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INTRODUCTION

A classification scheme for b-lactamases based on functional
characteristics is presented. Three major groups of enzymes
are defined by their substrate and inhibitor profiles: group 1
cephalosporinases that are not well inhibited by clavulanic
acid; group 2 penicillinases, cephalosporinases, and broad-
spectrum b-lactamases that are generally inhibited by active
site-directed b-lactamase inhibitors; and the group 3 metallo-
b-lactamases that hydrolyze penicillins, cephalosporins, and
carbapenems and that are poorly inhibited by almost all b-lac-
tam-containing molecules. Functional characteristics have

been correlated with molecular structure in a dendrogram for
those enzymes with known amino acid sequences.

b-Lactamases (EC 3.5.2.6) have been designated by the No-
menclature Committee of the International Union of Bio-
chemistry as ‘‘enzymes hydrolysing amides, amidines and other
CON bonds . . . separated on the basis of the substrate: . . .
cyclic amides’’ (323). These enzymes are the major cause of
bacterial resistance to b-lactam antibiotics and have been the
subject of extensive microbiological, biochemical, and genetic
investigations. Investigators have described more than 190
unique bacterial proteins with the ability to interact with the
variety of b-lactam-containing molecules that can serve as sub-

TABLE 1. Classification schemes for bacterial b-lactamases

Bush-
Jacoby-
Medeiros
group

1989 Bush
group
(44)

Richmond-
Sykes class
(253)

Mitsuhashi-Inoue
type
(194)a

Molecular
class

(2, 121, 132)

Preferred
substrates

Inhibited by:
Representative
enzymes

CAb EDTA

1 1 Ia, Ib, Id CSase C Cephalosporins 2 2 AmpC enzymes from gram-
negative bacteria; MIR-1

2a 2a Not included PCase V A Penicillins 1 2 Penicillinases from gram-
positive bacteria

2b 2b III PCase I A Penicillins, cephalosporins 1 2 TEM-1, TEM-2, SHV-1
2be 2b9 Not included

except K1
in class IV

CXase A Penicillins, narrow-spec-
trum and extended-
spectrum cephalospo-
rins, monobactams

1 2 TEM-3 to TEM-26, SHV-2
to SHV-6, Klebsiella oxy-
toca K1

2br Not included Not included Not included A Penicillins 6 2 TEM-30 to TEM-36, TRC-1
2c 2c II, V PCase IV A Penicillins, carbenicillin 1 2 PSE-1, PSE-3, PSE-4
2d 2d V PCase II, PCase III D Penicillins, cloxacillin 6 2 OXA-1 to OXA-11, PSE-2

(OXA-10)
2e 2e Ic CXase A Cephalosporins 1 2 Inducible cephalosporinases

from Proteus vulgaris
2f Not included Not included Not included A Penicillins, cephalospo-

rins, carbapenems
1 2 NMC-A from Enterobacter

cloacae, Sme-1 from Ser-
ratia marcescens

3 3 Not included Not included B Most b-lactams, including
carbapenems

2 1 L1 from Xanthomonas mal-
tophilia, CcrA from Bac-
teroides fragilis

4 4 Not included Not included NDc Penicillins 2 ? Penicillinase from Pseudo-
monas cepacia

a Csase, cephalosporinase; PCase, penicillinase; CXase, cefuroxime-hydrolyzing b-lactamase.
b CA, clavulanic acid.
c ND, not determined.

* Corresponding author. Phone: (914) 732-4440. Fax: (914) 732-
5687.
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TABLE 2. Group 1: cephalosporin-hydrolyzing b-lactamases poorly inhibited by clavulanic acida

En-
zyme

Produc-
tion Original host Strain

Relative rate of hydrolysis

LOR LOT PEN AMP CARB CLOX OXA FOX NCF TAX TAZ ATM IMP

ND Acinetobacter calcoaceticus ML4961 100 470 0.46 ,0.1 NDb ND ND 0.4 ND ,0.1 ND ND ND
Chr Acinetobacter calcoaceticus NCTC 7844 100d 63 3 1 ND ND ND ND ND ND ND ND ND
ND Acinetobacter calcoaceticus CCM 5593 100 830 24 5 ND ND ND ND ND ND ND ND ND

A1 Chr Aeromonas hydrophila AER19M ND 100e 3 ND ND ,0.3 ND ND 370 1.1 0.3 1.5 ,0.03
AsbA1 Chr Aeromonas sobria AER 14M 100 84 32 ND ND ND ND ND ND #0.3 ND ND #1

ND Bacteroides intermedius GAI4874 100 30 ND ,1 ND ND ND ND ND ND ND ND ND
Chr Chromobacterium violaceum 100g, h 60 32 1.3 1.9 NDeti NDet NDet ND ND ND ND ND
Chr Citrobacter freundii GN346 100 11 1.5d 0.07d ,0.1g ,0.1g ND 0.2 ND ND ,0.01 ND ND

AmpC Chr Citrobacter freundii OS60j 100 29 4.4 0.93 ,0.01 ,0.01 ,0.01 0.05 47 ,0.01 ND ,0.01 ,0.01
Type A Chr Enterobacter cloacae Multiplel 100 310 20 0.30 ND ,0.01 ,0.01 0.01 130 ,0.1 0.01 ,0.01 ,0.01
P99 Chr Enterobacter cloacae P99m 100 18 1.5 0.02 0.01 0.01 ,0.01 0.01 110 ,0.1 ,0.01 ,0.01 ,0.01
AmpC Chr Enterobacter cloacae MHN1 100 120 3 2 ,1 1 ND ,1 ND ,1 ,1 ND ND
AmpC Chr Escherichia coli K12p 100 230 35 3.2 ,0.01 ,0.01 ND 0.15 380 0.13 ND ,0.01 ,0.01

ND Escherichia coli 87120702 100g, q 130 19 2 ,1 ,1 ND ,1 ND ,1 3 ND ND
ND Escherichia coli GN5482 100 420 90 ,1 ,1 ,1 ,1 ,1 ND ,1 ND ND ND

BIL-1 P Escherichia coli BS 100r 1.2 NDet NDet NDet ND ND ND 170 NDet NDet ND ND
FOX-1 pGLK1 Klebsiella pneumoniaet BA32 100 380 1.0 ND ND ND ND 0.7 ND ND ND ND ND
LAT-1 pHP15 Klebsiella pneumoniae P20 100 130 5 1 ,1 ,1 ND ,1 ND ,1 1 ND ND
MIR-1 pMG230 Klebsiella pneumoniae 96D 100g 120 4 1 ,1 1 ND ,1 ND 10 3 ND ND
MOX-1 pRMOX1 Klebsiella pneumoniae NU2936 100 ND ND 40 ND ND ND ND ND 200 1.5 80 ND

Chr Morganella morganii GN5407x 100 46 16 ,0.01 ,0.01 ,0.01 ND ,0.01 ND ,0.01 ND ND ND
Chr Morganella morganii 1510 100 37 8.2 0.55 ,0.1g ,0.1g ND 0.034 ND ND ND ND ND

CEP-1 R22K Proteus mirabilis 22 100v 160 35 1.0 0.28 0.21 ,0.1 ND ND ND ND ND ND
Chr Proteus rettgeri GN4430 100 85 3.3 0.70 0.1 0.1 ND 0.1 ND 0.10 ND ND ND

S&A Chr Pseudomonas aeruginosa NCTC 8203y 100d, g 140 33 2 0.63 ,0.3 ND 0.5 ND ,1 ,1 ND ND
AmpC Chr Pseudomonas aeruginosa PAO1 100 ND ND 70 ND ND ND ND ND 0.45 ND ND ND

Chr Pseudomonas aeruginosa GN10362 100 140 29d ,1 ,1 ,1 ND ,1 ND ,1 ND ND ,1
ND Pseudomonas aeruginosa GN918 100d 7 13 1 ,0.5 ,0.5 ,0.5 ND ND ND ND ND ND
ND Rhodobacter sphaeroides Y-1 100h 3400 100d, z 6d, z ,6d, z ,6d, z ND ND ND ND ND ND ND
Chr Serratia marcescens SC 8247aa 100 100 6.8 0.04 ,0.1 ,0.1 ND 0.001 110 0.16 ,0.1 ,0.01 ,0.01

S2 Chr Serratia marcescens SC 9782 100 ND ND 0.03 ND ND ND ND ND 0.05 ND 0.04 ND
ND Serratia marcescens 921/79 100ab 540 24 2.9 ND ND ND NDet ND 0.37 ,0.05 ,0.01 ,0.01

a Abbreviations: LOR, cephaloridine; LOT, cephalothin; PEN, benzylpenicillin; AMP, ampicillin; CARB, carbenicillin; CLOX, cloxacillin; OXA, oxacillin; FOX,
cefoxitin; NCF, nitrocefin; TAX, cefotaxime; TAZ, ceftazidime; ATM, aztreonam; IMP, imipenem; CA, clavulanic acid; SUL, sulbactam; TZB, tazobactam; pCMB,
p-chloromercuribenzoate; Chr, chromosomal; P, plasmid; Nuc, nucleotide sequence; IC50, 50% inhibitory concentration.
b ND, not determined.
c Ki.
d Iodometric assay.
e Hydrolysis rate relative to that of cephalothin.
f Km.
g Acidimetric assay.
h Relative rate of hydrolysis at a fixed substrate concentration (1.2 mM).
i NDet, not detected.
j Cephalosporinases with similar properties have been reported from Citrobacter freundii GN7391 (92, 115, 264, 296) and SR19 (196).
k Ki values for cephalosporinase from Citrobacter freundii 2732 (92).
l Seeberg et al. (275) divided Enterobacter cloacae cephalosporinases into types A and B on the basis of the pI. Type A strains had similar kinetic properties and were

found in the following Enterobacter cloacae strains: 149M, 208, M6300 and 5822M2, whose enzymes have pIs of 8.8 (99, 103, 134, 275, 299); GN7471, whose enzyme
has a pI of 8.4 (103, 192); SC 12629, whose enzyme has a pI of .9.0 (53). The kinetic data presented here are for enzymes produced by strains 208 and SC 12629.
m Type B Enterobacter cloacae cephalosporinase (275). Enterobacter cloacae 5 and 352M (275), 363 (269, 273), and 908R (99, 299) produced enzymes with similar

characteristics.
n pIs of 8.3, 8.25, and 8.95 have also been reported.
o Published IC50 values are erroneously reported in nanomolar instead of micromolar in references 217 and 311 (217a).
p Other Escherichia coli strains that produce AmpC-like cephalosporinases include strain SOL, enzyme with a pI of 9.3 (149); strain 255 (269, 273, 297); and strains

214 T and 419 (69).
q Relative rate of hydrolysis at fixed substrate concentration (500 mM).
r Relative (Vmax/Km).
s High degree of homology with AmpC cephalosporinase of Citrobacter freundii OS60 (161) and Citrobacter freundii GN346 (308), as reported by Fosberry et al. (89).
t Strain produces two variants. Apparent molecular sizes of 37 and 35 kDa were reported for the pI 6.8 and pI 7.2 enzymes, respectively.
u High degree of homology with AmpC cephalosporinase of Citrobacter freundii OS60 (310).
v Hydroxylamine assay.
w Partial sequence has 90% homology with E. cloacae ampC gene.
x The cephalosporinases from Morganella morganii M3, with a pI of 7.6 (332), and that from strain SC 10986, with a pI of 7.5 (43), have similar kinetic properties.
y Cephalosporinases from Pseudomonas aeruginosa 174K (191), V31 (127), and 18SH (97, 98) have similar kinetic properties.
z Relative hydrolysis rates. In spectrophotometric assays, rates for cephalosporins are normalized to that of cephaloridine; in microiodometric assays, rates for

penicillins are relative to that of benzylpenicillin. Microbiological data indicate a strong cephalosporinase activity.
aa A cloxacillin-inhibitable cephalosporinase from Serratia marcescens T-26E1 had similar hydrolysis properties (269). Other Serratia marcescens strains that produce

AmpC-like cephalosporinases include S7 (334), SC15071 (47), SR50 (202), TN81 (127), and GN7647 (294).
ab Relative hydrolysis rates at a fixed substrate concentration (100 mM).
ac (k3/k2)K.
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strates or inhibitors (45, 46, 129, 184; this minireview). Because
of the diversity of enzymatic characteristics of the b-lactama-
ses, many attempts have been made to categorize these en-
zymes by using their biochemical attributes.

HISTORICAL CLASSIFICATION SCHEMES

Classification of b-lactamases on the basis of function began
when cephalosporinases, b-lactamases with high hydrolysis
rates for cephalosporins, were differentiated from penicilli-
nases, enzymes with good penicillin-hydrolyzing activity (88).
Functional classification schemes that have enjoyed acceptance
among b-lactamase researchers include (i) the classification of
Sawai et al. (270) in 1968, describing penicillinases and cepha-
losporinases by using the response to antisera as an additional
discriminator; (ii) the Richmond and Sykes (253) scheme in
1973 that included all of the b-lactamases from gram-negative
bacteria described at that time, classifying the enzymes into
five major groups on the basis of substrate profile; (iii) the
extension of the Richmond and Sykes scheme by Sykes and
Matthew (292) in 1976, emphasizing the plasmid-mediated
b-lactamases that could be differentiated by isoelectric focus-
ing; (iv) the scheme proposed by Mitsuhashi and Inoue (194)
in 1981 in which the category ‘‘cefuroxime-hydrolyzing b-lac-
tamase’’ was added to the ‘‘penicillinase and cephalospori-
nase’’ classification; and (v) the groupings proposed by Bush
(44–46) in 1989 that included enzymes from all bacterial
sources and that was the first scheme to try to correlate sub-
strate and inhibitory properties with molecular structure.
Molecular structure classifications were first proposed by

Ambler (2) in 1980 when only four amino acid sequences of
b-lactamases were known. At that time a single class of serine
enzyme was designated, the class A b-lactamases that included
the Staphylococcus aureus PC1 penicillinase, in contrast to the
class B metallo-b-lactamase from Bacillus cereus. The class C
cephalosporinases were described by Jaurin and Grundstrom
(132) in 1981, and class D oxacillin-hydrolyzing enzymes were
segregated from the other serine b-lactamases in the late 1980s
(121, 215). Eventually, as a result of more easily attainable
sequence data, sequences of all important b-lactamases will
become available, and an inclusive phylogenetic tree can be
constructed correlating the relationships among the molecular
and functional classes.

BUSH-JACOBY-MEDEIROS CLASSIFICATION

In this minireview an updated version of the Bush scheme is
presented, together with a dendrogram based on the currently
available b-lactamase sequences. Table 1 shows the correla-
tions between the proposed classification and other frequently
cited schemes. As in the 1989 system, four groups of b-lacta-
mases are designated: group 1 cephalosporinases that are not
well inhibited by clavulanic acid (Table 2), group 2 b-lactama-
ses that are generally inhibited by active site-directed b-lacta-
mase inhibitors and that belong to molecular classes A or D
(Tables 3 to 10), group 3 metallo-b-lactamases that are poorly
inhibited by all classical b-lactamase inhibitors except EDTA
and p-chloromercuribenzoate (pCMB) (Table 11), and group 4
penicillinases that are not inhibited by clavulanic acid (Table
12). Attempts were made to conserve the major groupings in

TABLE 2—Continued

IC50 for inhibition (mM) Inhibited by: Molecular
mass
(kDa)

pI Sequence Molecular
class Reference(s)

CA SUL TZB ATM CLOX pCMB EDTA

.100c 200c ND 12c ND 2 2 38 9.9 ND ND 113
ND ND ND ND ND 2 2 30 ND ND ND 195

.250 0.12 ND 2 0.074c 2 2 38, 41 9.3 ND ND 33
.40 ND ND 0.3 f 0.26 6 2 43 7.0 ND ND 124
42 1.6 15 ND ND ND ND 41 6.4 Nuc C 124, 245

.10 .10 ND ND .10 ND ND ND ND ND ND 295
ND ND ND ND ,3 2 ND ND ND ND ND 84
ND ND ND 0.046 f 0.007 f ND ND 34 8.9 Nuc C 206, 269, 273, 306–308, 328, 329
59k 3.8k ND 0.0014 f 0.005 f 2 ND 40 8.6 Nuc C 92, 97, 98, 161, 296
ND .100 ND 0.0012c 0.0005 f ND ND 32 8.8 Nuc C 43, 53, 97, 98, 103, 275

.100 5.6 0.009 0.0024c 0.0004 f ND ND 39 8.2, 7.8n Nuc C 48, 49, 53, 97–99, 103, 134, 275
710o ND ND 0.2o 0.5o ND ND ND 8.5 Nuc C 311
190 ND ND 0.0012 f 0.0005 f 2 2 39.6 9.2 Nuc C 36, 97, 98, 132, 143, 148, 162
360o ND 19o ND ND ND ND ND 8.5 ND ND 217

.100 .100 ND ND 0.007c 2 ND 39 8.7 ND ND 192
360 18 3.2 ND ND ND ND 37 8.8 Nucs C 89, 224

.100 ,100 100 0.020 0.024 2 ND 37, 35t 6.8, 7.2t Nuc C 101
800o ND ND 0.2o 1.0o ND ND ND 9.4 Nucu C 310, 311
210o ND 8.3v 0.4o 5.0o ND ND ND 8.4 Nucw C 217
5.6c ND ND 40 f 0.35c ND 2 38 8.9 Nuc Cx 117, 118

.100 .100 ND ND 0.001c 2 ND 41 8.7 ND ND 303
1,100c 8.9c ND ND 0.0004c ND ND 38–40 7.2 ND ND 95, 269, 271–273, 332
ND ND ND ND 100 2 ND 37.5 ND ND ND 35, 36, 145

.10 .10 ND ND 0.30 f 1 ND 42 8.7 ND ND 177
ND ND ND ND 0.013 1 ND 29 7.7 ND ND 28, 236, 258, 293
ND ND ND ND ND ND ND ND ND Nuc C 117, 168

.1,000 8 ND ND 0.006c 2 ND 34 8.7 ND ND 197
MD ND ND ND 0.023c 11 ND 34 8.7 ND ND 326
ND ND ND ND ,0.01 1 ND 39 4.3 ND ND 24
ND ND ND ,0.01 ND ND ND 37 .9 Nuc C 45, 97, 98, 133
51 5.2 6.0 33 ND ND ND ND 7.1 ND ND 47, 49
ND ND ND 0.012ac ND ND ND ND .9.0 ND ND 108

VOL. 39, 1995 MINIREVIEW 1213



T
A
B
L
E
3.
G
ro
up
2a
:p
en
ic
ill
in
-h
yd
ro
ly
zi
ng
en
zy
m
es
in
hi
bi
te
d
by
cl
av
ul
an
ic
ac
id
a

E
n-

zy
m
e

Pr
od
uc
-

tio
n

O
ri
gi
na
lh
os
t

St
ra
in

R
el
at
iv
e
ra
te
of
hy
dr
ol
ys
is

IC
50
fo
r
in
hi
bi
tio
n
(m
M
)

In
hi
bi
te
d
by
:
M
ol
ec
-

ul
ar

m
as
s

(k
D
a)

pI
Se
-

qu
en
ce

M
ol
ec
-

ul
ar

cl
as
s

R
ef
er
en
ce
(s
)

PE
N
A
M
P
C
A
R
B
C
L
O
X
O
X
A
L
O
R
L
O
T
F
O
X
N
C
F
T
A
X
T
A
Z
A
T
M

IM
P

C
A

SU
L

T
Z
B
A
T
M

C
L
O
X
pC
M
B
E
D
T
A

I
C
hr

B
ac
ill
us
ce
re
us

56
9

10
0

10
0

22
2.
0

10
,
0.
1

,
0.
1
N
D
et
b
11

N
D
c
N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

2
27
.8

8.
6

A
A
,N
uc
A

2,
62
,6
4,
73
,

14
6,
16
7,
31
7

II
I

C
hr

B
ac
ill
us
ce
re
us

56
9/
H
/9

10
0

71
N
D

0.
3

N
D

12
N
D
N
D

85
d
N
D

N
D
N
D

N
D

N
D

N
D

N
D

N
D

.
1,
00
0

N
D

N
D

31
.5

6.
8

N
D

A
64

C
hr

B
ac
ill
us
lic
he
ni
fo
rm
is

74
9/
C

10
0

68
18

0.
38

0.
45

29
2.
2
N
D

21
0.
30

0.
68

N
D

N
D

1
N
D

N
D

N
D

N
D

N
D

N
D

23
.0

N
D

A
A
,N
uc
A

63
,1
75
,1
83
,

23
7

N
D

C
itr
ob
ac
te
r
am
al
on
a-

tic
us
e

V
A
N

10
0f

28
53

N
D

7.
1

5.
0
14

N
D

N
D

N
D

N
D

N
D

N
D

,
4

,
10

N
D

N
D

2
N
D

N
D

22
4.
8

N
D

N
D

23
2

M
J-
2

N
D

C
itr
ob
ac
te
r
am
al
on
a-

tic
us

H
B
29

10
0

22
13
f,
g

,
0.
2f
,g

8.
5

3.
5
18

N
D

N
D

22
N
D
et

N
D

N
D

1
N
D

N
D

N
D

1
1

N
D

25
5.
55
,5
.4
N
D

N
D

40
,7
5

N
D

E
ik
en
el
la
co
rr
od
en
s

E
C
-3
8

10
0

17
0

15
,
0.
03
f
N
D

32
10

N
D

44
0.
1

N
D

,
0.
05
g

,
0.
01
g

0.
12
h

0.
61
h
N
D

.
40
0h

25
h

2
6
i

29
5.
5

N
D

N
D

15
5

N
D

F
us
ob
ac
te
riu
m
nu
cl
ea
-

tu
m

F
21

10
0

42
0

50
N
D

N
D

4.
9

0.
25
N
D

11
0

N
D

N
D

N
D

0.
03

,
10
j

80
0h

N
D

N
D

N
D

2
N
D

26
.0

4.
8

N
D

N
D

30
9

L
E
N
-1

C
hr

K
le
bs
ie
lla
pn
eu
m
on
ia
e
L
E
N
-1

N
D

10
0k

N
D

N
D

N
D

27
N
D
N
D

N
D
N
D
et

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
uc

A
10
,1
1

C
hr

K
le
bs
ie
lla
pn
eu
m
on
ia
e
SJ
22
l

10
0m

12
0

8.
5

N
D

N
D

8.
5

0.
80
N
D
et

N
D

1.
9
N
D
et
N
D
et

N
D

0.
07

N
D

N
D

71
0h

N
D

N
D

N
D

N
D

8.
1

N
D

N
D

22
8

N
D

K
le
bs
ie
lla
pn
eu
m
on
ia
e
L
16
4

10
0g

11
0

6
N
D

N
D

3
2

N
D
et

N
D
N
D
et
N
D
et
N
D
et

N
D

0.
05

N
D

N
D

N
D

N
D

N
D

N
D

N
D

8.
1

N
D

N
D

27
C
hr

L
ys
ob
ac
te
r
en
zy
m
o-

ge
ne
s

U
A
SM
49
5
10
0

21
0

38
,
1f

,
1f

16
35

N
D

N
D

7.
7f

N
D

N
D

N
D

0.
28

N
D

N
D

N
D

N
D

1
2

28
.
9.
6

N
uc

A
39
,3
18

N
D

N
oc
ar
di
a
fa
rc
in
ia

A
T
C
C
33
18
10
0

15
0

27
N
D

N
D

5.
1

0.
80
N
D

18
0

0.
40

N
D

N
D

N
D

0.
13

13
0

13
N
D

38
0

N
D

N
D

N
D

4.
49
,4
.5
6
N
D

N
D

29
0

N
PS
-1

pM
L
H
50
P
se
ud
om
on
as
ae
ru
gi
-

no
sa

M
30
2

10
0

22
0

18
N
D

40
3.
0
N
D
N
D

N
D

,
1

,
0.
1

,
0.
1

,
1

N
D

N
D

N
D

N
D

.
10
0

2
N
D

25
6.
5

N
D

N
D

16
4

C
hr

R
ho
do
ps
eu
do
m
on
as

ca
ps
ul
at
a

sp
10
8

10
0n

27
25

N
D
et

N
D

4.
0
N
D
N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

4.
5

N
uc

A
54

PC
1
(A
)
P

St
ap
hy
lo
co
cc
us
au
re
us
PC
1

10
0

18
0

N
D

N
D

N
D

1.
1

0.
01
N
D

14
N
D

N
D

0.
01

N
D

0.
03

0.
08

0.
03

35
0

N
D

N
D

N
D

26
.8

10
.1

N
uc
o

A
1,
2,
45
,4
9,

79
,3
38

B
N
D

St
ap
hy
lo
co
cc
us
au
re
us
22
26
0

10
0

26
0

N
D

N
D

N
D

4.
3

0.
06
N
D

11
N
D

N
D

N
D

N
D

0.
41
p

N
D

12
q

N
D

N
D

N
D

N
D

N
D

10
.1

N
D

N
D

38
,7
9,
33
8

C
N
D

St
ap
hy
lo
co
cc
us
au
re
us
V
13
7

10
0

17
0

N
D

N
D

N
D

2.
7

0.
05
N
D

6.
5
N
D

N
D

N
D

N
D

0.
62

N
D

12
2

N
D

N
D

N
D

N
D

N
D

10
.1

N
uc
q

A
38
,7
9,
33
8

D
N
D

St
ap
hy
lo
co
cc
us
au
re
us
F
A
R
10

10
0

29
0

N
D

N
D

N
D

2.
7

0.
02
N
D

57
N
D

N
D

N
D

N
D

0.
40

N
D

25
N
D

N
D

N
D

N
D

N
D

9.
7

N
uc
r

A
38
,7
9,
33
8

E
xo

N
D

St
re
pt
om
yc
es
al
bu
s

G
10
0

14
0

.
36

6.
8

9.
6

7.
1

9.
3
N
D

89
.
0.
04
N
D
et

.
0.
02

0.
04

,
20

N
D

N
D

N
D

25
0

N
D

2
30
.5

6.
0–
6.
5
N
uc

A
75
,1
37
,1
74
,

17
5,
19
0

N
D

St
re
pt
om
yc
es
ce
llu
lo
sa
e
K
C
C
-0
12
7
10
0f
,m

37
3.
7

7.
3

N
D

1.
0
N
D
N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

10
0

1
2

27
9.
5

N
uc

A
20
8,
20
9

a
A
bb
re
vi
at
io
ns
:A
A
,a
m
in
o
ac
id
;t
he
ot
he
r
ab
br
ev
ia
tio
ns
ar
e
de
fin
ed
in
fo
ot
no
te
a
to
T
ab
le
2.

b
N
D
et
,n
ot
de
te
ct
ed
.

c
N
D
,n
ot
de
te
rm
in
ed
.

d
R
el
at
iv
e
k c
at
/K
m
.

e
O
ri
gi
na
lly
,L
ev
in
ea
m
al
on
at
ic
a.

f
R
el
at
iv
e
hy
dr
ol
ys
is
ra
te
at
a
fix
ed
su
bs
tr
at
e
co
nc
en
tr
at
io
n.

g
M
ic
ro
ac
id
om
et
ri
c
as
sa
ys
.

h
K
i.

i
K
i
of
27
0

m
M
.

j
K
i
of
22
0

m
M
w
ith
ou
t
pr
ei
nc
ub
at
io
n
of
en
zy
m
e
an
d
cl
av
ul
an
ic
ac
id
.

k
A
m
pi
ci
lli
n
as
re
fe
re
nc
e.

l
T
he
fo
llo
w
in
g
th
re
e
st
ra
in
s
of
K
le
bs
ie
lla
pn
eu
m
on
ia
e
pr
od
uc
ed
pe
ni
ci
lli
na
se
s
w
ith
ve
ry
si
m
ila
r
pr
ofi
le
s:
SJ
22
,S
J2
3m
,a
nd
ST
40
3m
.

m
M
ic
ro
io
do
m
et
ri
c
as
sa
ys
.

n
R
el
at
iv
e
ra
te
s
of
hy
dr
ol
ys
is
w
ith
no
m
et
ho
do
lo
gy
gi
ve
n.

o
N
on
id
en
tic
al
ge
ne
s
fo
r
pe
ni
ci
lli
na
se
s
of
im
m
un
ol
og
ic
al
ty
pe
A
se
qu
en
ce
d
fr
om
st
ra
in
s
PC
1,
S1
,a
nd
10
71
(7
9)
.T
he
m
os
t
ab
un
da
nt
bi
oc
he
m
ic
al
in
fo
rm
at
io
n
av
ai
la
bl
e
is
fo
r
th
e
PC
1
en
zy
m
e,
fo
r
w
hi
ch
an
am
in
o
ac
id
se
qu
en
ce

w
as
de
te
rm
in
ed
se
pa
ra
te
ly
(1
).

p
D
at
a
fo
r
ty
pe
B
fr
om

st
ra
in
PC
11
16
(3
8)
.

q
N
on
id
en
tic
al
ge
ne
s
fo
r
pe
ni
ci
lli
na
se
s
of
im
m
un
ol
og
ic
al
ty
pe
C
fr
om

st
ra
in
s
37
96
an
d
38
04
ha
ve
be
en
pa
rt
ia
lly
se
qu
en
ce
d
(7
9)
.

r
G
en
e
fo
r
pe
ni
ci
lli
na
se
s
of
im
m
un
ol
og
ic
al
ty
pe
D
w
as
se
qu
en
ce
d
fr
om

st
ra
in
F
A
R
4
(7
9)
.

1214



the 1989 Bush outline. However, three changes are noted.
Because the number of TEM- and SHV-derived b-lactamases
continues to increase, it was decided to classify derivatives of
these enzymes in groups that retain the ‘‘2b’’ prefix. In place of
the former group 2b9 designation, the extended-spectrum
b-lactamases have been placed into a 2be group (Table 5), to
show that these are enzymes are derived from the group 2b
enzymes and have an extended spectrum of activity. Likewise,
the b-lactamases structurally derived from group 2b with re-
duced affinity for b-lactamase inhibitors have been placed into
a new group, group 2br (Table 6). It is anticipated that a
similar nomenclature could be used in the future to describe
closely related b-lactamases derived from enzymes in other
groups. The third group of enzymes added to the scheme are
the group 2f b-lactamases (Table 10), carbapenem-hydrolyzing
enzymes that are weakly inhibited by clavulanic acid and that
are now known to contain an active-site serine.
In the current scheme only b-lactamases from naturally oc-

curring bacterial isolates were added to the tables. The 1989
classification included representative enzymes for each genus
and for each grouping of b-lactamase. The additions to the
1989 tables have been more comprehensive, including a large
number of novel enzymes characterized in the past 5 years.
Also, some older enzymes reevaluated by using substrates or
inhibitors not available when the first data were reported for
those b-lactamases. As noted below, some of these recent
kinetic evaluations have caused selected enzymes to be reclas-
sified.

CLASSIFICATION STRATEGIES

Representative b-lactamases belonging to all molecular
classes are described in Tables 2 to 12, with separation into
groups based primarily on published functional characteristics.
The strategy used for classifying the enzymes was similar to
that used previously (44). Enzymes were first separated accord-
ing to their inhibition characteristics with the metal chelator
EDTA. b-Lactamases that were inhibited by EDTA were as-
signed to group 3, a group comprising only a small number of
b-lactamases.
After the metalloenzymes were isolated from other b-lacta-

mases, enzymes were grouped according to substrate profile.
Priorities were assigned according to the following consider-
ations. First, relative hydrolysis rates for benzylpenicillin and
cephaloridine were evaluated to determine whether an enzyme
would be classified as a penicillinase or a cephalosporinase. If
an enzyme hydrolyzed one of these substrates at a relative rate
approximately 30% less than that observed for the other b-lac-
tam, then the enzyme was assigned to either a penicillinase or
a cephalosporinase category. It should be noted that occasional
cephalosporinases hydrolyzed benzylpenicillin but no other
penicillins; on the basis of this activity and the differential
microbiological responses of the producing organism to peni-
cillins and cephalosporins, an assignment to group 1 was made.
Broad-spectrum enzymes were those that hydrolyzed the two
substrates at approximately equivalent rates (Table 4).
Subgroups of enzymes were further defined by examining

rates of hydrolysis of carbenicillin or cloxacillin (oxacillin) by
penicillinases. If cloxacillin or oxacillin was hydrolyzed at a rate
.50% that for benzylpenicillin, the enzyme was placed in
group 2d, a group that may also include enzymes that hydro-
lyze carbenicillin (Table 8). These enzymes are generally not as
well inhibited by clavulanic acid as are most group 2 b-lacta-
mases. If carbenicillin was hydrolyzed at a rate .60% that for
benzylpenicillin and cloxacillin or oxacillin was hydrolyzed at a

rate ,50% that for benzylpenicillin, the enzyme was placed in
group 2c (Table 7).
If hydrolysis rates for the extended-spectrum b-lactam anti-

biotics, ceftazidime, cefotaxime, or aztreonam, were .10%
that for benzylpenicillin, the enzyme was assigned to group 2be
(Table 5), the extended-spectrum b-lactamases. This group
was originally designated ‘‘extended-broad-spectrum b-lacta-
mases’’ (45), to reflect the broad-spectrum penicillin and ceph-
alosporin activities also exhibited by the enzymes within this
class. Cephalosporinases that hydrolyzed cefotaxime well but
that lacked good penicillin-hydrolyzing activity and that were
inhibited by clavulanic acid were assigned to group 2e (Table
9). Other exceptions were made for assignment to the 2be
group. The decision was made to include b-lactamases such as
TEM-7 and TEM-12, enzymes derived as a result of point
mutations in the TEM-2 and TEM-1 genes, respectively; even
though the hydrolysis criteria were not met rigorously, large
increases in hydrolysis rates for ceftazidime were noted com-
pared with those of the parent enzymes, resulting in increased
MICs of that cephalosporin for TEM-producing organisms.
Inhibition characteristics were then examined. Inhibition by

EDTA automatically defined an enzyme as a group 3 metallo-
b-lactamase. Inhibition by the suicide inactivator clavulanic
acid was an essential characteristic required for assignment of
most of the enzymes and, for the cephalosporinases, could
often be inversely correlated with inhibition by cloxacillin and
the monobactam aztreonam. For example, cephalosporinases
were grouped either into group 1 (Table 2) or group 2e. Group
1 enzymes were not well inhibited by clavulanic acid, but were
often inhibited by a low concentration of aztreonam or clox-
acillin. Group 2e cephalosporinases that were inhibited by
clavulanic acid did not have a high affinity for the monobactam.
Penicillinases that were not well inhibited by clavulanic acid

were assigned to group 4 (Table 12). Although all but two of
the enzymes in group 4 had hydrolysis rates for cloxacillin that
would qualify the enzymes for assignment to group 2d, the
resistance to inhibition by clavulanic acid was higher than that
seen for most group 2d enzymes. Therefore, these enzymes will
remain in group 4 until additional information, e.g., sequence
data, would indicate a more suitable assignment.

PARAMETERS IN TABLES

The parameters used in the tables are equivalent to those
described in the 1989 scheme (45), with additional substrate
and inhibition data included. Hydrolysis of oxacillin, cefoxitin,
and nitrocefin were added to the substrate profiles, and inhi-
bition by tazobactam was added. Hydrolysis of methicillin was
included for the enzymes in group 2d. It is noteworthy that
many of the substrate hydrolysis data now being provided in
published reports include Vmax or relative Vmax data. Compar-
ison of Vmax values is usually a better indication of enzymatic
characteristics than the relative hydrolysis rates obtained at a
single substrate concentration, data that were frequently re-
ported in earlier literature. Because of the prevalence of Vmax
data obtained spectrophotometrically, it will be assumed that
the data in the tables were reported as such unless indicated
otherwise.
It has been noted that use of the parameter Vmax/Km rather

than Vmax is a more informative measure of the hydrolysis
capacity of an enzyme (52, 175), especially at low substrate
concentrations. On the basis of Vmax/Km data, the differences
between penicillinases and cephalosporinases may become in-
distinct, because many cephalosporinases are found to have
high catalytic efficiencies for penicillin hydrolysis because of
low Km values (high affinities) for penicillins (97, 144). How-
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ever, because fewer Km data than hydrolysis data are available,
especially for some of the older enzymes, classification on the
basis of hydrolysis rates is being retained as the discriminating
factor among groups. This approach can be especially justified
for those b-lactams with low Km (,10 mM) as well as low Vmax
values; at physiologically attainable substrate concentrations
(.10 mg/ml, approximately 20 mM), Vmax would be the major
determinant of relative hydrolytic abilities.
Assay methodology has been indicated for each of the hy-

drolysis profile tables. Unless noted otherwise, the assays were
conducted spectrophotometrically. For many substrates, data
obtained by different assay procedures can be compared di-
rectly. However, hydrolysis rates obtained for the extended-
spectrum cephalosporins are consistently lower when spectro-
photometric assays are used for kinetic evaluations than when
microacidimetric assays are used to obtain the data. Compar-
ative data from both sets of assays have been included for
representative enzymes in group 2be in which these differences
may be most significant.
Since 1989 a number of novel b-lactamases have been de-

scribed, and they are included in the present groups. A set of
AmpC-like cephalosporinases that have moved from the chro-
mosome to plasmids has been described more frequently. Note
that the designation ‘‘AmpC’’ refers to a family of related
enzymes, not to the same protein produced in a variety of
members of the family Enterobacteriaceae. These plasmid-me-
diated enzymes have been added to group 1, because it was not
felt to be necessary to discriminate between chromosomal and

plasmid-encoded enzymes. The extended-spectrum b-lactama-
ses, whose numbers have increased significantly, represent one
of the largest groups of novel enzymes, with extensive bio-
chemical and molecular information being made available. In-
cluded among the recently described b-lactamases are the mu-
tant TEM enzymes with decreased susceptibilities to the active
site-directed b-lactamase inhibitors, now assigned to the new
group 2br. Additional metallo-b-lactamases have appeared,
most notably the plasmid-mediated enzymes from Pseudomo-
nas aeruginosa and Bacteroides fragilis that have appeared in
Japan. Although the b-lactamase in Pseudomonas aeruginosa
appears to be uncommon, the plasmid-mediated metalloen-
zyme in Bacteroides fragilis may be a more serious problem
(16). A last notable addition to the b-lactamase family is the
set of enzymes in group 2f, the carbapenem-hydrolyzing mo-
lecular class A b-lactamases. Previously, the only b-lactamases
with significant rates of hydrolysis for carbapenems were the
class B metallo-b-lactamases.

DENDROGRAM OF b-LACTAMASES

The complete nucleotide or amino acid sequence of many
b-lactamases has now been determined. A dendrogram ex-
pressing the molecular relationship among 88 enzymes classi-
fied in Tables 2 to 11 was constructed by the progressive align-
ment method (86) by using the Pileup Multiple Sequence
Analysis Program in the software package of the University of
Wisconsin Genetics Computer Group (76). Comparisons were

TABLE 4. Group 2b: broad-spectrum b-lactamases inhibited by clavulanic acida

Enzyme Produc-
tion Original host Strain

Relative rate of hydrolysis

PEN AMP CARB CLOX OXA LOR LOT FOX NCF TAX TAZ ATM IMP

CEP-2 PLQ3 Achromobacter sp. MULB 906 100b NDetc 48 NDet NDet 110 110 NDet NDd ND ND ND ND
Chr Alcaligenes denitrificans,

subsp. xylosoxydans
Adx 89/2 100b 15 5e ,1 ND 100 80 ND ND 1.5 1.0 ND ,1

Form I Chr Citrobacter diversus ULA27 100 21 10 0.01 36 160 11 ND ND ND ND NDet 0.003
OHIO-1 pDS075 Enterobacter cloacaeh

OHIO-1 pDS076 Serratia marcescensh 75 100b 140 11 ,0.5 ,0.5 79 8.0 ND ND ,1 ,1 ,1 ,1
SHV-1
(PIT-2)

p453 Escherichia coli P453 100 150 6.3 0.80 ,0.5 48 6.5 NDet ND 0.18 0.02 0.38 ,0.01

TLE-1 pMG204b Escherichia coli 7604 100b 67 13 6 4 52 15 2 ND 6 ND ND ND
ROB-1 RRob Haemophilus influenzae F990 100b 110 19 ,0.2 ND 37 4.5 ,1 ND ,1 ND ND ND
LXA-1 pMG219 Klebsiella oxytoca F177 100j 160 40 ,1 ,1 120 45 ND ND ,1 ND ND ND
TLE-2 pUK702k Klebsiella pneumoniae 175 100 140 13 ND ND ND ND ND 99 ND ND ND ND

Chr Klebsiella pneumoniae ST53 100b 120 8.5 ND ND 69 6.2 NDet ND NDet NDet NDet ND
(Chr?) Mycobacterium fortuitum D316m 100 107 19 ND 0.46 110 150 ND 850 5.6 ND ND ND
ND Mycobacterium smegmatis NCTC 8158 100 ND ND ,1n ND 77 22 ND ND ND ND ND ND

HMS-1 R997 Proteus mirabilis 100o 250 14 2.0 ,2 180 3 ND ND ND ND ND ND
TEM-2 RP1 Pseudomonas aeruginosa 1822 100 100 6.0 3.8 ND 120 9.4 NDet ND 0.08 ,0.01 0.4 ,0.01
TEM-1 R1p Salmonella paratyphi R7268 100 110 10 ,0.2 4 140 20 ND ND 0.07 0.01 0.3 ,0.01

a Abbreviations are defined in footnotes a to Tables 2 and 3.
bMicroacidimetric assays.
c NDet, not detected.
d ND, not determined.
e Ticarcillin.
f Ki.
g Km.
h Both strains were identified simultaneously.
i Inhibited with cephaloridine as the substrate; not inhibited when benzylpenicillin was the substrate (181).
j Substrate of 10 mM; relative hydrolysis rates.
k Also codes for TEM-1 and SHV-1 b-lactamases.
l Inhibited with nitrocefin as the substrate; not inhibited when benzylpenicillin was the substrate.
mMutant from Mycobacterium fortuitum ATCC 19542 after treatment with N-methyl-N9-nitro-N-nitrosoguanidine.
n Dicloxacillin as substrate.
o Iodometric assays; 5.0 mM substrate.
p Originally plasmid R6K (RTEM) was identified as producing TEM-1 (180). However, by 1978 a strain described as carrying the R6K plasmid produced TEM-2

as determined by amino acid sequencing (3), suggesting a mix-up of strains.
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made without the signal sequence whenever that information
was available. The configuration of such a dendrogram is a
function of the method used for its construction (77). The
alignments are also based on entire amino acid sequences
rather than critical motifs (100). Somewhat different trees have
been published previously on the basis of 18 (139), 31 (66), or
47 (207) b-lactamase sequences.
Figure 1 shows the dendrogram representing the clustering

relationships. Enzymes differing in only a few amino acids,
such as the many TEM and SHV derivatives, are joined to the
right of the figure. Vertical branch lengths extending to the left
are inversely proportional to the similarity between sequences,
but the dendrogram is not an exact phylogenetic alignment.
Furthermore, the program aligns all sequences supplied,
whether or not they are related. Nonetheless, there is a close
correlation between structural clustering and functional clas-
sification. Sequenced group 1 cephalosporinases belong to mo-
lecular class C. Group 2 enzymes with sequence information
are either in class A or in class D for the group 2d cloxacillin-
hydrolyzing enzymes. Group 3 metallo-b-lactamases are all
class B enzymes. On the dendrogram group 1, group 2d, and
group 3 enzymes are clustered on independent branches, while
the remaining group 2 enzymes form a complex pattern in
which enzymes assigned to different subgroups are intermin-
gled.
Because of the small size of group 4, it is possible that the

enzymes assigned to it may fall more readily into other groups
as their characteristics are further evaluated. For example, the
LCR-1 b-lactamase was assigned to group 4 in the 1989
scheme (46), but it was recently sequenced and found to be
closely related to the class D OXA enzymes (66). Upon reex-
amination of the hydrolytic properties of a highly purified
LCR-1 preparation, hydrolysis of oxacillin was shown to pro-
ceed rapidly (330a) so that the enzyme has been reassigned to
group 2d (Table 8).

DISCUSSION

Classification of a novel b-lactamase ideally should include
all of the parameters discussed above. However, realistically,
this is not always possible, nor is it necessary. Minimal require-
ments should include substrate profiles for benzylpenicillin and

cephaloridine or cephalothin as reference substrates. The
choice of additional substrates will vary according to the char-
acteristics of each enzyme. Often, the substrate profile of a
novel enzyme is suggested by the resistance phenotype of the
producing organism, provided that only a single enzyme is
present. Thus, if a member of the family Enterobacteriaceae is
resistant to expanded-spectrum cephalosporins but susceptible
to b-lactamase–inhibitor combinations, an extended-spectrum
b-lactamase is probably present and the substrate profile
should include cefotaxime, ceftazidime, and aztreonam as dis-
criminating substrates. At present, with the ease of obtaining
sequence data, it is often possible that the molecular class of an
enzyme will be known before a complete biochemical charac-
terization is available. If a class D penicillinase is identified,
substrates should include oxacillin and cloxacillin. Inhibitor
profiles should include clavulanic acid as a minimal require-
ment. Other inhibitors should be added to describe the char-
acter of the enzyme more completely. For carbapenem-hydro-
lyzing enzymes, possible inhibition by EDTA and pCMB
should be determined. For known class A or class C b-lacta-
mases, the latter two inhibitors may be omitted.
Although this functional grouping of b-lactamases is prob-

ably the most comprehensive that is available, no functional
classification will ever be completely satisfactory. All groupings
must assume a somewhat artificial set of constraints, because
b-lactamases are known to encompass a great deal of diversity
in the number of amino acid substitutions that can be tolerated
with the retention of b-lactam-hydrolyzing activity (216, 274).
As noted by Matagne et al. (175), there is a certain fluidity
between the various enzyme groups, depending on which en-
zymatic parameters are used and which substrates are used for
comparison. For example, the classical penicillinase from Ac-
tinomadura sp. strain R39, formerly classified in group 2a (45),
was first reclassified as a group 2be enzyme on the basis of
hydrolysis of cefotaxime, a substrate not available when the
enzyme was initially characterized. When Vmax values for both
cloxacillin and oxacillin were included, the penicillinases from
both Actinomadura sp. strain 39 and Streptomyces cacaoi KCC-
0352 were moved to group 2d, although the enzymes seem to
be more closely related on a molecular level to the class A
b-lactamases. Similar situations are certain to arise in the fu-
ture with enzymes that have not been examined by using the

TABLE 4—Continued

IC50 for inhibition (mM) Inhibited by: Molecular
mass
(kDa)

pI Sequence Molecular
class Reference(s)

CA SUL TZB ATM CLOX pCMB EDTA

ND ND ND ND .100 2 ND 36 8.1 ND ND 159
,10 ND ND .1,000 9,000 ND ND ND 9.5 ND ND 74

,80 ND ND 4.2f ,100g 1 2 29 6.8 Nuc A 5–7, 227

,1 #75 ND .1,200 13,000 ND ND 22 7.0 Nuc A 280, 316
0.03 17 0.14 2,500g 4.0 6i ND 28.8 7.6 Nuc A 19, 104, 148, 181, 222, 230

0.11 5.5 0.05 ND 100 ND ND 20 5.55 ND ND 185, 222
,0.01 ,1 ND ND ,100 ND ND ND 8.1 Nuc A 14, 61, 136, 189, 256, 257

,100 ND ND ND ,100 ND ND 24.0 6.7 ND ND 331
0.08 ND ND ND 90.0 6l ND 19.0 6.5 ND ND 249
0.03 ND ND ND ND ND ND ND 8.1 ND ND 228
ND ND ND ND ND ND ND 29.0 4.9 AA A 4, 302
ND ND ND ND 50.0 ND ND ND ND ND ND 193
ND ND ND ND ,100 1 ND 21.0 5.2 ND ND 181
0.18 8.7 0.05 2,900 ND 2 2 28.9 5.6 AA, Nuc A 3, 45, 51, 52, 87, 109, 179, 181, 222
0.09 6.1 0.04 5,400 1,000g 2 2 28.9 5.4 Nuc A 43, 45, 71, 72, 109, 110, 128, 181, 222, 291, 311
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TABLE 5. Group 2be: extended-spectrum b-lactamases inhibited by clavulanic acida

Enzyme Production Original host Strain
Relative rate of hydrolysis

PEN AMP CARB CLOX OXA LOR LOT FOX NCF TAX TAZ ATM IMP

TEM-3 (CTX-1) pCFF04 Klebsiella pneumoniae CF104 100 110 35 0.97 5 120 31, 110b ,1 NDc 170, 450b 8.3 0.36 0.01
TEM-4 pUD16 Escherichia coli CB-134 100b 50e 12 9 13 230 ND ,1 ND 300 10 ,1 ,1
TEM-5 (CAZ-1) pCFF14 Klebsiella pneumoniae CF504 100b 78e 60 ND ND ND 380 ND ND 150 490 120 ,0.1
TEM-5 pCFF14 Escherichia coli CF604 100 50 27 ,10 ND 300 48 ND ND 29 100 45 0.9
TEM-6 pMG226 Escherichia coli (several) 100b 37 19 6 25 200 51 ,1 ND 12 55 11 ,1
TEM-7 pIF100 Citrobacter freundii M2 100f 93 20 5.7 12 120 16 ND ND 1.9 1.7 ND ND
TEM-8 (CAZ-2) pCFF34 Klebsiella pneumoniae CF704 100b 240e 75 ND ND ND 170 ND ND 640 260 210 ,0.1
TEM-9 pMG228 Klebsiella pneumoniae 2639Eh 100 51 19 8.7 ND 67 33 ,0.05 ND 12 35 40 1.2
TEM-10 (MGH-1) pJPQ100 Klebsiella pneumoniae KC2 100 130 36 16 ND 77 18 ,0.05 ND 1.6 68 10 ,0.02
TEM-11 (CAZ-lo) P Klebsiella pneumoniae 2326 ND ND ND ND ND 100f,j ND ,0.5 ND 2.5 0.9 ,0.5 ND
TEM-12 (YOU-2)
(CAZ-3)

Chr/pUD27l Escherichia coli MG32 100 14f ND ,1b ND 57 22f ND 120f 2.4 3.8 6.1 ,1b

TEM-16 (CAZ-7) pCFF84 Klebsiella pneumoniae CF1304 100b ND ND ND ND ND ND ND ND 9.8 98 28 ND
TEM-20 pUD30 Klebsiella pneumoniae A268 100b 150 12m 2 ND 150 ND ND ND 250 ,1 ,1 ,1
TEM-21 pUD22 Klebsiella pneumoniae D660 100b 66 13m 1 ND 290 ND ND ND 493 57 ,1 ,1
TEM-22 pSLH52 Klebsiella pneumoniae SLK52 100b 97e 16 1 2 410 ND ,0.5 ND 130 10 ,0.05 ,0.5
TEM-24 (CAZ-6) pCFF74 Klebsiella pneumoniae CF1104 100b ND ND ND ND ND ND ND ND 208 848 134 ND
TEM-25 (CTX-2) P Salmonella mbandaka CF1509 100b 36e 17m ND ND ND 98 ,0.5 ND 140 ,0.5 ,0.5 ND
TEM-26 (YOU-1) pJPQ101 Klebsiella pneumoniae KPS1 100 ND 32 18 ND 120 ND ND ND 7.5 170 49 ND
SHV-2 pBP60 Klebsiella ozaenae 2180 100 150f,p 19b ND 18b 330b 110b ,1 ND 4f, 70b 6.5b 1.0b ,1b

SHV-3 pUD21 Klebsiella pneumoniae 86-4 100b 153 21 ,1 ND 250 ND ND ND 37 ,1 ,1 ,1
SHV-4 (CAZ-5) p210-2 Klebsiella pneumoniae Kp 210-2 100b 195 35m ND ND 320b 200 ND ND 115 52 4 ,1
SHV-5 (CAZ-4) pAFF1,

pCFF54
Klebsiella pneumoniae 160 (CF3104) 100 242 31b 9b 10f 140f 180b, 43f ND ND 134b, 25f 49b, 11f 2 ,1

SHV-6s pSLH47 Klebsiella pneumoniae SKL-47 100b 52 8m ,1 ND 80 ND ND ND 1 0.09 0.3 ND
ND Capnocytophaga spp. Van1 ND 32b ND ND ND 100b,j ND ND ND 11 1.3 ND ND

B1 ND Citrobacter amalonaticus A2370H 100b 19 11 ND 94 190 66 ND ND 35 NDett ND ND
B2 ND Citrobacter amolonaticus A2370H 100b 12 9 ND 37 180 64 ND ND 29 NDet ND ND
MJ-2 ND Citrobacter amalonaticus HB29 100b 8w 13w ,0.2 8.5 3.5 18 ND ND 22 NDet ND ND
MEN-1 P Escherichia coli MEN 100b 60e 8.2m ND ND ND 1,300 ND ND 170 1 6.5 ND
CTX-ase-M-1 pMVP-3 Escherichia coli GRI ND ND ND ND ND 100j ND ND ND 13 0.02 ND ND
K1 Chr Klebsiella aerogenesx K1082E 100 100y 9.5 14y ND 59 32 ND ND ND ND 14y ND
K1 Chr Klebsiella oxytocaaa SC10436 100 61 20 10 ND 36 16 ND 35 1.8 0.01 15 ,0.01

ND Klebsiella oxytocaab D488 100b 95 ND ND ND 140 91 NDet ND 7.0 NDet 8.9 ND
MJ-1 ND Klebsiella oxytoca IV4 100b,w 72 14 15 32 95 80 ND ND 19 ND ND ND
PER-1 Chr Pseudomonas aeruginosa RNL-1 100 170e ND ,0.5 ND 360 470 ,0.5 ND 1500 2500 1 ,0.5

Chr Pseudomonas cepacia GN11164 100 200 22 ND ND 62 200 ,1 ND 110 ND ND ND
Indac Pseudomonas pseudomallei HK21 100 32 20 ,1 ND 160 470 ,1 ND 250 ,1 ND ,1
ND Pseudomonas stutzeri 100 300 6.5 3.0 2.4 140 120 0.14 220 420 120 27 0.1

CTX-ase-M-2 pMVP-4 Salmonella typhimurium CAS-5 ND ND ND ND ND 100j ND ND ND 14 0.04 ND ND

a Abbreviations are defined in footnotes a to Tables 2 and 3.
bMicroacidimetric assay.
c ND, not determined.
d Km.
e Amoxicillin.
f Substrate of 100 mM.
g Inhibitor restored cephalosporin or penicillin activity in microbiological assays.
h Enzyme for hydrolysis was purified from transconjugant Escherichia coli 2639E (50).
i Identical amino acid sequences were reported for enzymes designated MGH-1 from Klebsiella pneumoniae (251) and TEM-23 from Escherichia coli F2 (315). At

least two nucleotide sequences have been identified (241).
j Cephaloridine was the reference substrate.
k The molecular class was identified by oligotyping.
l Also found on transposon Tn841 (111). Two nucleotide sequences have been identified (41, 58, 251).
m Ticarcillin.
n Ki.
o Two nucleotide sequences have been reported (112, 200, 251, 313).
pMicroiodometric assays.
q Inhibited with cephaloridine as the substrate; not inhibited when benzylpenicillin was the substrate.
rMultiple sequences have been reported for the SHV-2 b-lactamase.
s Not yet proven by sequence to be unique.
t NDet, not detected.
u Small effects of inhibitor were seen on the activities of cephalosporins in microbiological assays.
v B2 apparently derived from B1 on storage.
w Substrate of 240 mM for penicillin assays and 300 mM for cephalosporin assays.
xMost probably a Klebsiella oxytoca strain by current nomenclature.
y Substrate of 10 mM; relative hydrolysis rates.
z Amino acid sequences of active-site peptides of K1 enzymes from 1082E and SC10436 differed only at the residue preceding the active site serine: asparagine in

strain 1082E and cysteine in strain SC10436. Substitutions were compatible with differential susceptibilities to thiol group reagents (82, 135).
aa Originally designated Klebsiella pneumoniae.
ab Other b-lactamases described from Klebsiella oxytoca with similar substrate profiles are from strain E23004, enzyme with a pI of 7.4, Class A sequence (11); strain

GN10650, enzyme with a pI of 5.3 (125); strain KH111, enzyme with a pI of 5.2 (325); and strain 5445 (TEM-E2 on plasmid pUK721), enzyme with a pI of 5.3 (223).
ac Inducible enzyme activity was assumed to be chromosomal.
ad An isoform with a pI of 5.2 was identified in the purified protein preparation.
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same profiles as those used for a specific classification scheme.
Resolution of other discrepancies between classification by
structure and function may, as a result, elucidate critical re-
gions of particular enzymes contributing to their biochemical
properties. In spite of the anomalies mentioned above, how-
ever, the proposed scheme appears to be a workable, and
potentially useful, compilation of b-lactamase characteristics.
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TABLE 5—Continued

IC50 for inhibition (mM) Inhibited by: Molecular
mass
(kDa)

pI Sequence Molecular
class Reference(s)

CA SUL TZB ATM CLOX pCMB EDTA

0.03 0.03 0.01 18d ,100 2 ND 29 6.3 Nuc A 45, 140, 148, 221, 222, 283, 284, 286
,1 ,1 ND ND ,100 1 ND 24 5.9 Nuc A 221
0.03 1.2 0.28 100d ND 1 2 29 5.55 Nuc A 59, 148, 222, 229, 284
0.01 0.12 ND 270d ND 1 2 29 5.6 Nuc A 50
0.12 0.45 0.17 ND ND ND ND 29 5.9 Nuc A 22, 169, 217, 221, 222
0.10 0.62 0.18 ND ND ND ND 29 5.4 Nuc A 105, 222
1g 1g 1g 62d ND ND ND 29 6.0 Nuc A 56, 57, 59, 169, 170, 282
0.29 0.90 0.34 ND ND 1 2 29 5.59 Nuc A 50, 130, 170, 222, 287
0.03 0.34 0.08 30d ND 1 2 29 5.57 Nuc Ai 222, 240, 241, 251
1g 1g ND ND ND ND ND 29 5.6 ND Ak 169, 319
0.012 0.085 0.013 870d ,1000 ND ND 29 5.25 Nuc A 41, 58, 169, 251, 252, 315, 324

1 1 1 31d ND ND ND ND 6.3 Nuc A 57, 60
,5 1 ND ND ,1000 ND ND ND 5.4 ND Ak 26

,50 1 ND ND ,1000 ND ND ND 6.4 ND Ak 26
,0.05 .1 ND 38 ,100 ND ND 29 6.3 Nuc A 13

1 1 1 29d ND ND ND 29 6.50 Nuc A 57, 60
1g ND ND 92n ND ND ND ND 5.3 Nuc A 58, 238
0.01 0.35 0.08 89d 30d ND ND 29 5.58 Nuco A 200, 251, 252, 313
0.05 2.8 0.13 10d ,100 6q ND 29 7.6 AA, Nucr A 20, 120, 131, 141, 142, 148, 222
0.04 2.7 0.10 ND .1000 ND ND 29 7.0 Nuc A 131, 201, 316
0.03n 0.14n 1g 1.1d ND ND ND 29 7.8 AA A 12, 152, 225, 282
0.01 0.63 0.08 0.02n ND ND ND ND 8.2 Nuc A 12, 23, 31, 104, 222, 282

,1 1 ND ND .1000 ND ND ND 7.6 ND ND 12
1g ND ND ND ND ND ND ND 5.6 ND ND 255
6u 6u ND ND ND ND ND ND 6.05 ND ND 40
6u 6u ND ND ND ND ND ND 5.5v ND ND 40
1 ND ND ND ND 1 ND 25 5.55, 5.4 ND ND 40, 75
0.50 ND ND ND ND ND ND ND 8.4 AA A 18, 29
0.08 0.55 0.02 ND ND ND ND 30 8.9 ND ND 21
ND ND ND ND ND 2 2 26.5 ND AAz A 82, 166, 172
0.007 1.6 ND 800d 390d ND ND 27 6.5 AAz A 45, 48, 135, 290
0.2 f ND ND 1,350g ND ND ND ND ND AA A 18, 250
0.09 40 0.43 ND 1 2 ND 25 5.35 ND ND 75, 222
1 1 ND ND 1 ND 2 29 5.4 Nuc A 204, 205
1.7n 1.8n ND ND 3.4d 1 ND 22 9.3 ND ND 114

,10 ND ND ND 10 ND 2 30 7.7 ND ND 163
0.32d 3.0d ND 10d 0.94d 1 2 29 5.4ad ND ND 91
0.20 2.10 0.02 ND ND ND ND 30 7.9 ND ND 21
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TABLE 9. Group 2e: cephalosporinases inhibited by clavulanic acida

Enzyme Produc-
tion Original host Strain

Relative rate of hydrolysis

LOR LOT PEN AMP CARB CLOX OXA FOX NCF TAX TAZ ATM IMP

NDb Bacteroides fragilis G-242c 100 40 1.9 ND ND ND ND ND ND 4.0 ND ND ND
CepA Chr Bacteroides fragilis CS30 100f ND 1.0 ND ND ND ND ND 19 ND ND ND ND

pBFKW1 Bacteroides fragilis GAI-10150 100f ND 6.8 25 ND ND ND 0.3 ND 33 ND ND ND
CblA Chr Bacteroides uniformis WAL-7088 100 ND 10 ND ND ND ND ND 250 ND ND ND ND
CfxA Chr Bacteroides vulgatus CLA341 100f 68 11 7.2 ND ND ND ,0.01 290 1.0 ND ND ND

ND Capnocytophaga sp. Van2 100 ND ND 3.9h ND ND ND ND ND 2.7 0.35 ND ND
ND Capnocytophaga sp. IC 5/21 100 53 NDetj NDet NDet ND ND ND ND 46 ND ND ND

Form II Chr Citrobacter diversus ULA-27 100 5.9 14 5.9 3.1 ,0.01 11 ND ND ND ND NDet 0.01
FEC-1 pFCX1 Escherichia coli FP1546 100l 200 ND 17 ND ND ND NDet ND 23 0.13 ND ND
FUR P Klebsiella pneumoniae 1510 100m ND ND ND ND ND ND ,0.5 ND 5.8 ,0.5 ,0.5 ND

ND Nocardia brasiliensis Nb-361-1 100 21 ,1 ND ND ND ND ND 51 ND ND ND ND
FPM-1 pPM1 Proteus mirabilis 6003 100 240 ND 29 8.2 ND ND ND ND 20 0.26 ND ND

Indo Proteus penneri Wy 1001 100 50 3.4 8.5 ,1 ND ND NDet ND 48 ,1 ,1 ND
ND Proteus vulgaris GN76/C-1p 100l 120 14 15 2.0 ,0.1 ND ,0.1 ND ND ND ND 0.01
Ind Proteus vulgaris SC 10950 100 ND 9.6 24 ND ND ND ND ND 87 ,0.1 0.83 0.05
Chr Proteus vulgaris V3-conq 100 ND 24 51 3.3 ND ND 0.07 ND 22 ND ND (1)r

Chr Proteus vulgaris RO104 100 120 3.3 3.4h ND ND ND NDet ND 13 0.17 ND ND
L2 ND Xanthomonas maltophilia IID1275, GN12873 100 7.0 32 26 3.0 4.0 ND 0.001 ND 2.0 ND 12.0 25
BlaI Chr Yersinia enterocolitica Y56 100 250 38 32 12 ND ND NDet ND NDet ND ND ND

a Abbreviations are defined in footnotes a to Tables 2 and 3.
b ND, not determined.
c b-Lactamases from multiple strains of Bacteroides spp. with similar hydrolysis profiles were reported by Britz and Wilkinson (42), Olsson-Liljequist et al. (213), Sato

et al. (266), and Tajima et al. (295). Other strains such as Bacteroides fragilis GN11477 produce a cephalosporin-hydrolyzing enzyme with an undetermined inhibition
profile (266). See Rasmussen et al. (242) for a more complete compilation of Bacteroides b-lactamase characteristics (242).
d Ki.
e pI values for similar enzymes have been reported as 4.9 (213), 5.2 (266), 5.3 (213), and 5.6 (213).
f A single substrate concentration of 100 mM was assayed.
g Addition of clavulanic acid to amoxicillin lowered the MIC from 1,600 to 6.25 mg/ml.
h Amoxicillin.
i Addition of clavulanic acid to amoxicillin with Van-2-producing strains lowered the MIC from .64 to 0.25 mg/ml.
j NDet, not detected.
k Km.
l Acidimetric assay.
m Substrate at 100 mM.
n Inhibitor restored cephalosporin activities in microbiological assays.
o Inducible enzyme activity was assumed to be chromosomal.
p Cephalosporinases from Morganella morganii, Proteus inconstans, and Proteus rettgeri have been described by Sawai et al. (270). Other Proteus vulgaris cephalos-

porinases have similar substrate profiles but slightly different molecular sizes and isoelectric points: strain TN1945, pI 8.8; molecular mass, 28 kDa; strain GN4413, pI
8.2; molecular mass, 27.5 kDa; strain GN4818, pI 6.9; molecular mass, 27 kDa (212).
q A b-lactamase with a substrate profile similar to that of V3-con but a pI of 7.8 was also described from Proteus vulgaris Va1-con. Both were high-level

b-lactamase-producing (‘‘stably derepressed’’) strains that were selected with cefotaxime from parent strains with an inducible cephalosporinase (332).
r Hydrolysis followed biphasic kinetics.
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FIG. 1. Dendrogram showing relationships among b-lactamases clustered on the basis of structural similarities and their functional classification.

VOL. 39, 1995 MINIREVIEW 1231



novel carbapenem-hydrolyzing b-lactamase from Enterobacter cloacae, ab-
str. C62, p. 89. In Program and abstracts of the 34th Interscience Confer-
ence on Antimicrobial Agents and Chemotherapy. American Society for
Microbiology, Washington, D.C.

247. Rasmussen, B. A., Y. Yang, N. Jacobus, and K. Bush. 1994. Contribution of
enzymatic properties, cell permeability, and enzyme expression to micro-
biological activities of b-lactams in three Bacteroides fragilis isolates that
harbor a metallo-b-lactamase gene. Antimicrob. Agents Chemother. 38:
2116–2120.

248. Reid, A. J., and S. G. B. Aymes. 1986. Plasmid penicillin resistance in Vibrio
cholerae: identification of new b-lactamase SAR-1. Antimicrob. Agents
Chemother. 30:245–247.

249. Reid, A. J., I. N. Simpson, P. B. Harper, and S. G. B. Amyes. 1987.
Identification and characterization of a novel b-lactamase TLE-2, encoded
by plasmid pUK702. FEMS Microbiol. Lett. 44:125–128.
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