from which all images can be reconstructed. Eigenvectors can be
ranked in importance according to their eigenvalue. The larger the eigenvalue corresponding
to an eigenvector, the greater the extent to which the stimulus set explores the corresponding
image direction. Based on the eigenvalues, one can select a subset of eigenvectors, within
which an linear regression-like like procedure can be carried out accurately. In the example of
Figure 2g, such a procedure would correspond to restricting the estimation process to the
direction that crosses the narrow axes of the ellipse, and forgoing an attempt to estimate the
position of the ellipse centers along their long axes, where variability is greater.
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As detailed in the Appendix, there are several useful variations on this theme. The “truncated
inverse” method28 selects the eigenvectors of S whose eigenvalues are sufficiently large. More
elaborate approaches select a subspace based not only on the overall covariance structure of
S but also on the covariances within the subset of stimuli that lead to each categorical response.
This includes the classic Fisher27 discriminant method, which restricts analysis to the one-
dimensional projection that optimally discriminates between Gaussian fits to the two clouds.
The “indicator function” method30 projects into several dimensions (the “canonical variates”),
chosen on the basis of a significance criterion. Canonical variates are also the basis of a method
for characterizing spatiotemporal aspects of images acquired in fast fMRI studies31,32. A
further variation is the “generalized indicator function method”29, that considers the
eigenvectors of a linear mix of S and the within-group covariances, and weights these
eigenvectors in a graded fashion (see Appendix).

These approaches all represent methods of dimensionality reduction –selection of subspaces
that are likely to contain a large signal-to-noise ratio (SNR). Within this general framework,
independent components analysis33 can be viewed as a strategy for using higher moments of
the images to identify mixtures of subspaces that are likely to contain signal34. There are other
approaches to enhance SNR in functional imaging data that exploit specific features of such
images (e.g., vascular artifacts35), but since these approaches are domain-specific, we do not
discuss them here.

Dimensional reduction can also be viewed as a form of “regularization”36–38 to avoid the
pitfalls of estimating this covariance structure from very limited data. The generalized indicator
function method29 can be viewed as a regularized determination of canonical variates37,38.
“Ridge regression”38 (see Appendix) is a regularization strategy (widely applied outside of
neuroscience) that chooses a compromise between the estimated covariance matrix and the
identity matrix. Variations of ridge regression that take into account smoothness constraints
have recently been used to extract receptive field maps from natural stimuli, both in the
visual22 and auditory10 domains, but apparently have not been applied in optical or functional
imaging.

Correlated multivariate data, nonlinear relationship
In functional imaging, analytical methods (including the recent developments reviewed above)
assume that the relationship between the imaged signal and neural activity is linear39, and the
analytical focus has been on determining this relationship when the activity-dependent signal
represents a very small fraction of the image. In receptive field analysis, it is generally
considered that the neural response will be substantially greater than background when the
stimulus is appropriate, but it is recognized that the stimulus-response relationship may not be
linear6,40. This has driven the development of efficient methods for identifying nonlinear
relationships that succeed even in the presence of strongly non-Gaussian multivariate data6,
40. Moreover, the neural response, even if considered categorical, is generated in a manner
that has stochastic and dynamic aspects. Understanding the implications of spike generation
for the convergence and bias credentials of various estimation techniques40, and the
interpretation of the resulting receptive fields41,42 is another focus of current work.

Time for a convergence?
One can readily identify several reasons for the separate development of analytical techniques
in receptive field/classification image analysis and optical/functional imaging, owing to
various differences between these settings. However, we argue that the implications of these
differences are less compelling than generally assumed, and consequently, that there are likely
to be substantial opportunities for synergy.
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Most obviously (Fig. 1), the categorical and multivariate characteristics of stimulus and
response are swapped. This has two implications. If the experimenter is willing to choose a
“designer” stimulus set, then there are opportunities for improved experimental design in
receptive field or classification image analysis that are not available for optical or functional
imaging – but we do not focus on these here, and these are irrelevant to receptive field/
classification image studies using natural stimuli. The other implication is that this distinction
leads to a difference in how noise is considered. In imaging, no threshold is typically postulated;
rather, neuronal and measurement variability smoothly combine with the “signal.” For
receptive field and classification image analysis, it is generally assumed that after a
computation is performed on the multivariate quantity, there is a threshold (e.g., a firing
threshold, or a decision threshold), which may in part be stochastic. However, many treatments
seek a rule for the firing rate (or decision variable) that minimizes the mean-squared prediction
error, rather than an explicit maximum-likelihood solution for a model with a threshold. Since
mean-squared error criterion is essentially a maximum-likelihood criterion for an assumed
Gaussian noise, it is tantamount to ignoring the statistical consequences of the threshold.

Consequently, unless detailed dynamics of spike trains are of interest, the stimulus-response
inversion does not prevent application of analysis methods for receptive field mapping to
imaging, and vice-versa. Explicit modeling of spike train dynamics may result in further
improvement and insight40–42. But dynamics (i.e., the effect of stimulus sequence and
timecourse on response) are also present in an optical or functional experiment, suggesting that
techniques to examine dynamics developed for receptive field analysis might usefully be
applied to imaging.

Another apparent difference between these settings is what is typically considered limiting: in
classification image experiments, the number of trials that can be obtained may be limited to
103 to 104, since each trial requires an explicit behavioral response. In imaging, the main hurdle
to analysis is usually considered to be an intrinsically low SNR: 1 in 103 to 1 in 104 for optical
imaging, 1 in 102 for fMRI. There may also be sources of variability that lead to highly
structured artifacts, such as pulsatile movements of the tissue. Since receptive field studies
often have the implicit goal of prediction of responses to stimuli outside of the experimental
sample, undersampling of the stimulus space is often considered to be the main problem, since
(even when the SNR is high), a far greater sampling is required to construct a nonlinear model
than to construct a linear model. However, SNR, number of trials, and sampling of the stimulus
space are always limiting. Analytical approaches that make better use of a given data set to
identify smaller signals, provide greater spatial detail, or shorten the experiment time to obtain
results of a given quality are always useful, especially given the increasing availability of
computational resources and the costs (not just direct economic) of obtaining neurophysiologic
data. Moreover, approaches to imaging data analysis in the presence of structured noise is
closely analogous to identification of receptive fields from “natural” stimulus sets6, which
have strong but incompletely determined statistical structure.

In optical and functional imaging, the relationship of the multivariate quantity to a behavioral
index is typically assumed to be linear39, while a linear relationship is not always assumed in
classification image analysis43,44 and in receptive field mapping2,3. But there is increasing
recognition16–18 that stimulus-induced changes in the correlation structure of brain activity
measures, and not just its mean level, are behaviorally and mechanistically relevant. Identifying
such changes in imaging data is closely allied with identifying nonlinear aspects of a neural
stimulus-response relationship in the receptive field mapping context.

Even for imaging studies that do not seek a nonlinear relationship between stimuli and the
imaging data, inclusion of a nonlinearity in the model might nevertheless benefit the goal of
signal extraction – i.e., identifying the rule that distinguishes responses to the members of the
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stimulus set. An analytic procedure that forces a nonlinear relationship to be modeled as a
linear one necessarily causes some “signal” (the deviation of a systematic nonlinear response
from a linear one) to appear as “noise”. Application of traditional nonlinear kernel methods is
problematic, since the introduction of a large number of free parameters would likely defeat
any benefit of capturing more signal. However, it would be very worthwhile to explore the use
of recent receptive field mapping methods that seek simple nonlinear relationships in an
efficient manner6,40. It should be emphasized that even if the relationship between the imaging
signal and neural activity were strictly linear39, one would still expect this approach to be of
value. Such linearity applies to the mean signal, not its fluctuations – and the in the noisy,
multivariate regime, the latter may dominate the stimulus-response relationship. Moreover,
mean neural activity may not be linearly related to the categorical variable –an issue that
becomes relevant in experiments in which the categorical variable can take on more than two
values, such as an orientation or spatial frequency experiment.

Conversely, to maximize the ability to test mechanistic or functional receptive field models, it
is necessary to identify not only the large readily-resolvable components, but small
contributions as well – as illustrated by the recent analysis of complex cell receptive fields in
terms of spike-triggered covariances5,8. Moreover, it is evident that further insight into
neuronal properties can be gleaned from receptive field characterization with stimulus sets
have complex statistics, including natural scenes6,7,23. For both of these reasons, analytical
methods developed for imaging that improve signal to noise by using subspace selection38
may be useful. One might even envision that such methods could be further refined (for
receptive field characterization) by guiding the estimation of covariances by the known
statistical regularities of natural images26,45,46.

Conclusion
As detailed above, the problem of identifying the relationship between a highly multivariate
quantity and a categorical quantity (such as a discrete stimulus, a behavioral response, or the
presence of an action potential) is deceptively simple. It has been approached by a variety of
analytical techniques, most often motivated by particular features of one of these contexts. We
claim that the distinctions between experimental domains are not as deep as generally assumed,
and speculate that opportunities for progress will result from applying these techniques (or, the
ideas behind them) beyond their original domain.

The above considerations are only starting points, not an exhaustive list, and it is likely that
the benefits will be relatively specific to particular experimental situations and goals. Whether
cross-application of such methods and ideas will result in new qualitative insights, or merely
incremental advances, is difficult to predict. Nevertheless, recognition of the close relationships
between the mathematical challenges in these domains will enrich and accelerate the
development of improved analytical techniques.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
We briefly summarize some of the data analysis methods mentioned in the text. We denote the
two values of the categorical variable (e.g., two stimulus classes in optical and functional
imaging, or two response classes in receptive field or classification mapping) by the labels 0
and 1. An instance of the multivariate quantity (an “image”) is denoted by a row vector x,
consisting of P pixel values. We assume that class j (j=0 or 1) is associated with Nj observations
of x; the kth observation is a row vector xk

[j]. With these conventions, the within-class mean
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for class j is given by the row vector μ j =
1
N j

∑
k=1

N j
xk

j  and the global mean is

μ =
N0μ0 + N1μ1

N0 + N1
.

The difference image is the row vector vDI = μ1 − μ0.

Formally, linear regression, the Fisher discriminant, and their extensions seek specific linear
functions on images (that is, a rule to be applied to images), not images per se. Operation of a
linear function f on an image x can be regarded as the matrix product xf of the row vector x and
the column vector f. A column vector f can be regarded as a transpose of a row (image) vector,
f = vT.

The linear regression method seeks a linear function fLR on the set of images that provides the
best prediction of the response (0 or 1). fLR = vT

LR, wherevLR is the row (image) vector that

minimizes ∑
j=0

1
∑
k=1

N j | (xk j − γ)vLRT − j | 2.

fLR = vT
LR may be calculated from the covariance matrix, S = ∑

j=0

1
∑
k=1

N j
(xk

j − μ)T (xk
j − μ).

Provided that the covariance matrix S is invertible, f LR =
N0N1
N0 + N1

S −1(μ1 − μ0)
T . If the

covariance matrix is not invertible, vLR is not unique.

The truncated difference method 28restricts the LR estimate to the subspace spanned by the
eigenvectors of S whose eigenvalues are within some range λmin < λ < λmax. (For a symmetric
matrix M, a column vector c is said to be an eigenvector of M if Mc = αc for some scalar α,
and α s said to be the eigenvalue corresponding to c).

Ridge regression 38adds a multiple of the identity to S, i.e., replaces S by S + κI above. Other
regularization procedures replace S by S + κI + ρC , where nonzero elements of C reflect
penalties for a lack of smoothness in the estimated image ν. Here, κ and ρ are scalars, typically
chosen by optimizing the ability of a model based on ν to predict stimulus-response
relationships in a separate dataset.

The canonical variates are the solutions of the generalized eigenvalue problem (μ1 − μ0)T

(μ1 − μ0) f = λ(S0 + S1) f, where S0 and S1 are the within-class covariance matrices,

S j = ∑
k=1

N j
(xk

j − μ j)
T (xk

j − μ j).

The Fisher discriminant 27is the linear function fFD on the set of images that best discriminates
between the images that correspond to the two response classes. That is, fFD maximizes the
ratio of the projected difference between classes, | (μ1 − μ0) f FD | 2,  to the projected variances

within classes, ∑
j=0

1
∑
k=1

N j | (xk j − μ j) f FD | 2. For Gaussian data, this maximum is achieved

when fFD is the eigenvector corresponding to the largest eigenvalue of the above generalized
eigenvalue problem. Method I of the indicator function method 30is essentially the Fisher
discriminant. Method II considers multiple eigenvectors, whose eigenvalues are sufficiently
large. The generalized indicator function method 29considers eigenvectors of the more general
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operator (μ1 − μ0)T (μ1 − μ0) − α(S0 + S1) for some “quality control” parameter α, adds a
regularization term, and applies additional criteria to select and weight these eigenvectors.
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Figure 1.
Two kinds of experiments in which a highly multivariate quantity (yellow box) is to be related
to a categorical quantity (purple box). a: the multivariate quantity is the stimulus, and the
categorical quantity is the response (e.g., receptive field mapping and classification image
studies). b: the multivariate quantity is the response, and the categorical quantity is the stimulus
(e.g., optical imaging and functional brain imaging). In each case, the investigator determines
the categories in advance (items outlined in red vs. blue) but the instances of the multivariate
quantity associated with each category (items outlined in pink vs. pale blue) are determined
from the experiment.
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Figure 2.
A geometric view of associations of multivariate and categorical data. In each panel, each
instance of the multivariate (here, bivariate) data is represented by a point, whose coordinates
X and Y are the values of its two components (e.g., pixel intensities). The color assigned to
each point indicates which of the two categories is associated with it. a–e: experiments in which
the multivariate quantity is the stimulus, and the categorical quantity is measured. f–j:
experiments in which the multivariate quantity is measured, and the categorical quantity is the
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stimulus. a and f indicate the simplest situation (uncorrelated and Gaussian bivariate data, with
category linearly determined by one of its components). Other panels introduce correlation
structure into the bivariate data (b,g), nonlinearities (c,d,h,i), or both (e,j).
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