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We propose a stepwise mutation model to describe the dynamics
of DNA fingerprint variation in Mycobacterium tuberculosis. The
genome of M. tuberculosis carries insertion sequences (IS6110) that
are relatively stable over time periods of months but have an
observable transposition rate over longer time scales. Variability in
copy number and genomic location of (IS6110) can be harnessed to
generate a DNA fingerprint for each strain, by digesting the
genome with a restriction enzyme and using a portion of the
element as a probe for Southern blots. The number of bands found
for a given genome approximates the number of copies of IS6110
it carries. A large data set of such fingerprints from tuberculosis
(TB) cases in San Francisco provides an observed distribution of
IS6110 copy number. Implementation of the model through deter-
ministic and stochastic simulation indicates some general features
of ISyTB dynamics. By comparing observations with outcomes of
the model, we conclude that the ISyTB system is very heteroge-
neous and far from equilibrium. We find that the transposition
parameters have a much stronger effect than the epidemic param-
eters on copy number distribution.

E fficient molecular methods have allowed the recent genetic
characterization of parasitic agents. Such empirical work

greatly enhances our understanding of the epidemiology of
human diseases (1–4). These new data are the stimulus for the
development of theoretical and quantitative understanding of
how genetic variability among strains interacts with epidemic
processes. The molecular epidemiology of tuberculosis (TB) has
been well developed. The insertion sequence (IS) 6110 in the
genome of Mycobacterium tuberculosis is stable on the short time
scale of months, while transposing at an observable rate over
longer time periods. By digesting the genome with the restriction
enzyme PvuII and using a portion of the element as a probe for
Southern blotting, strains can be distinguished by the resulting
DNA fingerprints (2). The number of bands in each blot
indicates the number of copies of IS in the isolated genome.

The essential features of TB dynamics recently have been
explored (5–7). Those studies take into account the various
important aspects of the disease; for instance, a fraction of newly
acquired infections progress to the disease immediately while the
remainder enter a potentially long period of latent infection.
Using estimates of epidemiological parameters from the empir-
ical literature, those authors quantitatively characterize the
length of epidemics and assess the efficacy of control strategies.

Several theoretical studies have investigated transposon dynam-
ics. Many of these are constructed for diploid genomes, particularly
Drosophila (8–10). Sawyer and Hartl (11) and Moody (12) treat
stochastic models of transposable elements in prokaryotes (IS
elements), though without consideration of epidemic circum-
stances. Both studies allow a degree of horizontal transmission. The
latter includes replicative transposition (increase by one copy) and
deletion (decrease by one copy), whereas the former ignores
deletions, arguing that they are much rarer than transposition
events. These models bear formal similarities to simple stepwise
mutation models for microsatellites in which repeat scores may shift
up or down by a single step at a time (13–17).

This study aims to treat the dynamics of IS elements and TB
simultaneously. We propose a model that combines the particulars

of TB epidemiology with IS transposition as a stepwise process. We
discuss to what extent our model can explain the observed distri-
bution of IS copy numbers and draw qualitative conclusions re-
garding the forces that shape copy number distribution.

The Model
General Description, Assumptions. This study primarily considers a
deterministic model describing the dynamics of IS elements in a
TB epidemic. We follow four classes of states: susceptible (S);
latently infected but not infectious (L); active infectious cases
(T); and recovered individuals (E). Within the L and T classes,
we differentiate hosts by the genotype of the strain they carry.
Li is the number of individuals latently infected with TB carrying
a strain with i copies of the element, and Ti is the number of
diseased (infectious) individuals carrying a strain with i copies,
where i $ 0. These variables are population densities that change
over time (t). In our model each host carries at most one strain.

We assume a homogeneous population of constant size, N. All
deaths are balanced exactly by births or immigration of suscep-
tible individuals. Let bi be the transmission coefficient for a
strain with i copies of the element. The number of new infections
associated with an i-copy strain produced per unit time is biTiS.
A fraction p of new cases progresses immediately to the active
state, while 12p of new infections enter the latent state. Let v be
the rate at which latently infected individuals progress to the
disease per unit time. The copy number of the strain associated
with a newly infected susceptible is the same as that of the strain
transmitted by the infectious individual in an encounter. We
assume there is no superinfection (reinfection) or coinfection. In
other words, there is complete cross-protection among hosts
infected with different strains.

Mortality is modeled in the following manner: m is the per
capita death rate per unit time for susceptible and latently
infected individuals, and m 1 mT is the death rate for individuals
who have progressed to the disease. Active cases recover at the
rate f per unit time.

We now turn to the transposition-related parameters. A fraction
vi of cases associated with a strain carrying i copies undergoes a
change in copy number per unit time. The change is to i 2 1 or i
1 1 copies. This subsumes the process of within-host substitution.
We use the function vi 5 1 2 (1 2 v1)i, which combines the events
of multiple transpositions in a unit time into a single event. This
ensures that vi never exceeds unity. The parameter v1 is the rate at
which a transposition event takes place in a strain with a single copy.
The fractions of events leading to replicative transposition (gain by
a copy) and deletion (loss of a copy) are denoted by g and (1 2 g),
respectively. We allow a degree of horizontal transfer of the
element h, which is the rate at which strains acquire a copy of the
IS element from an external source (biologically, from a different
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strain). We then can compute the rates of substitution to a copy
number higher by one element, bi 5 gvi 1 h, and lower by one
element, ai 5 (1 2 g)vi.

We set a cost, c, to carrying IS elements, reflecting not only the
metabolic cost but the increased likelihood of damage to the
operation of a cell by disruptive insertion in or near coding regions,
or by deleterious chromosomal rearrangements. We subject the
transmission parameter to the cost in the following manner: bi
5 b0(1 2 c)i where i is the copy number and 0 , c , 1.

The process we model is represented in Fig. 1. The determin-
istic dynamics can be represented by the following differential
equations.

d
dt

Li 5 ~1 2 p!biSTi 1 ai11Li11 1 bi21Li21 2 ~ai 1 bi!Li

2 ~m 1 v!Li

d
dt

Ti 5 pbiSTi 1 ai11Ti11 1 bi21Ti21 2 ~ai 1 bi!Ti 1 vLi

2 ~m 1 mT 1 f!Ti

d
dt

E 5 O
j50

`

fTj 2 mE

S 5 N 2 S O
j50

`

~Lj 1 Tj! 1 ED , [1]

where bi 5 0, Li 5 0, Ti 5 0 for i , 0.

Overall Dynamics. We can find basic epidemic properties of the
SLTE system by combining the latent classes (defining X 5 Sj50

` Lj)
and similarly, the diseased classes (defining Y 5 Sj50

` Tj). Define
b# (t) 5 Sj50

` bjTjyY. This quantity is the average transmission coef-
ficient (weighted by the densities of active cases) at a given time.
Because bi is a decreasing function of i, 0 # b# (t) # b0. The following
relations describe the overall dynamics of the system:

d
dt

X 5 b# ~t!~1 2 p!YS 2 ~v 1 m!X

d
dt

Y 5 b# ~t!pYS 1 vX 2 ~m 1 mT 1 f!Y

d
dt

E 5 fY 2 mE

S 5 N 2 ~X 1 Y 1 E!. [2]

Apart from the fact that b# (t) is not constant over time, this
dynamic is very similar to the model presented in Blower et al.
(6, 7) and Porco and Blower (5). The basic reproductive value in
this process can be written as a sum of two components
corresponding to the ‘‘fast’’ (immediately active) and ‘‘slow’’
(first entering latent stage) pathways of TB infection:

R0 5 R0
fast 1 R0

slow 5
pb̂N

~m 1 mT 1 f!
1

v~1 2 p!b̂N
~v 1 m!~m 1 mT 1 f!

,

[3]

where b̂ is the limit of b# (t) as t3`. It can be shown (see ref. 5) that
the exact criterion for the epidemic to be initiated is R0 . 1.

In the absence of mutation, each strain is associated with a
basic reproductive value, R0,i, which is identical in form to Eq. 3,
with bi 5 b0(1 2c)i replacing b̂. We can derive a threshold

number of elements, iT, below which strains are able to invade
a susceptible population. The threshold occurs where R0,i 5 1.
That is, iT is such that

1 5 b0~1 2 c!iS pN
~m 1 mT 1 f!

1
v~1 2 p!N

~v 1 m!~m 1 mT 1 f!
D .

[4]

Solving for i, we have

iT 5
2ln~R0,0!

ln~1 2 c!
, [5]

where R0,0 is the basic reproductive value of strains lacking IS
elements in the absence of horizontal transfer and transposition.
The larger the magnitude of selection against the element (c),
the lower the threshold copy number. When c is small, as we
presume it to be, iT is very sensitive to changes in its value.

Numerical Investigation: Deterministic Iteration. Behavior of distri-
bution dynamics. We implemented a deterministic computer
simulation of Eq. 1 by using the Euler method. In this section we
choose one set of values for the parameters to demonstrate the
appearance of the transient dynamics. We imposed an artificial
upper boundary at 400 copies, which is well beyond the observed
maximum copy number. The epidemic parameters (v, p, m, mT,
and f) were chosen from the ranges given in Blower et al. (7).
These values are as follows: v 5 0.004; p 5 0.05; m 5 0.02; mT
5 0.1; f 5 0.058. The population size N was set to 500,000; R0,0
was set to be 6, and b0 was chosen to satisfy the relation (Eq. 3),
with b0 replacing b̂. We chose to specify R0,0 rather than b0 to
ensure that the epidemic is able to establish itself, so that the
copy number distribution can be assessed. The copy number of
the strain that initiates the epidemic (i0) is 10.

The transposition parameters v1 and g can be estimated by using
data in Yeh et al. (18) and Niemann et al. (19). In time units of years,
these studies yield estimates of v1 of 0.017 and 0.014 per element
per year, respectively. Naas et al. (20) estimate IS-related rates of
change in Escherichia coli to be 0.08 per year per culture, which
yields v1 . 0.008, when divided by the typical copy number of 10
(see table 2 in ref. 20). We note that our inferred v1 in IS6110yTB
is probably an overestimate, because some of the altered fingerprint
patterns suggest mixed populations (18), and the newly formed
strains may not be sufficiently abundant to be transmitted to the

Fig. 1. A scheme for the model. See text for a description of parameters and
the dynamical equations (Eq. 1).
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next potential host. For simplicity, our model allows instantaneous
substitution of strains within hosts rather than allowing mixed
populations. Therefore, assuming the estimated values to be upper
estimates of v1, we use v1 5 0.005. Combining data in Yeh et al. (18)
and Niemann et al. (19) gives g 5 0.643, and recognizing again that
the issue of mixed populations and the fact that additions are easier
to detect than deletions suggest that the actual value is overesti-
mated, we use 0.6.

There are no data for estimating the selection against the IS
elements, c, but we believe that it cannot be very high, otherwise
variation in the fingerprints would quickly be eliminated. We set
it to 0.001. Again, data are unavailable for estimating h, but
because gene exchange is known to be very rare in M. tuberculosis
(21, 22), we set this to 0.001, making it much lower than v1.

Numerical iteration of this process using these parameter
values reveals the following behavior (see Fig. 2). As the
epidemic escalates, the copy numbers diversify, forming a peak
near the initial copy number. The peak exists transiently and is
eventually lost. The strain with zero copies, that is, the strain
lacking IS elements, begins to dominate the population. In the
long run, the number of strains carrying IS elements decreases,
and IS becomes almost extinct. The equilibrium distribution is
highly skewed, with most of the strains lacking IS elements.

Uncertainty and sensitivity analyses. To assess the effects of the
epidemic and transposition parameters on copy number distribu-
tion for a range of different parameter values, we make use of the
numerical methods of uncertainty and sensitivity analyses (23).
Latin hypercube sampling is used to select parameter values. This

method divides the specified distribution of each parameter into
equiprobable intervals. Each interval is sampled exactly once
(without replacement) to form sets of parameters to be used in
simulations. This is an efficient method for selecting parameters
that reduces the number of simulation runs required to explore the
parameter space. Sensitivity of the output statistics to the param-
eters is assessed by calculating partial rank correlation coefficients
between each parameter and each of the output statistics. These
coefficients have the advantages of being nonparametric and of
adjusting for the variation in the other parameters (23).

The distributions of the epidemic parameters (v, p, m, mT, and
f) were taken directly from Blower et al. (7) with the following
exceptions. We have a constant population size, N, which we
select from a uniform distribution ranging from 1,000 to
1,000,000. R0,0 was drawn from a uniform distribution in the
domain 1–10 (7), and as stated in the previous section, b0 was
determined by the functional relationship between R0,0, b0, and
the other parameters (Eq. 3).

The transposition parameters (v1, g, h, and c) were given
broad ranges and specified as being uniformly distributed,
reflecting the preliminary nature of the empirical data. The
fraction of events leading to an additional copy g was restricted
to the range 0.4 to 0.6 because if g is set too high, the artificial
boundary produces spurious effects. Extremely low values of g
are biologically uninteresting (the element would rapidly be
lost). The distributions of all parameters are shown in Table 1.
Some of these parameters have triangular distributions, namely,
their probability density functions are determined by linear
segments. That is, the density function is

f~x! 5 5
2

~q 2 n!~s 2 n!
x 2

2n
~q 2 n!~s 2 n!

for n , x # s

2
2

~q 2 n!~q 2 s!
x 2

2q
~q 2 n!~q 2 s!

for s , x , q

0 all other x,
[6]

where n, s, and q are specified by Minimum, Peak, and Maxi-
mum, respectively in Table 1.

The output statistics are calculated at equilibrium. These are
(i) the mean copy number of the distribution, (ii) the variance in
copy number, and (iii) the fraction f0 of active cases in which the
strain involved is lacking IS elements. With 1,000 simulations,
the partial rank correlation coefficients between the parameters
and these statistics are given in Table 2. To test these correlations
statistically, we calculate the critical partial rank correlation
coefficients values beyond which the tabulated coefficients are
significantly different from zero. With a Bonferroni correction

Fig. 2. Deterministic numerical iteration. Parameter values used are as
follows: i0 5 10; n 5 500,000; R0,0 5 6; n 5 0.004; p 5 0.05; m 5 0.02; mT 5 0.1;
f 5 0.058; h 5 0.001; v1 5 0.005; g 5 0.6; c 5 0.001. The horizontal axis omits
the uninformative high-copy classes (.100). The vertical axis indicates num-
bers (Ti) of active cases.

Table 1. Distributions of parameters used for Latin hypercube sampling

Parameter Description Minimum Peak Maximum

i0 Initial copy number 1 30
N Population size 1,000 1,000,000
R0,0 Basic reproductive value 1 10
n Progression rate 0.0026 0.0053
p Immediate progression 0 0.05 0.3
m Nondisease death rate 0.0133 0.04
mT Disease death rate 0.0580 0.139 0.461
f Recovery rate 0.021 0.058 0.086
h Horizontal transfer rate 0 0.001
v1 Transposition rate 0.005 0.02
g Copy increase 0.4 0.65
c Cost per element 0 0.002

The parameters i0 and N were chosen from discrete uniform distributions; p, mT, and f had triangular
distributions (described in text: see Eq. 6); the remainder were chosen from continuous uniform distributions.
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for 36 tests, the critical values are 60.0257 for a significance level
of 0.01, and 60.0241 for 0.001. We remark that these thresholds
are only approximate because the structure of correlations
among the input and output parameters is unknown.

The long run mean of the copy number distribution is very low,
verifying the generality of the single simulation run of the
previous section (Fig. 2). The median of mean copy numbers
among the 1,000 runs was 1.44. The 10% and 90% quantiles
were, respectively, 0.16 and 14.66.

It is evident that the epidemic parameters have a weak effect on
all of the output variables. In contrast, the transposition parameters
have a strong effect. The fraction of transpositions leading to an
increase in copy number (g) and horizontal transfer (h) increase the
mean and variance and decrease the fraction of cases associated
with the zero-copy strain. Selection against the element has exactly
the opposite effect. While the transposition rate v1 contributes both
to increase and decrease in copy number, it counters the effect h at
the zero-one copy boundary. Thus, it has roughly the opposite effect
to h and g on the output statistics.

The forces most clearly controlling changes in the copy number
distribution are those associated with transposition, giving rise to a
balance between horizontal transfer and replication on one hand,
with selection and deletion on the other. Therefore, it is expected
that the transposition parameters should have stronger influences
than the epidemic parameters on the copy number distribution, and
the extent of this effect is revealed by the Latin hypercube sam-
plingypartial rank correlation coefficient analysis (Table 2). It is,
however, surprising that m and p should have such pronounced
effects, and this should be investigated further. The large role
played by horizontal transfer in the persistence of IS elements also
suggests a future direction of inquiry in which the process is
modeled in a more realistic fashion.

Numerical Investigation: Stochastic Simulation. This section de-
scribes the basis for a Monte Carlo computer simulation of the
model. We model the process in discrete time steps. Each
individual may undergo six kinds of events in each time step:
death caused by the disease, death from other causes, disease
transmission, progression to the diseased state, recovery, and
mutation of the strain responsible for infection. Whether or not
each type of event has occurred is decided by a separate
Bernoulli trial.

If the individual is susceptible, he or she may be infected with
probability biTi by another host infected with a strain carrying i
copies. The time step length was kept small enough to ensure
that b0N, which is the largest value the probability biTi can take,
was less than unity. With probability p, a new case will proceed
directly to the active disease state, and otherwise enter the latent
state. If an individual is latently infected, he or she may progress

to the infectious state with probability v. The strain carried by
individuals in the latent or active state may undergo change by
one copy, with probabilities bi up or ai down. All individuals die
with probability m. Individuals with active TB, also may die from
the disease, with probability mT. Recovery occurs with proba-
bility f per person. We ran the simulation a total of 5,000 times,
using the same parameter values as above, except with five
different values of g, the proportion of transposition events
leading to an increase in copy number.

As in traditional population genetic models, the stochasticity
produced by this process is important when N is small. Four kinds
of outcomes are possible from this process. First, the IS goes to
extinction, as anticipated from the deterministic model. Second,
the epidemic never establishes itself because early stochastic
f luctuations eliminate the parasite. Third, the epidemic estab-
lishes itself, but the entire distribution shifts to high copy
numbers, with low-copy strains being lost by chance. The epi-
demic then consists of low-fitness strains (with copy numbers
near or below iT) and eventually is extinguished. Notice that this
outcome is possible in the stochastic but not in the deterministic
model. Finally, if N is large, long-term persistence of IS elements
(along with TB) is possible (results not shown).

Table 3 shows the results of this simulation, with different
values of g and illustrates the strong effect of this parameter on
the extinction of M. tuberculosis along with the IS elements.

Thus, a stochastic framework leads to qualitatively different
outcomes from those of the deterministic model. From these
results, we predict that in sufficiently small and isolated human
populations, drift-like effects may bring about the loss of IS
elements, or both tuberculosis and IS, with probabilities that
depend on the parameters. The sample described in the next
section is drawn from an effectively large population that is
probably exempt from such effects.

Observed Distributions
Fig. 3 shows the distribution of the number of bands in each
DNA fingerprint of M. tuberculosis collected from San Francisco
patients in the period 1991 to 1997 (ref. 2 and unpublished data).
There is striking bimodality in this distribution.

Table 2. Partial rank correlation coefficients between input
parameters and output statistics

Parameter Mean Variance f0

i0 0.033 0.046 0.017
N 20.008 20.012 0.020
R0,0 20.408 20.420 0.270
n 20.004 20.004 0.000
p 20.184 20.178 0.127
m 20.222 20.258 0.118
mT 20.021 20.035 0.015
f 0.014 0.009 20.009
h 0.736 0.560 20.890
v1 20.356 20.036 0.774
g 0.864 0.900 20.673
c 20.505 20.525 0.383

Table 3. Outcomes from stochastic simulations

g IS extinct TB & IS extinct Early extinction

0.50 127 392 481
0.55 49 443 508
0.60 6 482 512
0.65 0 494 506
0.75 0 503 497

For each value of g, 1,000 simulations were run. The population size is N 5

1,000. Early extinction is defined as the extinction of TB before 20 years.

Fig. 3. Overall distribution of band (copy) number from the San Francisco
data set.
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Subsets of this data set were taken based on country of birth;
we present the four largest subsets (Fig. 4): United States (531
cases), China (224 cases), Philippines (204 cases), and Vietnam
(79 cases). The ‘‘locations’’ (medians) of the distributions are
clearly different when divided this way; this effect can be verified
by using a nonparametric test based on ranks (Kruskal-Wallis;
P ,, 0.0001). The USA-born distribution is similar to the overall
distribution, especially in having two modes. There is likely to be
further heterogeneity within the USA-born cases.

By comparing the observed distribution (Fig. 3) with outcomes
of the deterministic model (see previous), we suggest that the
process is not at equilibrium and has multiple origins. We explore
these possibilities next.

Discussion
We can view the entire process as an interplay between the
symbiotic dynamics of TB in humans and IS elements in M.
tuberculosis. The time scales of the two processes differ. Although
it is known that TB dynamics are very slow (7) and that the
IS-induced mutation rate is high, the relative time scales of these
processes are such that M. tuberculosis reaches endemic equilibrium
relatively quickly, after which the IS-based fingerprints continue to
diversify. We caution that our model does not consider the details
of the transmission or within-host processes, such as stochastic
effects brought about by bottlenecks in the bacterial population,
which may alter the speed at which equilibrium is approached. For
a more detailed characterization of the process, further modeling
and parameter estimation is necessary.

The highly skewed distribution at equilibrium in the deter-
ministic case may lead to the extinction of the IS element in the
stochastic case, as demonstrated in the Monte Carlo simulation.
Note the similarity to the stochastic Wright-Fisher process in
population genetics, where the zero-copy class, like extinction, is
an absorbing state (in the absence of horizontal transfer in our
case and mutation in population genetics). That the observed
distribution (Fig. 3) is not heavily skewed and does not include
many strains lacking IS elements (24) leads us to suggest that the
observed IS copy number distribution is not at equilibrium. The
peaks in the copy number distribution reflect recent events in the

history of TB. There is evidence that M. tuberculosis is itself a
relatively recent infection in humans (25). The interpretation
that equilibrium has not been reached is also consistent with
studies using secondary genetic markers in TB. Although it has
been shown that secondary markers allow IS fingerprint clusters
to be further differentiated, it is also evident that the states of
these markers are correlated with IS genotypes (25–27).

Outbreaks, which are out of equilibrium, are expected gen-
erally to possess peaked distributions of repeated elements. That
is, we predict that in isolated recently infected populations,
especially those in which progression to disease is rapid, such as
when HIV is prevalent, the copy-number distribution will be
sharply peaked. It also may be fruitful to use this kind of
genotyping (possibly with other markers) to estimate the time
since an outbreak began.

In evolutionary time scales, the presence and absence of IS
elements may be dynamic. The loss of a family of IS elements from
a taxonomic group may be countered by the gain of other IS
elements from distantly related taxa. Evidence has been uncovered
for the occasional movement of transposable elements across
taxonomic boundaries in the M. tuberculosis complex (28). Hori-
zontal transfer of transposons also has been well studied in Dro-
sophila species (29) and across a wider range of arthropods (30).

Sources of Bimodality. The model presented here provides only a
single (transient) mode apart from those at zero copies or at the
artificial upper boundary. That the observed data show two
modes and can be divided into separate groups that are statis-
tically distinct suggests that some kind of heterogeneity is
present. This heterogeneity may be spatial, temporal, behavior-
alydemographic, genetic, or a combination of such factors. There
could be outbreaks initiated at separate times or locations. Each
of these suboutbreaks, if it establishes itself in a population, will
produce a different peak in copy number, and the overall
distribution will exhibit multiple modes. The positions of the
local peaks strongly depend on the initial copy number that was
sampled. The host population might be demographically heter-
ogeneous. Alternatively, or in addition, there could be geneti-
cally distinct strains of M. tuberculosis. If a high-fitness strain

Fig. 4. Copy number distributions of subgroups of the data set. The data were divided by place of birth of cases. We chose to plot the four categories with
the largest totals: United States (open bars), China (dark gray bars), Philippines (light gray bars), and Vietnam (black bars).
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arises, for example through drug resistance, then another center
of diversification is born that overrides the original fitness
scheme laid out by the bi function and produces a separate peak
that again depends on the copy number associated with the
origin of the outbreak.

Persistence of IS. While the extinction of the IS elements is one
possible fate, there are two others to consider. First, the elements
may persist stably or persist for a very long time until extinction.
One potential source of persistence is horizontal transfer of the
element, which if frequent enough, may stave off extinction.
Although our model of this force is simplistic, the preliminary
conclusion is that horizontal transfer in TB is too rare for it to
increase the mean copy numbers to observed levels (21, 22) [for
discussion of low conjugation rates in E. coli see Condit (31),
Condit et al. (32), and Levin and Lenski (33)]. Therefore, in the
case of IS6110, the answer to the problem of persistence lies
elsewhere. Second, it may be that at least one copy of IS confers
an advantage over none, as might be the case if there is coding
information carried on the element. In this case, the copy
number with the highest fitness (and frequency at equilbrium)
would be near one and the element would still be somewhat
prone to extinction. This possibility cannot, at equilibrium,
account for the observed distribution. Third, persistence might
be prolonged if the transposition rate is substantially higher than
deletion rate (g ,, 0.5), and the element is regulated, that is, if
the rate of transposition or deletion per element decreases as the
copy number per genome rises. Fourth, the effects of IS element
insertion around the genome are likely to be heterogeneous; in
other words, there may be position effects. Strains with the least
deleterious insertions will be selected. High-copy strains then
may sidestep the fitness scheme of the process outlined here.

Finally, there may be occasional positive selection for strains
carrying the element through direct or indirect fitness benefits to
the host M. tuberculosis (compare ref. 34, a study using E. coli). In
evolutionary time, even rare mutations conferring selective advan-
tages to M. tuberculosis, linked to strains of intermediate copy
number, may prevent the process from ever reaching equilibrium,
thereby allowing long-term persistence of the IS element. IS
elements can be viewed as ‘‘mutators,’’ the population theory of
which has been studied (35–37). This explanation of IS persistence
presupposes that the elements are abundant when a new mutation
appears: selective sweeps occur frequently enough that the copy
number distribution is never allowed to go to equilibrium. Even
with this model, a family of IS elements occasionally will be lost. It
is useful to remember that the particular families of IS elements
chosen for characterization are those with high copy numbers (for

the variability they produce) and it is possible that other families of
IS have gone extinct.

Extinction of IS and TB. The second alternative outcome occurs
when the IS elements increase at a high rate (g .. 0.5). If there
is some cost to carrying the element, IS elements cause the
epidemic to become extinguished. With a rapid increase in copy
number, most strains will have more copies than the threshold
copy number (iT) (for which R0,i 5 1), and these strains will tend
to be lost quickly. We predict this to occur in relatively small local
host populations.

It may be advantageous for a transposable element to have
comparable deletion and transposition rates. This principle
should apply wherever there is a possibility of the host popula-
tion being eliminated (i.e., when hard selection operates), such
as in the case of infectious agents. However, we do not neces-
sarily expect this characteristic when transposition is strongly
regulated. While the preliminary estimate of g used in our
deterministic model is consistent with this hypothesis, it is
important to obtain better estimates of this parameter.

Conclusions
We have proposed a dynamic model that combines both trans-
position of a genetic marker within a pathogen and the epide-
miology of that parasite in the host population. Putting these
kinds of processes together demonstrates the relative impor-
tance of each in shaping the distribution of copy number of the
marker (IS6110). The epidemic parameters individually have
weak effects. The overall influence of these parameters is
indicated by the basic reproductive value, R0,0, which showed a
stronger correlation with properties of the copy number distri-
bution. In contrast, the transposition-related parameters have
very strong effects on copy number distribution.

Clearly, the observed distribution of IS copy number is not
described by the equilibrium distribution provided by the model.
The bimodality of the empirical distribution reveals that the
TByIS system is heterogeneous and not at equilibrium. The data
are effectively explained as a superposition of several transient
episodes of the kind described by the model.
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