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Abstract
Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of
advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis.
Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene
therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy
which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy
implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor
mass, immune stimulatory strategies, and these will all be the focus of this review.

Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an
established tumor mass and preventing further growth. Tumors employ several defensive strategies
that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms
involved in eliciting anti-tumor immune responses has identified promising targets for
immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy
tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the
added advantage that an activated immune system has the capability of recognizing tumor cells at
distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor
locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within
the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be
effectively targeted by the activated immune system following various immunotherapeutic strategies.
This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis
on advances made using gene therapy strategies, as well as reviewing other novel therapies that can
be used in combination with immunotherapy. Another important aspect of implementing gene
therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors,
treatment effectiveness and progression of disease. We have therefore reviewed the most exciting
non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to
monitor therapeutic efficacy over time.

INTRODUCTION
Brain cancers account for 1.4% of all cancers [1]. The most common primary brain tumor is
the glioblastoma multiforme (GBM), that accounts for 40% of all brain tumors. While overall
accounting for a small percentage of total cancer cases, GBM is highly aggressive with the
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average patient surviving no more than 12-18 months [2,3]. GBM are highly proliferative,
diffusely invasive, immunosuppressive, and highly vascularized tumors [4]. Current treatment
of GBM involves surgery, chemo- and radiotherapy; however, these therapies are only
marginally effective in altering the ultimate progression of this disease. After resection of the
tumor mass, survival depends on whether chemo- and radiation therapies are able to eliminate
the infiltrating cells [5] which invade healthy tissue. Genomic analysis of patients with GBM
has led to the identified a subpopulation of GBM that has previously been unidentified. These
patients respond well to current therapies and have a median survival time of more than 6 years
[6]. However, the majority of patients with GBM respond very poorly to current treatments
and the mean survival time following tumor resection is less than 18 months. Consequently,
new effective therapies are urgently needed to improve survival and the quality of life in
patients diagnosed with GBM.

Gene therapy, which is the use of nucleic acids as medicines, provides a novel alternative
therapeutic approach which can be harnessed to develop more effective treatments for GBM.
The most attractive therapeutic targets to develop gene therapies for GBM are conditional
cytotoxic genes, targeted cytotoxins which selectively bind to and kill tumor cells, anti-
angiogenic molecules which inhibit the formation of new blood vessels, pro-apoptotic genes,
molecules that block signal trasduction pathways know to be activated in GBM, genes that
express proteins that block growth factor receptors present in tumor cells, and also oncolytic
viruses which will specifically replicate within cancer cells, leading to their death. Gene
delivery vectors can also be used to deliver molecules which will enhance the immune system
of the host with the aim of producing an effective systemic anti-tumor immune response. In
this review, we will discuss the immune system within the CNS and how we can harness the
power of gene therapy to mount an effective immune response against GBM. We will also
discuss targeted therapeutic approaches which aim to deliver toxins selectively into tumor cells.
In view of the importance of being able to monitor disease progression and persistence of gene
therapies in vivo over time, we will also review current non-invasive imaging approaches which
can be used in conjunction with gene therapy.

IMMUNE BASED GENE THERAPIES FOR GBM
Immunotherapy has become an exciting area of research for treating tumors where
conventional treatment modalities have remained ineffective. The basic premise of a role of
the immune system in rejection of tumors, specifically allografts, was demonstrated more than
50 years ago [7,8]. This was an early example of how immune tolerance can lead to tumor
growth. Tumors generally express different levels of proteins than normal surrounding tissue,
and some of these proteins contain amino acid substitutions or deletions, or changes in
phosphorylation or glycosylation. Any of these changes in proteins expressed by tumors can
be sufficient for the immune system to recognize specifically proteins expressed by tumors as
antigenic, and mount an immune response against these proteins. There is some anecdotal
evidence in the literature of spontaneous regression of skin tumors, or even brain tumors
following infection, and it is believed that the immune system can mediate tumor rejection in
these cases [9-11]. However, this is not a common event and tumors secrete many anti-
inflammatory mediators and other proteins that can stifle the development of an effective anti-
tumor response. It has also emerged recently that regulatory T cells are commonly elevated in
patients with tumors and they play an active role in suppressing the response of the immune
system to the tumors [12]. With recent advances in our understanding of the components of
the immune system that are involved in invoking or repressing immune responses it has become
feasible to develop novel therapies that specifically target and eliminate tumors. A promising
field of research may be to stimulate the immune system against the tumor by modulating the
expression of cytokines using gene therapy. While immunotherapy is a promising approach to
brain tumor treatment, both the anatomical structure and immune milieu of the brain in

Curtin et al. Page 2

Curr Top Med Chem. Author manuscript; available in PMC 2006 October 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conjunction with the immunological features of brain tumors create a scenario in which
effective immunotherapy faces many challenges. Below we will discuss some of the challenges
that need to be surmounted before any of these therapies find their way to treat human GBM
patients.

THE BRAIN IMMUNE SYSTEM
For the immune system to work effectively, it must be able to constantly monitor for the
presence of foreign agents. This is known as the afferent arm of the immune system.
Additionally, once a foreign agent is detected, a link between the innate and adaptive immune
system must be made to activate the maturation and proliferation of cellular components of the
adaptive immune response. This process is commonly referred to as the efferent arm of the
immune system. In peripheral tissues and organs, innate immune cells such as macrophages
and neutrophils constantly circulate and monitor for antigen expression and pathogen invasion.
Macrophages and neutrophils phagocytose cell debris and other small particles, and
macrophages display this processed antigen to T-cells. Neutrophils usually die shortly after
phagocytosis and have not been considered very important as antigen presenting cells;
however, recently it has been shown that cytokines produced at the site of inflammation can
suppress apoptosis in neutrophils, and under these conditions neutrophils can become effective
antigen presenting cells [13]. When appropriately stimulated, T-cells release cytokines and
chemokines to induce activation of the adaptive immune response. Essential to activation of
adaptive immunity is the presentation of antigen to T-cells by professional antigen presenting
cells (APCs), the most efficient of whom are dendritic cells. Dendritic cells (DCs) migrate to
the draining lymph nodes to present antigens to T-cells. Clonal expansion and activation
CD4+ T-cells, CD8+ T-cells and B-cells that recognize this antigen then results in the
eradication of the antigen by the immune system. This process can also lead to the induction
of memory to prevent future infection from developing. A key requirement for DC activation
and the initiation of both innate and adaptive immune resposnes is the stimulation of Toll-like
receptors (TLR). TLRs are expressed on DCs and bind with conserved pathogen associated
molecular patterns (PAMP) and increase the expression of co-stimulatory molecules on the
surface of DCs and other APCs [14]. In the absence of co-stimulatory molecules, presentation
of antigen to T-cells usually leads to T-cell tolerance.

The brain is an organ with specialized mechanisms to protect and maintain its functions. Among
the specialized mechanisms is the interaction between the immune system and the brain
parenchyma, which has an immune system that works in different ways when compared to
peripheral sites, outside the central nervous system. For instance, if a pathogen is injected
directly into the brain parenchyma, without reaching the brain ventricular system, a transient
innate immune response occurs [15-24]; however, no adaptive immune response is mounted
excusively from within the CNS. Immune responses in the brain are limited by several factors.
Although immune cells are found within the cerebrospinal fluid (CSF), which drains into the
central lymphatic system of the body [25], lymphatic surveillance, observed in the rest of the
body, is not very efficient within the brain parenchyma. Foreign proteins and other antigens
that exit the central nervous system (CNS) through the ventricular system can be phagocytosed
and transported to peripheral lymphoid organs where they can elicit an adaptive immune
response. Likewise, activated memory T-cells can detect antigen within the CNS, and target
cells displaying antigenic epitopes. However, in the brain parenchyma of higher vertebrates
there is a complete absence of lymphatic structures, and a noticeable absence of immune cells.
Neutrophils, the largest population of circulating leukocytes involved in innate immunity, are
rarely detected in either the CSF or brain parenchyma [25,26]. DCs have not been detected in
the normal brain [25,27,28] although they are observed in the meninges and choroid plexi
[17,20,29-32]. Under inflammatory conditions both immature and mature DCs can infiltrate
into the brain [28,32-38]. While T-cells make up 80% of CSF cells [39], their presence within
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the brain parenchyma is limited unless an inflammatory condition exists. If a peripheral
immune response is elicited against an antigen which is present within the brain parenchyma,
then the activated immune cells can migrate into the CNS, and recognize the foreign antigen.
This suggests that the afferent arm of adaptive immunity is deficient in the CNS and this in
turn limits the response of the immune system to antigens which are exclusively located within
the CNS.

CHALLENGES IN BRAIN TUMOR IMMUNOTHERAPY
Immunotherapy within the central nervous system has unique challenges based on the
anatomical characteristics of the brain; however, the presence of a GBM adds another set of
challenges (Fig. 1). GBM create an environment that is favorable to their continued growth,
including evading detection by the immune system by creating an immunosuppressive
environment, in part through the secretion of the powerful immunesuppressant TGF-β [40].
Glioma patients have been characterized as anergic to common bacterial antigens, unable to
mount delayed type hypersensitivity responses, decreased circulating T-cells, depressed in
vitro proliferation responses of T-cells to mitogens, decreased antibody response, and
decreased antibody and T-cell cytotoxicity [41-47]. Interestingly, these peripheral dysfunctions
can be partially reversed upon tumor resection, clearly implicating tumor involvement in global
immunosuppression [48].

While the glioma itself is infiltrated mainly with CD8+ T-cells [49-53], the number of
peripheral T-cells in glioma patients are reduced [46]. Particularly affected are the number of
CD4+ T-cells whose reduction disrupts the ratio of CD4+:CD8+ T-cells [54-56]. The T-cells
isolated peripherally from glioma patients do not respond to mitogen in proliferation assays
[57-59] nor do they serve as helper T-cells (TH) in vitro [56]. T-cells from glioma patients
make and secrete less of the cytokine IL-2 essential for proper T-cell proliferation, and again,
CD4+ TH cells are more profoundly affected [60,61]. Human GBM are highly infiltrated with
macrophages, which comprise up to 30% of the tumor mass [49]. Glioma patients’ monocytes
have decreased MHC II expression on their cell surfaces as well as decreased IL-1β secretion
[62], which limits their ability to properly present antigens to T-cells. In addition to
immunosuppressive effects peripherally, tumor infiltrating monocytes may enhance glioma
growth through the production of growth factors [49,52,63,64], promotion of angiogenesis
[65-67] and tumor invasion [68]. Together, this evidence indicates that the environment created
by glioma cells actively affects the ability of the cellular and humoral adaptive immune
response to function within the tumor or become activated in the periphery, limiting the ability
of the immune system to eliminate the tumor (Fig. 1).

IMMUNOSUPPRESSION BY BRAIN TUMORS
Effects on peripheral immune cells may be mediated by the immunosuppressive factors
secreted intracranially by glioma cells [5,40]. Originally called glioblastoma cell-derived T-
cell suppressor factor [69], transforming growth factor-β (TGF-β) is the most well
characterized of these factors [41,63,69-78]. TGF-β is not produced in the normal brain but is
overexpressed by gliomas [73,74] and can act either to enhance or suppress tumor growth
depending on the stage of tumor development [4]. TGF-β directly inhibits B cell and T-cell
proliferation, cytotoxic T-cell development, monocyte cytokine marker expression, cytokine
secretion, and also promotes migration of tumor cells [40,63,69,73,75,76,79-85]. Within the
glioma mass, TGF-β downregulates MHC class II expression, decreasing antigen presentation
to CD4+ T-cells [86]. TGF-β suppresses the cytotoxic response triggered by tumor infiltrating
T-cells, and has been linked to the promotion of angiogenesis [87], tumor stroma formation
[73,88] and decreasing the number infiltration of T-cells, Natural Killer (NK) cells and
macrophages [89]. While many studies show links between TGF-β secretion and
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immunosuppression, others indicate that TGF-β alone is not sufficient to account for the
immunosuppression observed in GBM patients [40,90,91].

Other potential cytokines involved in GBM-induced immunosuppression are IL-10 [90] and
Prostaglandin E2 (PGE) [92,93]. IL-10 was identified as a cytokine synthesis inhibitory factor
affecting the production of a wide range of cytokines. The role of IL-10 is controversial and
can both enhance and inhibit glioma progression. Although IL-10 secretion from glioma cells
inhibits IFNγ and TNFα production, both of which are required for anti-tumor T-cell
proliferation and maturation [90,94]. Conversely, the use of IL-10 as a therapeutic agent
enhanced anti tumor immune responses [95]. While IL-10’s role in glioma mediated
immunosuppression is controversial, PGE directly decreases lymphokine activated killer cell
activity, T-cell activation and proliferation, and causes down regulation of MHC class II
molecules [96]. PGE may be important in the T-cell suppression observed in glioma, although
in vitro levels of PGE required for such effects are not physiologically relevant thereby
indicating it alone is not sufficient for glioma mediated immunosuppression [97].

Immunotherapy would overcome the difficulties currently encountered in brain cancer
treatment. Researchers have been actively exploring the potential of gene therapy to deliver
immune-target molecules to improve survival in pre-clinical models of glioma and also in
clinical trials. Interleukins, interferons, co-stimulatory molecules, death ligands, transduced
dendritic cells and immune cell growth factors have all been evaluated for anti-tumor effects
and will be discussed in the following sections.

GENE THERAPY OF BRAIN TUMORS USING DEATH RECEPTOR LIGANDS
The TNF receptor superfamily is a large group of receptors that play important roles in cell
survival, proliferation, differentiation and apoptosis. Many of these receptors appear to have
evolved in parallel with novel components of the vertebrate immune system and are important
mediators of many immune responses [98]. A subfamily of the TNF receptor superfamily are
death receptors, characterized by the presence of a conserved intracellular motif called the
death domain that can activate the apoptotic machinery of the cell. They regulate tissue
homeostasis by inducing cell death after binding with the corresponding death ligand [99].
Glioma and other brain tumors have been shown to express death receptors such as the Fas
receptor or TRAIL receptors (TRAILR1 and TRAILR2) [100,101]. Expression of the
corresponding death ligands, Fas ligand and TRAIL, in glioma using gene therapy has been
studied for their efficacy to induce apoptosis in the tumor cells. Many of these studies have
focused on the cytotoxicity in vitro, when glioma cell lines are infected with viral vectors
expressing either Fas ligand or TRAIL [102-106]. Despite some promising results in pre-
clinical models of glioma [107-109], Fas ligand and TRAIL have yet to demonstrate efficacy
in treating human patients with brain tumors.

GENE THERAPY OF BRAIN TUMORS USING INTERFERONS
Interferons are secreted by cells in response to viral infections or other inflammatory signals
and trigger potent anti-viral and anti-proliferative effects, including increasing the expression
of death receptors and other components of the apoptotic program, arresting the cell cycle and
stimulating the maturation of several effector immune cells [110,111]. Two families of
interferons have been described, based on their ability to bind with Interferon receptor I or
Interferon receptor II; type I interferons include Interferon α (IFNα), Interferon β (IFNβ) and
Interferon ω (IFNω), while the only type II interferon described to date is Interferon γ (IFNγ)
[111]. Type I and type II interferon receptors are present on most somatic cell in the body, and
are also expressed on many tumors. In part due to their potent anti-proliferative function and
their ability to stimulate the immune system, interferons have been evaluated as therapeutic
agents in a number of pre-clinical trials in brain tumors.
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Type I Interferons
Type I interferons (IFNα, IFNβ, IFNω) are expressed by most somatic cells immediately
following infection with a virus. They are also produced, in much greater quantities, by
Interferon Producing Cells (IPCs) of the immune system. These cells have since been identified
as plasmacytoid dendritic cells, a distinct lineage of dendritic cell found distributed throughout
the body [112,113]. Type I interferons possesses several tumorstatic or tumorcidal effects
including cell cycle inhibition [114,115] and induction of apoptosis [116,117]. In addition, a
cluster of type I interferon genes are commonly deleted from the genome of human gliomas
[118,119] indicating that this pathway may play a role in glioma progression. Consequently,
several groups have assessed the potential of type I interferon gene delivery to improve survival
in pre-clinical glioma models. In one study, it was found that direct intratumoral injection of
replication deficient adenovirus expressing IFNα significantly improved survival in a mouse
model of glioma. The authors found that survival was greatly enhanced when DCs were injected
into the tumor mass, and induced a specific cytotoxic T-lymphocyte (CTL) response against
the tumor cells [120]. Either activation of DCs by IFNα, or apoptosis induced in tumor cells
by IFNα may have resulted in improved antigen uptake by DCs and induced a potent CTL
immune response against the tumor [120]. IFNβ has also been successfully used as a gene
therapy approach for treating brain tumors in pre-clinical models and also in clinical trials. In
a mouse model of brain tumors using GL261 cells, it was found that intratumoral delivery of
IFNβ gene in liposomes significantly reduced the tumor volume. Furthermore, the authors
demonstrated that this effect was dependent on CD8+ but not CD4+ T-cells [121]. IFNβ loaded
liposomes have been delivered directly into the surgical cavity of 5 patients with recurrent
malignant glioma after tumor resection. Of these, 2 patients survived for more than 2 years
before succumbing to the disease [122]. Another approach that is currently being tested in a
Phase I dose escalation clinical trial is the use of adenoviral vectors to deliver IFNβ directly
into the surgical cavity following resection of glioma [123].

Type II Interferons
Interferon γ (IFNγ) is the only interferon known to bind to the type II IFN receptor. Intracranial
delivery of IFNα using gene therapy reduced tumor growth in pre-clinical models of glioma
by activation of the immune system [124] and inhibition of angiogenesis [125]. Delivery of
IFNα and TNFα in combination into established mouse glioma using recombinant adenoviral
vectors led to a significant increase in survival [126]. However, these results were not as striking
as those obtained for IFNα and IFNβ, suggesting that IFNγ may not be the most efficacious
choice for translation into clinical trials.

GENE THERAPY OF BRAIN TUMORS USING INTERLEUKINS
Interleukins (IL) are a family of small cytokines produced by leukocytes that play a key role
in coordinating the response of other immune cells during an immune response. Many
interleukins are important for proliferation or activation of immune cell subtypes, including
IL-2, IL-3 and IL-4. However, as we described above, some interleukins such as IL-10 actually
inhibit immune responses. The efficacy of Interleukin-2 (IL-2), IL-4, and IL-12 have been most
thoroughly studied in pre-clinical brain tumor models and will be discussed here.

IL-2
IL-2 is an interleukin produced primarily by T-cells. It promotes the proliferation of a variety
of T-cells in vitro, including TH and cytotoxic (TC) T-cells [127-129]. In vitro studies have
demonstrated that IL-2 is required for T-cell proliferation, activation and effector responses.
Consequently, it has been extensively studied as a potential therapeutic agent for treating
glioma. It was reasoned that by increasing T-cell proliferation and activation at the site of the
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tumor, the anti-tumor immune response could be increased. When syngeneic 9L tumor cells
engineered to express IL-2 were introduced into the CNS of rats, it was found that tumors
developed in the CNS. These grew more slowly than wild-type tumors, but all of the animals
eventually succumbed to the disease irrespective of IL-2 expression [130]. It was later found
by the same group that IL-2 producing cells transplanted into the CNS could effectively
eliminate established tumors by inducing immunity in peripheral tissues. This was
accompanied by an increase in cytolytic T-cell activity against 9L cells when analyzed by
Chromium release assay [131]. Combined administration of IL-2 with IFNγ, or IL-2 with IL-12
and P53 were also found to delay tumor growth in rodent models of glioma [132,133].
Unfortunately, none of these combined therapies were very effective at eliminating tumor cells.
With the recent development of IL-2 deficient mice and IL-2 receptor deficient mice, it has
become apparent that T-cell proliferation is redundant in vivo and IL-2 deficiency does not
decrease the numbers of T-cells at the site of infection. Instead of indiscriminately inducing
T-cell proliferation, it is now believed that the principle function of IL-2 is to stimulate the
proliferation of regulatory T-cells (TReg). CD4+/CD25+ TReg cells are absent in mice lacking
either IL-2 or IL-2 receptor, and autoimmune disorders invariably develop in these mice,
underscoring the importance of IL-2 in maintaining T-cell tolerance [134-136]. Consequently,
IL-2 may not be a useful transgene for inducing robust immune responses against brain tumors.

IL-4
IL-4 is commonly associated with the induction of a type II TH response. TH2 responses are
most important when defending against larger pathogens such as parasites, and also plays an
important role in allergy [137]. IL-4 is produced by T-cells and regulates the maturation and
proliferation of B-cells, mast cells and T-cells [138-142]. IL-4 expressing neuronal progenitor
cells were injected into established tumors in both rats and mice. This was found to increase
the survival of glioma bearing animals compared with controls [143]. In a related publication,
9L tumor cells were transfected with IL-4, IL-12, GM-CSF or IFNα. Although subcutaneous
injection of 9L cells expressing IL-4, GM-CSF and IFNα was found to promote immunity to
intracranial administration of parental 9L cells and prevented the establishment of intracranial
tumors, only IL-4 was found to improve survival in animals with pre-existing tumors. One
drawback of this approach was that rat 9L cells were transfected with mouse cytokines [144],
which may have resulted in the incorrect assessment on the efficacy of GM-CSF, IL-12 and
INFα when compared with IL-4. In fact, an earlier study by Sampson et al., found that GM-
CSF and not IL-4 was effective in eliminating tumors in a mouse model of glioma [145].
Notwithstanding, a pilot study designed to study the efficacy of tumor cells expressing IL-4
and HSV-TK in combination to bolster the anti-glioma immune response has been undertaken
in patients with malignant glioma [146].

IL-12
IL-12 is a cytokine that is associated with polarizing T-cells towards a type I TH response
(TH1) by mediating the differentiation of naïve T-cells. Systemic administration of
recombinant IL-12 has been demonstrated to improve survival in a variety of rodent tumor
models [147,148]. C57BL/6 mice bearing intracranial GL26 gliomas were treated by
intratumoral injection of adenovirus expressing IL-12 (AdmIL-12), or control virus. IL-12 was
found to significantly improve survival in these animals, indicating that IL-12 was able to delay
tumor growth. Although enhanced infiltration of CD8+ and CD4+ T-cells was detected in the
tumor tissue of animals injected with AdmIL-12, no significant increase in target cell lysis was
noted compared animals treated with control virus [149]. This data suggests that while IL-12
is capable of inducing increased T-cell proliferation and infiltration into the tumor, antigen
presentation is not markedly increased and the majority of these T-cells are as inefficient at
tumor lysis as in control animals. To circumvent this problem, Yamanaka et al., designed a
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DC that constitutively produces Semliki Forest Virus carrying the IL-12 transgene (SFV IL-12)
[150]. C57BL/6 mice bearing B16 tumors in the CNS were treated after 7 days with dendritic
cells producing either SFV-IL-12 or control viruses. It was found that immunization with
dendritic cells pulsed with SFV-IL-12 resulted in long-term survival in 40% of animals. This
was associated with an increase in IFNγ production by murine splenocytes [150].

DENDRITIC CELLS
A limitation with using either interferons or interleukins is that although they stimulate various
effector immune cells, they do not improve antigen presentation to DCs. Thus, although there
is an increase in tumor infiltrating T-cells at the tumor, there is no increase in the percentage
of T-cells that are stimulated by tumor antigens. To address this problem both co-injection of
DCs and gene therapy utilizing co-stimulatory molecules or DC growth factors have been
attempted.

Presentation of tumor antigen to T-cells and subsequent activation of the antigen-specific T-
cell can occur directly, via MHC expression on the surface of the tumor cells to activated
antigen specific T cells during the effector phase of the immune response, or indirectly, utilizing
specialized APCs called DCs, during the activation of naïve T lymphocytes within the lymph
nodes. Direct presentation of antigen is required for cytotoxic T-cell mediated killing of tumor
cells and occurs when activated tumor-antigen specific CD8+ T-cells bind via the T-cell
receptor (TCR) to MHC class I molecules, present on the surface of tumor cells, that display
tumor antigen. Co-stimulatory molecules such as B7.1 (CD80) are expressed on the cell surface
of DCs and other APCs and are required to first activate naïve T-cells following binding of the
TCR with MHC molecules displaying the tumor antigen. In fact, antigen presentation to naïve
T-cells in the absence of co-stimulatory molecules leads to T-cell tolerance rather than effector
T-cell function. Usually, specialized APCs such as DCs are first required to present antigen to
naïve, antigen specific T-cells in order to activate these T-cells. However, the possibility of
using a gene therapy approach to express co-stimulatory molecules on MHC-expressing tumor
cells and activate tumor specific T-cells. This was thought would circumvent the necessity of
dendritic cells to first activate naïve T-cells. In a mouse model of glioma, it was found that
B7.1 expression on tumor cells within the CNS was sufficient to improve survival in 60%
animals for longer than 120 days [151]. Survival was significantly greater than animals injected
with wild-type tumor cells, which survived for less than 20 days. However, the tumor model
used in this study was injected into the subarachnoid space, a region of the brain with a large
number of infiltrating immune cells, including T-cells and dendritic cells [151]. In two separate
studies, one using transfected glioma cells and the other using adenovirus expressing the B7.1
transgene to infect glioma cells in vitro before intracranial implantation, a very weak anti-tumor
response was observed This suggests that B7.1 expression alone is not sufficient to induce
strong anti-tumor immunity against brain tumors [152,153], most likely because priming of
naïve T lymphocytes normally occurs within the microenvironment of the lymph nodes.

Other groups have used purified dendritic cells alone, or in combination with other therapies,
to increase the levels of APCs at the site of the tumor. In effect, this approach is designed to
develop a dendritic cell vaccine against the tumor by stimulating various components of the
immune system. This has proved to be a successful approach in pre-clinical trials and there are
currently at least 20 Phase II and one Phase III clinical trials ongoing in the US that involve
injection of dendritic cells either directly into the tumor, or in the periphery [154-159].

Our group has developed a novel approach for increasing DC infiltration into the tumor. First
generation, replication-defective adenoviral vectors (RAd) were used to deliver human soluble
Fems-like tyrosine 3 ligand (Flt3L) directly into the tumor. Flt3L is a potent inducer of dendritic
cell differentiation, proliferation, and activation [160-162]. Considering that administration of
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purified recombinant Flt3L induces infiltration of dendritic cells into tumors and tumor
regression [163], our hypothesis was that expression of high levels of this transgene within the
brain tumor using RAd vectors would increase intratumoral DCs infiltration and enhance the
immune response against the tumor. Intracranial injection of RAdFlt3L significantly improved
survival in a rat model of glioma. A large increase in macrophages and CD8+ T-cells infiltrating
into the tumor was observed when compared with animals treated with controls [164]. This
suggests that overexpression of Flt3L in the tumor stimulates an anti-tumor immune response
that can eliminate tumor from the CNS.

HSV1-Thymidine Kinase (TK) has become the most popular and widely tested approach using
gene therapy for killing glioma cells in pre-clinical models [165-167]. TK converts a non-toxic
compound called ganciclovir into a toxic product that interferes with DNA synthesis and
induces cell death in glioma cells [165]. Patients with GBM were analyzed in a randomized
clinical trial that either received standard therapy including surgical resection and radiation
therapy or intracranial administration of TK in a retroviral vector in addition to standard
therapy. Although there was no difference in the levels of peripheral blood mononuclear cells
in either group, the authors demonstrated that patients that received TK in addition to regular
therapy had elevated IFNγ producing cells when stimulated with autologous tumor cells.
Furthermore, serum concentrations of IL-12 and soluble Fas ligand were also elevated in these
patients when measured by ELISA [168]. This was evidence that TK improved the ability of
the immune system to recognize the tumor, albeit weakly. A growing body of evidence shows
that tumoricidal therapies could induce some degree of tumor immunity [168]. Apoptotic tumor
cells are phagocytosed and processed efficiently by dendritic cells and mediate much stronger
anti-tumor immune responses. We hypothesized that TK expression in the CNS, in combination
with immune stimulation using Flt3L, would greatly enhance the immune response against the
tumor by providing apoptotic tumor cells to a large population of activated dendritic cells. This
recapitulates the strategies used by researchers to pulse DCs in vitro with tumor antigen, i.e.
coincubation of DCs with apoptotic glioma cells is known to dramatically improve antigen
presentation by facilitating the uptake and processing of tumor cells by DCs.

To test whether Flt3L, or adenoviral vectors expressing other cytokines, could improve survival
when combined with the cytotoxic RAdTK vector, viral vectors were injected into a large tumor
model in rats. Animals injected with RAdFlt3L alone were all dead by day 20, while RAdTK
treatment alone only improved survival in 20% of animals. However, when animals were
treated with RAdFlt3L and RAdTK together, 70% survived for more than 175 days (Fig. 2).
The use of first generation adenoviruses expressing IL-12, which promotes a TH1 immune
response, CD40L, a co-stimulatory molecule had no effect on survival even when combined
with RAdTK, suggesting that these immunostimulatory molecules were unable to promote a
strong immune response against the tumor [169]. Thus, increasing dendritic cells within the
tumor was a better approach to stimulating an immune response against the tumor than either
increasing T-cell function, or increasing the expression of co-stimulatory molecules on tumor
cells. Depletion of immune cells from glioma bearing animals before administration of
RAdFlt3L and RadTK showed that CD4+ T-cells and macrophages were required for tumor
regression [169]. In contrast, depletion of either CD8+ T-cells or NK cells did not affect the
survival of animals treated with RAdFlt3L and RAdTK, suggesting that these cells did not play
an important role in tumor regression [169].

A major advantage of stimulating DCs with tumor antigen in vivo instead of ex vivo is that DCs
encounter the tumor antigen in their natural environment. Other co-factors involved in antigen
processing and presentation are already available, simplifying the manipulation required to
maximize anti-tumor immune responses. In addition, these gene therapies can be administered
to patients at the same time as tumor resection by surgery, while ex vivo manipulation of DCs
requires a week or more before the patient can receive the immunotherapy. This means that
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the tumor is rapidly hit with the anti-tumor immune response, is not given any chance to recover
from surgical resection and the therapy can take advantage of any inflammation naturally
associated with the tumor resection.

CHEMOTHERAPY AND IMMUNOTHERAPY
Many immunotherapy trials are conducted in patients that have received or are currently
receiving chemotherapy. The majority of contemporary chemotherapeutic agents are often
designed to preferentially induce toxic chemical insults on tumor cells, leading to cell death
by apoptosis, necrosis, or autophagy. Molecular targets are identified that make tumor cells
more susceptible to chemical agents, for example, many target the rapid proliferation of tumor
cells compared with normal somatic cells of the body. It was quickly realized that the immune
response against the tumor is augmented in patients receiving chemotherapy at the same time.
Low levels of cell death, when detected by immune cells, leads to the suppression of
inflammation by stimulating the production of IL-10, TGF-β and prostanoids [170]. Apoptosis
occurs frequently even in healthy tissues and this anti-inflammatory response is believed to
prevent unnecessary inflammation and tissue damage in otherwise healthy tissues. Massive
levels of cell death leads also to the release of heat shock proteins (HSPs) and uric acid, both
known to be powerful inflammatory signals [171,172]. Studies using pre-clinical models have
indicated that immunotherapy and chemotherapy can be synergistic in the treatment of brain
tumors. For example, intracranial delivery of IL-2 alone marginally improves survival in an
intracranial model of metastatic melanoma in the brain of mice. However, combined therapy
with systemic administration of the chemotherapeutic drugs carmustine or carboplatin and
IL-2-transduced tumor cells dramatically enhanced long-term survival with 70% of animals
surviving for 70 days in a model where all controls were dead by day 20 [173]. It is important
to note that radiotherapy and many chemotherapeutic agents currently used against GBM are
also toxic to cells of the immune system. In particular, they tend to be toxic to rapidly dividing
cells and this may serve to disrupt or delay the development of immunity against the tumor
when combined with immunotherapy. A pre-clinical study noted that administration of
dexamethasone, a glucocorticosteroid given to reduce pressure within the CNS casued by
chemotherapy, in combination with IL-4 gene therapy completely abrogated the positive
effects of IL-4 immunotherapy on the tumor bearing animals [174]. The dexamethasone dose
found to cause complete immune suppression (250 μg/Kg/day) is equivalent to the dose given
to human patients together with chemotherapy (4mg qid). Even doses 5 times lower than this
still significantly inhibited the therapeutic benefits of IL-4 [174]. As a consequence, in clinical
trials that use immunotherapy in combination with conventional treatment modalities, the
immunotherapy is given first, and chemotherapy is given later after immunity against the tumor
is allowed to develop. In this scenario, chemotherapy given later tends to augment the immune
response that develops. For example, in a retrospective study of glioblastoma patients that
received DC vaccination and conventional chemotherapy after surgery, it was reported that
chemotherapy can improve the anti-tumor immune response in patients receiving
immunotherapy. Vaccinated patients with glioblastoma that received subsequent
chemotherapy were found to be tumor free for significantly longer than patients that received
either vaccination alone, or chemotherapy alone and had elevated anti-tumor responses and
CD8+ T-cell receptor excision circle content was predictive of response to chemotherapy
[175]. These studies in preclinical animal models and clinical trials suggest that by enhancing
the host immune response and reducing tumor burden, a synergistic effect leads to a more
efficacious therapy. A very attractive approach to specifically reduce tumor burden and release
tumor antigens which could be harnessed to stimulate a specific immune response against the
tumor, is the use of targeted toxins. Although targeted toxins are already in clinical trials for
treating GBM [176,177], below we will review the potential of combining targeted toxins and
gene therapy to develop safer and long lived therapies for GBM.
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TARGETED TOXINS FOR GLIOMA THERAPY
Novel chemotherapeutic agents that can induce widespread tumor cytotoxicity without adverse
toxicity to components of the immune system or healthy surrounding tissue are highly
desirable, as these would improve the efficacy of immunotherapies currently being developed
[178]. Receptors for the urokinase-type plasminogen activator (uPA) [179], transferrin
[180-182], pleiotropic immunoregulatory cytokines [183-188] and growth factors [189,190]
are overexpressed by human brain tumors but are virtually absent in the normal brain. Such
specificity makes these receptors very attractive targets for targeted therapeutic approaches in
glioma, minimizing any putative adverse side effects to normal brain tissue. Thus, ligands of
these receptors, such as IL-13, uPA, EGF and transforming growth factor α (TGF-α) have been
fused to the catalytic and translocation domains of highly cytotoxic bacterial products,
including Pseudomona [185,190,191] and Diphteria toxins [179,187,189,192], in order to
selectively kill glioma cells (Fig. 3).

IL-13
Established glioma cell lines, primary glioblastoma cell cultures and surgical glioma biopsies,
express a variant of the IL-13 receptor, IL13Rα2, different from its physiological counterpart,
i.e., IL13/IL4R [183-185,192,193]. The chimeric toxin composed of IL-13 and truncated
Pseudomonas exotoxin, also termed IL-13 toxin, exerts a potent cytotoxic effect in most human
glioblastoma cells tested in culture [185,187,191] and in vivo, in human xenografts consisting
of glioma cells implanted in the flank of nude mice [194]. Moreover, the intratumoral
administration of IL13-PE toxin into intracranial human glioma xenografts in immunodeficient
mice showed highly cytotoxic effects without undesirable side effects [195]. To optimize the
targeting of GMB-associated IL-13α2 receptor, a mutated human IL-13 which exhibits 50 fold
higher affinity for the IL-13α2 receptor present in human glioma cells when compared to the
wild-type IL-13 was engineered [196,197]. Fusion of this muIL-13 to PE resulted in an even
more active cytotoxin on glioma tumors both in vitro and in vivo [196]. Importantly, the muIL13
no longer interacts with the principal chain of IL4R, thus becoming ineffective in its binding
to this receptor and signaling through the physiological IL13/IL4R of normal cells. This in turn
decreases the already low toxicity of the chimeric toxin to normal cells [196]. Thus, although
this mutant has negligible affinity by IL-13 receptor of normal cells, it exerts an enhanced
cytotoxic effect towards glioma cells. The fact that IL13Rα2 is over-expressed not only in
glioma cells, but also in other malignancies, including renal cell carcinoma [198], ovarian
carcinoma [199], colon adenocarcinoma [185], epidermoid carcinoma [191], AIDS-associated
Kaposi’s sarcoma [200], prostate carcinoma [201] and pancreatic cancer [202], makes
IL13Rα2 a unique target for anti-cancer therapy. In a PhaseI/II clinical trial, patients with
glioblastoma multiforme were intratumorally injected with IL-13 toxin 8 days before surgical
resection [176]. Necrotic areas were found in the tumors from half the patients, suggesting that
the toxin successfully induced tumoral cell death.

IL-4
Human malignant glioma cell lines, primary cell cultures, and tumor specimens derived from
surgical samples also express high affinity IL-4 receptors [186,188]. A circular permuted IL-4
fused to a mutated form of Pseudomonas exotoxin, showed highly cytotoxic effect to cancer
cells, but was not toxic to normal cells that express detectable IL-4 receptors, such as, B-cells,
T-cells, and monocytes [203]. In vivo models of human glioblastoma in immunodeficient
animals demonstrated that this immunotoxin also exhibits remarkable anti-tumor activity
[204,205]. Phase I and Phase I/II clinical trial were developed for the treatment of recurrent
glioblastoma multiforme, showing that IL-4 cytotoxin intratumoral administration to patients
has an acceptable safety profile, being well tolerated at low doses [177]. These studies suggest
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that this cytotoxin has anti-tumor activity, inducing necrosis in the tumor parenchyma, without
histological evidence of toxicity to normal brain tissues [206]. Although local toxicity, such
as intracranial edema, was reported, it seems to be due to tumor necrosis or occasionally to the
volume of infusion.

Transferrin
The cytotoxic activity of targeted toxins constructed with human transferrin fused to
Pseudomonas toxin or with Diphteria toxin was detected in human brain tumor cell lines
[180,182]. In ex vivo experiments, pediatric brain tumor tissues were shown to be sensitive to
transferrin-diphteria toxin [182], being that the toxin efficacy correlated with tumor grade.
Transferrin receptor expression was high in the more aggressive and malignant tumors, such
as glioblastoma multiforme and medulloblastoma, which were extremely sensitive to
transferrin-diphteria toxin, while slow-growing and benign tumors expressed lower levels of
receptor and were not as greatly affected by the toxin. Nude rats inoculated intracranially with
human glioblastoma biopsy specimens, which develop highly infiltrative brain tumors,
received direct interstitial infusion of transferrin-diphtheria toxin, showing strong anti-tumor
efficacy [207]. In clinical trials, patients with recurrent malignant brain tumors, which were
refractory to conventional therapy, were locally treated with the transferrin-diphteria toxin
administered by high-flow interstitial microinfusion [208]. Although episodes of local toxicity
in some of the patients were reported, direct interstitial infusion was shown to successfully
distribute the toxin in the tumor and infiltrated brain areas, achieving anti-tumor responses
without severe neurologic or systemic toxicity [209].

EGFR
Overexpresssion of EGFR was found in more than 50% of high grade gliomas by several
authors [187,210-212]. EGFR ligands, such as EGF and TGF, have been fused to Pseudomonas
and Diphteria toxins. A chimeric toxin consisting of TGF and Pseudomonas toxin was
systemically administered to nude mice bearing glioblastoma xenografts in the flank, inducing
tumor regression [190]. However, mice bearing intracranial tumors required intratumoral
administration of the toxin to increase survival time. Overexpresssion of EGFR was found in
more than 50% of high grade gliomas by several authors [181,210-212]. EGFR ligands, such
as EGF and TGF, have been fused to Pseudomonas and Diphteria toxins. Diphtheria toxin was
fused to EGF and systemically administered to nude mice bearing subcutaneous human glioma.
The toxicity of the fusion protein at high doses included loss of activity, reduced oral intake,
and dehydration, elevated blood urea nitrogen, creatinine, aspartate transaminase, and alanine
transaminase and renal tubular necrosis. However, tumor regression was seen in all animals,
while relapses occurred 25% of the animals [189]. A chimeric toxin consisting of TGF and
Pseudomonas toxin was systemically administered to nude mice bearing glioblastoma
xenografts in the flank, inducing tumor regression [190]. However, mice bearing intracranial
tumors required intratumoral administration of the toxin to increase survival time. In a Phase
I trial the dose limiting toxicity of this chimeric toxin was determined after convection-
enhanced delivery in patients with recurrent malignant brain tumors. In this study, which
included 20 patients, the maximal tolerated dose could not be established, being the overall
median survival 23 weeks after intracranial administration of the toxin [213]. Considering that
EGFR is overexpressed not only in malignant brain tumors, but also in other neoplasias,
including squamous cell carcinomas, adenocarcinomas, sarcomas, brain and germ line tumours
[214], this receptor constitutes a promising target for anticancer therapy.

Although the expression of one or more of these receptors is wide spread between malignant
brain tumors, which of these is overexpressed in each particular patient needs to be determined
prior the treatment for the therapy to be successful or the administration of a cocktail of chimeric
toxins could address the individual sensitivity to this novel and promising therapy. A drawback
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to the use of these toxins in clinical setting is that the half-life after intracranial administration
is short requiring long periods of constant intracranial infusion. An approach that combines
gene therapy with the targeted toxin technology may circumvent this problem by continually
expressing chimeric toxins within the CNS.

CONSIDERATIONS WHEN USING IMMUNOTHERAPY AND GENE THERAPY
TO TREAT GBM
Auto-Immune Disorders Induced Through Immunotherapy

Immunotherapy used to treat melanoma has been associated with autoimmune response to
melanocytes, resulting in autoimmune vitiligo [215,216]. A major consideration with using
immunotherapy to treat brain tumors, or any other brain disease, is that the CNS contains a
number of antigens not normally visible to the immune system. Tolerance of the immune
system to these antigens does not develop and later exposure of the immune system to these
antigens may potentially induce a harmful autoimmune response. Recent research has
illuminated many of the mechanisms leading to autoimmune disorders against CNS antigen,
and in particular, in models of multiple sclerosis. It has been postulated that APCs may be able
to take up CNS antigen process it and present it to naïve, antigen specific T-cells without the
need to migrate to proximal lymph nodes. Furthermore, persistent presentation of dominant
proteolipid protein (PLP) antigen is necessary to stimulate auto-immune diseases [217,218].
We have analyzed the motor coordination and immune cell infiltrates into the CNS of long-
term survivors of glioma treated with RAdTK and RAdFlt3L. Lewis rats were used, as these
have previously been shown to be susceptible to experimental autoimmune encephalomyelitis
(EAE) [219,220]. None of the animals were observed to display any overt symptoms of EAE.
However, elevated CD8+ T-cells infiltrating in the corticospinal tract and meninges of all
survivors treated with RAdFlt3L, RAdIL-12 and RAdCD40L, suggests that this may be a side
effect of immunotherapy against CNS tumors [169] although none of the long term surviving
animals developed clinical auto-immune disease.

IMAGING GENE THERAPY AND DISEASE PROGRESSION IN VIVO
Accurate Assessment of Tumor Regression and Gene Therapy Distribution

By inducing anti-tumor immunity, it is important to note that tumor regression will occur more
slowly than with conventional chemotherapeutic agents. This is due to the nature of an immune
response, which, after identifying antigen for destruction, undergoes a phase of clonal
expansion where effector cells are produced in large numbers. This process can take a week
or more, before these cells mature and enter the tumor, where they target tumor cells and induce
cell death. In order to correctly monitor the response of the patient to the tumor, imaging
systems currently available in the clinic and novel imaging technologies will be required. A
number of imaging techniques are available and are applied in the field of neuro-oncology,
including MRI scans, PET scans, PEBBLEs, 3T1HMR Spectroscopy and Infrared (IR) Imaging
Spectroscopy [221]. Several useful applications exist for each imaging technique, especially
for gliomas within the brain. MRI and PET scans provide an informed diagnosis of the tumor,
determining the size, vascularity, severity and type (primary vs. metastic). They also track the
progression of the tumor much more efficiently than biopsies, which can give an incorrect
assessment of tumor size, due to the heterogeneous nature of gliomas. MRI and PET scans are
non-invasive methods which can be used for checking the effectiveness of radiation treatment
and gene therapy and provide a means to track the tumor pre- and post-operatively, denoting
the area that needs to be excised (or that requires surgical treatment) and identifying remaining
regions containing tumor infiltrates after resection. They also serve to monitor and assess the
rate and extent of tumor regression following therapy, and in particular, will allow the physician
to monitor any regions of the brain that may contain tumor infiltrates.
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Magnetic Resonance Imaging (MRI)
MRI uses a powerful magnetic field to determine the nuclear magnetic spin and resonance
properties of a small volume of tissue. Different tissues have different nuclear magnetic spin
and resonance properties, and by collating this information, a scan of the tissue or body can be
produced. The use of MRI to detect tumors is based on the observation that tumors and normal
tissue differ in the time required for nuclear magnetic relaxation [222]. Before surgery, imaging
allows the surgeon to know if the glioma is embedded in an inaccessible area within the brain.
If surgery is reasonable, imaging enables the opportunity to determine whether or not the tumor
has been completely or partially removed. MRI diffusion imaging provides fibre-tract mapping,
thus enabling the surgeon to plan the surgical strategy more efficiently. Once the tumor is
removed, intraoperative MRIs can detect remaining tumor infiltrates within the brain. To aid
surgical accuracy, 3D imaging techniques are being developed to reveal all of the
heterogeneous aspects of GBM [223]. These systems will improve the oncologist’s
understanding and knowledge of the tumor; size, location, and infiltration into surrounding
CNS tissue and allowing more successful tumor resection.

Many imaging techniques are able to track the progression and grade of the tumor. Often
imaging relates directly to the histopathological characteristics and the clinical behavior of the
tumor. For example, a biopsy may indicate a low-grade tumor; however, while that particular
section of the tumor expresses traits of a low-grade tumor, other portions of the tumor may
express high-grade tumor characteristics such as invasion or metastasis. By comparing old
MRIs to more recent ones, oncologists can establish a treatment appropriate for that specific
tumor progression pattern. Successive imaging surveillance allows early detection of tumor
progression, for progression is variable depending on age, etc. MRI’s may also elucidate
clinical behavior unexplainable by biopsy sections. By comparing changes in vascular volume
to changes of tumor size after gene therapy treatment, one can be able to verify whether or not
the treatment is effective.

Positron Emission Tomography (PET)
Usually, brain tumors are visualized with different, complimentary imaging techniques. While
MRI detects changes in tissue density, and is useful for studying the anatomy surrounding the
brain tumor, PET scanning is often a more sensitive technique for detecting small tumors.
Unlike MRI, PET scanning detects the decay of a radioactive molecules. Chemical tracers such
as amino acids labeled with radioactive atoms such as Carbon-11, Nitrogen-13 Oxygen-15,
Fluorine-18, or Iodine-124 can be injected into patients with brain tumors. These can detect
early lesions of the tumor using PET scans, whereas CT and MRI scans are often unable to
identify the presence of small or narrow regions of tumor. Because certain amino acids
accumulate intensely at an early stage of the tumor, the tumor mass can be readily distinguished
from normal brain tissue using radiolabelled amino acid tracers [224,225]. This is of particular
use when trying to identify tumor metastases, or in the case of glioma to detect regions of the
brain with small numbers of infiltrating tumor cells.

The resolution of PET is currently less than 1 mm, sufficient to allow researchers that use
rodent models of brain tumors to utilize micro-PET imaging. This allows researchers to
accurately monitor the growth kinetics of the tumor in response to numerous therapies.
Numerous tracking methods exist, each one depending on the expression of the reporter gene.
A truncated form of the dopamine receptor (DR2R80A) and TK can both be used as reporter
genes in tumor cells implanted into rodents and have been tracked by PET scan imaging
[226-229]. Modified, radiolabelled dopamine analogues and TK substrates can be injected
systemically into the animal where they diffuse across the blood brain barrier and subsequently
accumulate in the CNS in regions with elevated expression of the reporter genes DR2R80A or
TK (Fig. 4A). TK is a viral protein, and is not normally expressed in the CNS. Consequently,
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TK allows the identification of this reporter gene expression to a very high degree of sensitivity.
By expressing the reporter gene in glioma cells, researchers have monitored the progression
of the tumor, as well as size and growth after therapy and/or resection. Therapeutic efficacy of
the treatments to be tested is determined based on levels of reporter gene expression in live
rodents, thus eliminating the need to euthanize the subjects. This reduces the number of animals
required for each study and improves the ability of researchers to assess the efficacy of their
therapy [224]. In contrast, Dopamine receptors are present in the CNS. However, DR2R80A
can be used to image in the brain striatum as this region is completely devoid of Dopamine
receptors. A major advantage with PET over other imaging systems is that several markers can
be used simultaneously, thus enabling the researcher multiple tracing options.

Bioluminescence Imaging
PET detects gamma rays, emitted following the radioactive decay of short-lived isotopes to
build a 3 dimensional image within the CNS. In pre-clinical rodent models, light rays emitted
following the conversion of substrate into product can also be detected through layers of tissue
using a bioluminescence imaging system with a cooled charge couple device (CCD) camera
(Fig. 4b). Firefly and Renilla luciferase catalyzes the emission of light during the conversion
of substrate into product. It has been shown that D-luciferin is an exclusive substrate for firefly
luciferase, while coelenterazine is only metabolized by renilla luciferase in vitro and in vivo,
and this has opened up the possibility of imaging two separate targets in vivo, one with Firefly
luciferase and the other with Renilla luciferase [230,231]. Unlike PET, bioluminescence
imaging does not give high resolution, 3 dimensional images of the tumor. However, the size
of the tumor is proportional to the amount of light emitted, and this can be used to estimate the
tumor volume. Furthermore, equipment for bioluminescent imaging is more affordable than
microPET and safer as it does not involve the use of radiolabelled dyes.

Expression of Luciferase has been used by researchers to monitor the growth kinetics of
intracranial tumors, and to track the migration of neural precursor cells (NPCs) in vivo. Tumor
cells were generated that express Renilla luciferase and these were implanted into nude mice.
Immortalized NPCs were generated that express Firefly luciferase and the therapeutic
transgene soluble TRAIL (sTRAIL). Migration of these NPCs into brain regions containing
tumors was tracked using the Firefly luciferase substrate D-Luciferin. Tumor volume was
estimated based on total light produced when mice were injected with the Renilla luciferase
substrate ceolenterazine. Mice that received NPCs expressing sTRAIL displayed significantly
slower growth kinetics compared with control NPC injected animals [108]. Luciferase
substrates can also be engineered to require an activation step by a cellular enzyme before
being catalyzed by luciferase enzyme. For example, D-Luciferin has been conjugated with
DEVD and is only converted to product with the liberation of light after it has been processed
by active Caspase 3, a hallmark of apoptotic cells. This has allowed researchers to monitor the
activation of Caspase 3, and consequently the extent of apoptosis, in vivo in a mouse model of
glioma following treatment with sTRAIL [109].

Future Directions of Imaging in Gene Therapy
An exciting future direction for imaging with PET scanning and bioluminescence imaging is
in the field of gene therapy. Assays exist for the majority of chemotherapeutic agents, to
determine the pharmacokinetic and pharmacodynamic properties of the compounds in the
patient. This is often found to vary substantially and the dose of a substance must be increased
or decreased accordingly to obtain maximum therapeutic benefit. No reliable, relatively non-
invasive method has yet been developed that can accurately assess the distribution and
expression of therapeutic transgenes within the brain following injection of viral vectors. This
is a major drawback in gene therapy and severely limits the ability to modify the dose if
required. It is hoped that incorporation of genes into these viral vectors that can be detected
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using PET or bioluminescence imaging techniques will allow for a more detailed assessment
of transgene expression and distribution in the patient. Different reporter genes can be
incorporated into the same vector. In one application, a lentivirus was constructed to express
both TK and firefly luciferase. When cells stably infected with lentivirus were injected into
mice, both luciferase and TK could be imaged using Bioluminescent imaging and microPET,
respectively [232]. Likewise, three reporter genes were detected independently in live mice
bearing 293T cells transfected with TK, Renilla luciferase and monomeric red fluorescence
protein (mRFP1). Excitation of mRFP1 occurs at wavelengths of 500nm and 584nm while the
maximum emission occurs around 607nm (Fig. 4c). The activity of each reporter gene was
shown to be preserved, suggesting that multiple reporter genes can be used in combination
both in a clinical setting and also for pre-clinical research [233]. A second useful application
will be to monitor the infiltration of specific immune cells into the tumor following
immunotherapy, allowing more accurate quantification of the extent of the immune response
against the tumor.

CONCLUSIONS AND FUTURE PROSPECTS
Novel treatments for brain cancer (GBM) require the development of approaches which
encompass several mechanisms of action, including different modes of cell death and immune
stimulation. These novel therapies would work synergistically with the best treatment options
currently available; i.e., surgery, radiotherapy and chemotherapy. Gene-based therapies are
actively pursued to treat GBM, include oncolytic viruses to selectively replicate in cancer cells,
causing their destruction; anti-angiogenic targets that aim at depriving the growing tumor of
new blood vessels needed for it to spread; targeted toxins, which after delivery into tumor cells
will cause their death; immune-stimulatory targets aimed at eliciting an anti-tumor immune
response to inhibit tumor growth and prevent the spread of metastatic disease. Other exciting
approaches are targeted at inhibiting signal transduction pathways, activated in GBM and
shown to mediate tumor progression.

Although many of these approaches have shown excellent efficacy with low or no toxicity in
preclinical animal models, their success has not been reproduced in human clinical trials. There
are several reasons for this, such as the need to enhance the specificity and efficacy of the gene
transfer vectors and the therapies. This can be achieved by the use of targeted vectors, which
have been engineered so that they can only infect tumor cells; or the use of the cancer cells’
specific promoters which will drive the expression of therapeutic molecules exclusively in the
tumor. The ability to generate a systemic long lived anti-tumor immune response is also a
critical advancement which would prove very powerful for the treatment of GBM, which
inevitably recurs. Immune stimulatory approaches mediated through the delivery of genes
which induce immune cell recruitment and/or activation is an approach which is being actively
pursued for the treatment of GBM. For the clinical implementation of these therapies, it is
imperative to be able to monitor disease progression and persistence of the gene therapy in
vivo, using non-invasive imaging techniques. This is an exciting technology which will enable
the monitoring of the persistence of the therapeutic vectors and also their putative bio-
distribution.

Perhaps the biggest challenge before these gene-based therapies can be successfully and safely
implemented to treat GBM in human patients, is the issue of the toxicity and bio-distribution
of the gene transfer vectors used. Also, the pre-existing immune response to the vectors can
have very serious deleterious effects, not only by decreasing the effects of the therapy by
inhibiting therapeutic gene expression, but also by causing severe, systemic, immune-related
side effects. Again, this is an area which is the focus of many investigations and has led to the
development of better and safer vectors.
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Fig. (1).
Immune cell surveillance of the normal and tumor bearing brain. In the normal brain, only
memory CD4+ T-cells are found within the brain parenchyma while other immune cell types
are restricted to the cerebrospinal fluid and meningeal layers. Tumors affect the local and
systemic immune environment to evade immune detection by producing cytokines like
TGFβ, IL-10 and PGE. CD4+ T-cell numbers are reduced systemically. Meanwhile tumors are
infiltrated with macrophages and CD8+ T-cells whose normal immunological functions are
blocked in the tumor environment.
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Fig. (2).
Immunotherapy of brain tumors using RAdFlt3L and RAdTK. A. Survival curve from
rats treated ten days after tumor implantation with replication deficient adenoviruses. RAdTK
+Flt3L results in tumor regression in 80% of animals (modified from Cancer Research [169]).
B. Brain section from a glioma survivor 240 days after tumor implantation followed by RAdTK
and RAdFlt3L treatment. Brain sections were stained with vimentin to detect any reminant of
tumor cells. C and D. Brain sections from animals treated with either saline or RAd TK+Flt3L
10 days after tumor implantation. While 80% of animals treated with RAd TK+Flt3L survive,
neuropathological analysis of those who secumb shows immune cell infiltration that is distinct
from saline treated controls. As with human tumors, rat CNS-1 gliomas are heavily infiltrated
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with macrophages (ED1 staining) regardless of treatment modality. B cells (CD45R staining),
cytotoxic T cells (CD8 staining), and Natural Killer cells (CD161a staining) are all increased
in treated animals compared to controls.
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Fig. (3).
Targeted toxins for the treatment of glioma. Human brain tumors have been shown to
overexpress several receptors, including urokinase-type plasminogen activator receptor,
transferring receptor, pleiotropic immunoregulatory cytokine receptors and growth factor
receptors. The expression of these receptors seems to be more abundant in malignant tumors,
than in benign, slow growing tumors. Since these receptors are virtually absent in the normal
brain, they have been targeted in several therapeutic approaches in the treatment of glioma, to
avoid toxicity to normal brain tissue. Ligands of these receptors, such as IL-13, IL-4, uPA,
transferrin, EGF and TGF have been fused to the catalytic and translocation domains of highly
cytotoxic bacterial products, including Pseudomonas and Diphteria toxins (T), in order to kill
selectively malignant glioma cells, but preserving surrounding normal brain tissue.
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Fig. (4).
Stratagies for live animal imaging A. HSV1-Thymidine kinase (TK) is expressed by a first
generation adenoviral vector (RAd) and catalyzes the phosphorylation of the prodrug
ganciclovir (GCV) to generate GCV-monophosphate (GCV-P). Cellular kinases further
phosphorylate to form a nucleotide analogue GCV-triphosphate (GCV-P-P-P) which interferes
with DNA synthesis and induces apoptosis in dividing cells. In addition, the HSV1-TK protein
interacts with the imaging substrate (124I)-labelled-2’-fluoro-2′-deoxy-1-ß-D-
arabinofuranosyl-5-iodouracil (I*-FIAU) to form a phosphorylated version of the molecule
(I*-FIAU-P) which can be used for PET imaging. I*-FIAU is membrane permeable and can
diffuse freely through the plasma membrane of cells. However, following phosphorylation by
TK, I*-FIAU-P becomes hydrophylic and remains trapped in the cell expressing TK.
Consequently, the concentration of radioactive 124I increases only in cells expressing TK and
is rapidly cleared from the rest of the body. B. A RAd expressing Firefly Luciferase was injected
into the striatum of a mouse. Seven days later the mouse was injected with the substrate D-
Luciferin and the animal was imaged using a CCD-based in vivo imaging system (IVIS,
Xenogen). The intensity of light production was evaluated and is represented using a color
scale with red being regions with most intensity and blue being regions with lowest intensity,
as indicated on the scale to the right of the image. C. A RAd expressing monomeric red
fluorescent protein (mRFP) was infected onto a monolayer of 293 cells. The monolayer was
imaged using a inverted fluorescent microscope 24 hours after infection (Axiovert 200, ZEISS).
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