JOURNAL
o
THE ROYAL

Interface

J. R. Soc. Interface (2005) 2, 187-195
doi:10.1098 /rsif.2005.0038
Published online 16 May 2005

Examining the architecture of cellular
computing through a comparative study
with a computer

Degeng Wang' and Michael Gribskov

San Diego Supercomputer Center, University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0537, USA

The computer and the cell both use information embedded in simple coding, the binary
software code and the quadruple genomic code, respectively, to support system operations.
A comparative examination of their system architecture as well as their information storage
and utilization schemes is performed. On top of the code, both systems display a modular,
multi-layered architecture, which, in the case of a computer, arises from human engineering
efforts through a combination of hardware implementation and software abstraction. Using
the computer as a reference system, a simplistic mapping of the architectural components
between the two is easily detected. This comparison also reveals that a cell abolishes the
software—hardware barrier through genomic encoding for the constituents of the biochemical
network, a cell’s ‘hardware’ equivalent to the computer central processing unit (CPU). The
information loading (gene expression) process acts as a major determinant of the encoded
constituent’s abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical
pathway. Cellular processes are implemented in biochemical pathways in parallel manners.
In a computer, on the other hand, the software provides only instructions and data for the
CPU. A process represents just sequentially ordered actions by the CPU and only virtual
parallelism can be implemented through CPU time-sharing. Whereas process management in
a computer may simply mean job scheduling, coordinating pathway bandwidth through the
gene expression machinery represents a major process management scheme in a cell. In
summary, a cell can be viewed as a super-parallel computer, which computes through
controlled hardware composition. While we have, at best, a very fragmented understanding
of cellular operation, we have a thorough understanding of the computer throughout the
engineering process. The potential utilization of this knowledge to the benefit of systems

biology is discussed.

Keywords: information storage; information retrieval; system architecture;
computation process; process management

1. INTRODUCTION

The complexity of a cell, the basic unit of an organism,
is attracting the attention of investigators from a
diverse array of scientific disciplines. This has arisen, at
least in part, owing to the pioneering work of Adleman
(1994), which used biological materials to solve a
computational problem. Recently, a complex computer
composed of biological materials was successfully
assembled to implement the Turing machine, the
computing model underlying all silicon-based compu-
ters (Benenson et al. 2004). These developments,
however, do not reflect how a cell operates as a
molecular system (Ji 1999). Research into DNA
computing is now chiefly concerned with investigating
biochemical processes that can be viewed as logical
computations and then using them to our advantage

T Author for correspondence (dwang@sdsc.edu).

Received 11 January 2005
Accepted 17 March 2005

(Parker 2003). It was suggested that a cell be studied as
a DNA-based molecular computer (Ji 1999), the
direction this paper adopts.

Meanwhile, the paradigm in experimental molecular
and cellular biology, which used to be much more
reductionism oriented, is shifting towards a synthetic
one. This shifting is facilitated and necessitated by
genomic sequencing efforts and the routine use of high-
throughput research methodologies. As such, a new
synthetic theoretical framework for interpreting sys-
tems operations will help. However, it is still premature
for us theoretically to comprehend the enormous
complexity of the cell as a molecular system. Instead,
a comparative study with a simpler but comparable
system can be illuminating and conducive to integra-
tive thinking, as molecular and cellular biological
research has historically used simpler model species
to shed light on issues encountered in studying higher
species. Such a reference system always shares similar

© 2005 The Royal Society

188 The architecture of cellular computing D. Wang and M. Gribskov

system architecture and operation with the target
system to ensure that a comparative study is helpful.
Additionally, in order to make reliable theoretical
projections we must have a complete (or at least a
much better) understanding of the model system.

Artificial complex systems, and the knowledge
accumulated in the engineering process, represent rich
resources for such comparative study. Commonality
between biological systems and artificial complex
systems does exist. Exploring this commonality has
proved fruitful. For example, the scale-free network
concept was developed based on common phenomenon
shared by biochemical network with non-biological
networks (Barabési & Oltvai 2004).

The computer, arguably the most sophisticated
system produced by human engineering, is the ideal
choice of reference system for this comparative study.
First, both a computer and a cell are systems with
enormous intrinsic complexity. Intriguingly, both use
seemingly very simple code, the computer binary code
and the quadruple genetic code (A, C, G, T),
respectively, to regulate complex system operation.
Second, we have a complete understanding of a
computer, since it is the product of human engineering
efforts. On the other hand, we have at best a very
fragmented understanding of any cellular system.

Therefore, a comparative study between a cell and a
computer will be illuminating for systems biology, of
which one goal is to understand the system architecture
and operation of a cell. In this paper, we perform a
comparative examination of the system architectures,
the computing processes and the process management
schemes of the two systems. Many interesting parallels
between the two seemingly completely different sys-
tems are discussed. We also point out major differences
that make a cell a much more efficient system than an
electrical computer.

2. THE PROTOTYPES AND THE SCOPE

Cell and computer are abstract concepts, each referring
to a highly heterogeneous group, i.e. there are many
types of computers and cells. We need representative,
and well-defined, prototype systems for this compara-
tive study. It is also necessary to limit the scope of this
study. As the two systems are tremendously complex, it
is not feasible to cover all aspects of them in one article.

Even though there are many types of computer, the
underlying computing theory is shared by all. System-
level functionality is supported by a complex hierar-
chical architecture, the result of a combination of
hardware implementation and software abstraction at
various levels. We follow the description of this
computer architecture by Tanenbaum (1999). Each
computer type represents a unique way of implement-
ing the computing theory, i.e. a unique combination of
hardware implementation and software abstraction.
Identical functions can be carried out by a single-
central processing unit (CPU) computer and also by a
faster, multi-processor machine. Parallel and distrib-
uted computing can be considered as an extension of a
single-CPU model, as the effect can be virtually
implemented through software abstraction in a single-

J. R. Soc. Interface (2005)

CPU computer (Tanenbaum 1999). For the sake of
simplicity, a single-CPU model is adopted in this paper.
The cell is the smallest structural unit of an organism
that is capable of autonomous system integrity and
functionality in a changing environment, with no
dependence on an external source for architectural
components. There are numerous types of cells. All
invariantly rely on information embedded in the
quadruple genomic DNA code for system operation.
Unless otherwise specified, this discussion is best suited
for the yeast Saccharomyces cerevisiae, a popular
model system in biological research. Most topics,
however, are also applicable to other cell types.

We restrict our focus to how a cell utilizes the genetic
code to specify adaptive actions in response to
environmental signals, a scheme universal for all cell
types. Many important aspects of cellular operation are
considered peripheral and are not discussed. Aspects
that are specific to the cell and therefore lack
comparative values, such as cell replication, are also
excluded. We will compare the information organiz-
ation schemes and the information utilization pro-
cesses, which are central to both cells and computers.
The information utilization process is described as an
operation cycle of three steps: information specifica-
tion, information retrieval and the computing process
(figure 1). Information specification means specifying
the information (instruction or data) type expected by
the computing machinery and the information’s
location, often a specific address inside the information
storage whose specification interlaces intricately with
the information organization scheme. In the infor-
mation retrieval step, the specified instruction/data are
transmitted to the computing machinery, which
executes the action and then specifies information
required for the next cycle. This information utilization
process also incorporates environmental signals. For
example, in the case of a computer, information
specification can be requesting specific user keyboard
actions. Information retrieved will then be what the
user keyboards back. As another example, the retrieved
information can be a direct user input, such as a signal
to terminate an executing program. Many details are
black-boxed into the three steps and will be analysed
below.

3. THE CELL AS A MULTI-LAYERED COMPLEX
SYSTEM

Let us begin the comparison with a very simplistic
overview of a cell as a multi-layered system, using a
computer as the reference system. Molecular and
cellular biology research methods, which enabled us to
break open a cellular system and see into its internal
structure and mechanisms of operation, helped us to
gain a better understanding of a variety of distinct
regulatory processes. A regulatory process can be
divided into multiple steps. One or more gene products,
usually proteins, carry out the regulatory events at each
step. The information corresponding to a gene product
and its temporal—spatial expression profile is embedded
inside the seemingly simplistic, one-dimensional
genomic sequence. However, at the cellular level, genes

The architecture of cellular computing D. Wang and M. Gribskov 189

the computing machinery

uoneoryroads uoneoo pue ad£) uonewIoyuI
information retrieval

A

information storage or the environment

Figure 1. A schematic of an operation cycle.

and their products are organized into a hierarchical
multi-dimensional structure (Barabdsi & Oltvai 2004),
sometimes termed genetic circuit. This structure shows
some striking similarities to the multi-layered computer
architecture (Tanenbaum 1999), as discussed below.
Just as a computer register works as an information
(instruction or data) storage unit (Tanenbaum 1999),
each individual gene serves as a single genetic unit that
stores information corresponding to a regulatory event.
Cellular functionality, on the other hand, can be
interpreted as the overall properties or behaviours
displayed by the cellular system as a whole. Just as any
function of a computer is supported by a set of
instructions organized into processes (Tanenbaum
1999), a cellular function is generally not a result of
the action of just a single gene. There are multiple
layers of actions before the primary genetic code gets
translated into cellular behaviour. First, the gene set of
a cell is organized into biochemical pathways, such as
metabolism and signal transduction pathways.
Individual pathways are then organized into functional
sectors through their interconnectivity and intercorre-
lation. Examples of the functional sectors include the
metabolism network, signal transduction network, cell
cycle control network and others. These functional
sectors are then joined together to form a dynamic
hierarchical network or circuit that works as a cellular
operating system, on which a cell executes sets of
programmes to maintain its systematic integrity and to
make necessary adjustments in response to its
environment. Nevertheless, our knowledge is very
fragmentary. We are still at an early stage of the
journey to a systematic view of how the genetic
information governs the cellular machinery’s operation
to support the overall properties or functions of a cell.

Central to the issue is the information utilization
process (outlined in figure 1), of which we have a
complete understanding in a computer. A striking
similarity exists between a computer and a cell. In both
systems, the code provides instruction for an operation.

J. R. Soc. Interface (2005)

The state of the system, on the other hand, determines
how the code will be interpreted and/or used. In a cell,
the state of the cellular machinery determines which
gene should be expressed or shut down. In a computer,
this means where in the memory the CPU will go to
fetch data or instructions. We therefore look inside the
architecture of a computer for potential theoretical
insight.

We discuss a comparative dissection of the multi-
layered architecture in a computer and that in a cell, in
an attempt to generate a simplistic synthetic view of
cellular architecture and process management. We find
a striking similarity in system operation, in many cases
the same principle is differentially implemented in the
two systems. One theme of difference is a clear
hardware—software barrier in a computer but a very
blurred one in a cell. Another one is the virtual
parallelism in a computer and the maxi-parallelism
implemented at hardware level in a cell.

4. A COMPARATIVE STUDY OF
ARCHITECTURAL COMPONENTS

Let us briefly outline the architecture of a computer.
The major components of a computer are the CPU, the
memory and the input/output (I/O) system (figure 2a).
A computer uses a two-layered memory system, the
primary and the secondary memory. The secondary
memory is the storage for CPU data and instructions.
At any moment, parts of the data and instructions are
loaded into the primary memory. The loaded infor-
mation determines what the CPU will do. The
computer bus, major components of the I/O system,
connects the CPU with the memory and other
peripheral I/O apparatus. It sometimes serves as the
carrier of the information being loaded or stored.
Sometimes, the binary electronic signals in the wires
of a bus denote a numeric memory address, from which
the CPU receives input or to which it sends output
(figure 2a).

Functional equivalents can be identified for these
components in a cell (figure 2b). A cell seems to use the
two-layered memory system as well. The genome stores
all the data and instructions. However, it is the
information loaded into the RNA space that determines
what a cell does at any moment. The information stored
in the RNA space gives rise to the components of a
dynamic biochemical network, a cell’s equivalent to
computer hardware. Computer hardware, as described
above, can be divided into the bus and the CPU. The
cellular hardware can be arbitrarily divided in a similar
fashion as well. The kinase signal transduction network
and the gene expression (transcription and translation)
machinery interconnect other parts of the biochemical
network, the memory system and the extracellular
environment (figure 2b). They therefore function as a
cellular bus. Other parts of the biochemical network act
as the cellular equivalent to the computer CPU
(figure 2b). Next, we compare the computing process
in the two systems, and the analogy becomes more
appealing.

190 The architecture of cellular computing D. Wang and M. Gribskov

(b)
regulatory network —|€———
A
translation |« %
5
Q
=
on
v £
RNA: primary memory go
A B
Q
<]
transcription |«
\ 4 A

(@)
CPU |«
Yt
2
=
<
(o]
=
a3
=
S
Q
]
1=
<
1]
w2
=
o]
-]
primary memory |<7 s
2
5
=
=
2
g
=
=1
el
Q
S
l v
storage: .
%ecofdary peripheral 1/0,
) such as keyboard
memory

extra-cellular
environment

genome: storage or
secondary memory

Figure 2. A simplistic schematic comparison of the architecture of a computer (a) and a cell (b). Note that production of
components of the signalling network through gene expression is neglected in (b) to simplify the figure, since kinase regulation is

predominantly post-translational.

5. THE COMPUTING PROCESS

We consider the computing process composed of the
information loading from the storage to the primary
memory, the upload of loaded information to the
computing machinery, and the execution of the encoded
actions. A striking parallel between the computing
processes of a computer and those of a cell also exist
(figure 3 and table 1).

Memory loading in a computer and transcription in a
cell parallel each other, in that they both transfer
information needed by the computation machinery
from the storage to the primary memory. The
information is located through memory addressing in
a computer (figure 3a) and through transcription
factor-binding process in a cell (figure 3b). A transcrip-
tion factor complex is a set of proteins that identify a
specific DNA location—they therefore represent a
mechanism to retrieve information from a specific
DNA address.

A computer uses a common bus to specify memory
location and to retrieve (or store) specified information
(figure 3a). A cell mainly uses the signalling network to
regulate the biochemical activities of the transcription
factors that determine when and where a gene is
activated, analogous to address specification. The
retrieval of the information is through a different
channel, the transcription machinery. The transcrip-
tion process loads information from the genome to the
RNA space, the ribonome. Transcription factor binding
often occurs at multiple genes simultaneously, so that
multiple genes can be transcribed in a parallel manner.
In other words, the bandwidth of the bus system
increases through implementing more hardware,
enabling parallel retrieval of multiple fragments of
information (figure 3b).

J. R. Soc. Interface (2005)

Loaded processes can then be executed. In both
systems, a process is divided into many steps. Each step
of a computer represents an instruction. An instruction
usually is a mechanism, through which an input is
transformed to an output in a CPU (or data path) cycle.
The computing in a computer is through electrical
process: turning on/off a connection. The computing
inside a cell is through a chemical process: turning
on/off a chemical reaction by catalysis (table 1).
A protein usually is, or is part of, an enabling force
for a particular chemical reaction. Therefore, a protein
is equivalent to the arithmetic logic unit (ALU) of a
data path inside a computer CPU.

In a computer, computation is achieved through
changing what the CPU does: the CPU executes
different instructions at different steps (figure 3a).
However, in a cell, computation is achieved through
implementing instruction execution at each step as a
protein or a protein complex, with each step receiving
input from the upstream step (figure 3b). The input is in
the format of chemical molecules instead of the
electronic signals retrieved from a register in a
computer (table 1). The translation machinery plays
a major role. The translation process loads information
from the RNA to the protein, generating the computing
hardware to enable a chemical reaction that is
analogous to the execution of a computer CPU
instruction. The translation process in a cell is therefore
equivalent to the CPU instruction-fetching process in a
computer: a computer instruction informs the CPU
what to do, while the translation process in a cell
produces the enabling factor for the chemical reaction
at each step.

In a computer, accessing memory causes CPU delay.
This is because the main memory is outside the CPU
and connected with the CPU through the bus.

The architecture of cellular computing D. Wang and M. Gribskov 191

(@)

execution:

cache:
primary memory:

main memory:

secondary memory:

(b
execution: P, P, Py - P,
A
primary memory: R, Ry Ry R,
AAA A

I,| secondary memory: G; G, Gj

Figure 3. A comparative snapshot of the serial computing process in a computer (@) and the parallel computing process in a cell
(b). In a computer (a), the instructions (I) are loaded through addressing in a serial manner from storage to main memory.
Instructions with high priority are then stored in the cache, which has a higher bus bandwidth with the CPU owing to reduced
access time. Instructions are executed serially, with only one instruction of a program being executed by the CPU at any
moment. In a cell (b), genes (G) are transcribed into RNAs (R) through transcription factor-binding process and then translated
into proteins (P) in a parallel manner. All steps of a pathway also proceed in a parallel manner.

Table 1. The computing process.

computer

cell

form of computation
flux-control mechanism
flux-control agent

function of an instruction
input to an instruction
output from an instruction
instruction implementation
multiple instruction execution

controlled electrical flux

transistor conductivity control
transistors organized into circuit
binary electrical signal transformation
binary electrical signal

binary electrical signal

data-path wiring control

sequential data-path control

controlled chemical flux

catalysis

mostly protein

chemical reaction

reactants of a chemical reaction
products of a chemical reaction
production of the catalyst

parallel production of the catalysts

Accessing main memory is always slower than CPU
execution. Thus, to reduce the CPU delay, a hierarchy
of primary memory exists in a computer. High priority
CPU data or instructions are stored inside the faster
cache, which sometimes locates inside the CPU to
completely abolish the delay and which is more
expensive to build than the main memory (figure 3a).
The cells minimize this delay by two mechanisms.
First, analogous to the caching of high priority data or
instructions, cells constitutively express many proteins,
whose activities are often controlled allosterically or by
post-translational modification. Second, the delay is
reduced through enhanced bus bandwidth. Multiple
RNAs can be translated in a parallel manner into
proteins (figure 3b), whereas instructions in a computer
program are retrieved sequentially through the bus.

6. MULTI-LAYERED ARCHITECTURE
REVISITED

Let us revisit the system architecture in greater detail
now in order to see how a complex task is achieved. The
theme is fixed hardware and CPU time-sharing in a
computer in contrast to a dynamic hardware composite
and parallel processing in a cell (table 2). Owing to the
high cost of building hardware, the layers in a computer
are implemented through hardware implementation

J. R. Soc. Interface (2005)

and software abstraction. The hardware implemen-
tation ends in the middle of the instruction set
architecture (ISA) level. In the cells, on the other
hand, each element of the biochemical network,
including the cellular bus system, is usually
implemented directly in hardware, in the form of a
gene product dynamically produced through the
transcription—translation channel.

Let us briefly, and simplistically, overview the layers
in the computer from the transistor/gate level up to the
higher programming language level, following the
definition and description by Tanenbaum (1999). We
will see how a complex computation is achieved
through sequential execution of very simple instruc-
tions. The gate, a number of transistors wired together
to perform a basic Boolean calculation, is the unit of
computer CPU and primary memory. At the digital
logic level, a unique Boolean function is implemented
through the unique way these transistors are wired
together. One layer up is the micro-architecture level.
In the memory, they are wired into groups to form a
register, the unit of memory. In the CPU, gates are
combined to form a data path, the main component of
the computing engine and in which conductivity of
some transistors is dynamically controlled. Controlled
transistor conductivity results in dynamically regu-
lated electricity flow. A data path can perform different

192 The architecture of cellular computing D. Wang and M. Gribskov

Table 2. Multi-layered architecture from ground up.

level

function

implementation in computer

implementation in cell

digital logic

micro-architecture

ISA

operating system

processing engine

primary memory

secondary memory

basic computing struc-
ture

instruction specification

instruction function

data specification
memory addressing

memory management

process managomont

gate (organized into circuit) as basic element

gate (organized into register) as basic element

miscellaneous, depending on media

data path (the ALU, a circuit, connected with
a number of registers)

predetermined formatting

controlling the data path

type and format
numerical

swapping information in and out of primary
memory from secondary memory
shared resource such as semaphore

amino acid as basic
element
ribonucleotide as basic
element
deoxyribonucleotide as
basic element
protein

the transcribed region of
a gene

enabling a chemical
reaction

substrate specificity

promoter and enhancer
binding

gene transcription and
RNA degradation

shared route by

interprocess signal
CPU time-sharing

file system

continuous or indexed

pathways
pathway cross-talk
pathway bandwidth
management
discontinuous indexed
(TF binding)

types of calculation if its internal electricity flow
pattern is changed. The ISA level defines the set of
instructions available to the software programmer as
well as their predetermined function and format. Each
instruction actually specifies a specific control of one to
several data-path cycles; in other words, how transistor
conductivity is controlled for the data path to perform a
specific calculation in each cycle. The instruction can be
either a mathematic calculation or a memory manipu-
lation. Information in memory is organized through its
numeric location (addressing) and predetermined
format. Instructions and data have predetermined
formats. Consequently, the CPU engages different
protocols when dealing with different types of instruc-
tions or data in the memory. Currently, the ISA level is
the end of hardware implementation. From this level
up, everything is through software abstraction. The
operating system level defines additional instructions
(system calls), implemented through software abstrac-
tion, for virtual memory management, I/O operation
and process management. The benefit of this level is
convenience, relieving the computer programmer of
these tedious tasks through automation, which is
achieved through abstracting many instructions into
one system call. The other layers up are programming
levels, either assembly language or higher-level
languages, such as C or Java. A computer program is
essentially a collection of instructions (ISA level or
operating system level) in a predefined order. Essen-
tially, it is the dissection of a complex calculation into
many sequential steps of simple calculations that are
directly executable by the CPU. The same task can
usually be accomplished by multiple, very different
algorithms. When the algorithm is efficient, minimum

J. R. Soc. Interface (2005)

numbers of CPU cycles are used. While tremendous
efforts have been made to generate parallel execution
effect, it is still mostly sequential computing owing to
the limited hardware resources. Parallel computing
effect is simulated through CPU time-sharing, either
among multiple processes or among multiple frag-
ments, when not mutually dependent, of the same
process.

In a cell, the functionality of all these layers is
implemented at hardware level. The unit of the
computing machinery is the amino acid. The unit of
primary and secondary memory is the nucleotide in
RNA and DNA, respectively. Instead of using one single
data path executing an instruction set through sequen-
tial control, a cell implements each instruction through
the production of a protein from mRNA, the primary
memory. The primary memory is organized through a
predetermined format (an open reading frame) and
signals embedded in the associated non-translated
regions of mRNA. These embedded signals determine
when and where the translation process is initiated,
analogous to the numerical location (address) of
computer memory. Information in mRNA is in turn
loaded out of genomic DNA, the secondary memory (or
information storage). Here, the signals embedded in the
promoter and the enhancer regions are analogous to
computer addressing of secondary memory, in that
both are used by the information retrieval machinery to
locate a linear fragment of information. The format is
the start and the end of transcription. In eukaryotic
cells, especially in multi-cellular species, it is more
complicated owing to the occurrence of RNA splicing
and editing, which blurred the distinction between
addressing and formatting in memory organization.

The architecture of cellular computing D. Wang and M. Gribskov 193

The gene expression machinery dynamically interprets
a transcribed genomic region. In other words, if we refer
to the gene expression machinery as the information
channel, a gene exhibits different meanings under
different channel conditions (Wang in press).

The set of catalysed chemical reactions essentially
constitutes the ISA level of a cell. The catalysing
agents, mostly proteins, represent the computing
hardware of a cell. Contrary to using one data path
executing a set of instructions in a computer, a cell
implements each instruction in a unique enabling
agent, usually as a protein produced from mRNA, as
discussed earlier. This results in a blurred hardware—
software barrier in a cell. Consequently, the evolution
process, the designer of the cell, changes the software
through genetic mutations, which in turn, codes for the
hardware components of cellular computing and
memory organization. In a computer, on the other
hand, a programmer changes only the software. The
new functionality is generated through changing what
the hardware will do. In other words, the difference is
that the cell is a computer that constructs itself.

7. MEMORY MANAGEMENT: FROM STORAGE
TO MAIN MEMORY

In a computer, memory management means keeping
track of the secondary and primary memory and
managing the loading of necessary information to the
main memory to meet the demand of the CPU, which
sends the instruction through the computer bus. The
information retrieval in a computer uses a binary
scheme via a memory management unit (MMU). The
MMU keeps track of the content of the primary
memory and provides mechanisms for locating
(through a translation table between numerical memory
addresses) a fragment of the secondary memory in
order to load it into the primary memory. Fragments
with low priority are purged from the primary memory.
Each file is either not retrieved or retrieved as a single
copy. A process represents just a sequentially ordered
action by the CPU. In other words, the ‘bandwidth’ of
each process contains just one execution thread.
However, in a cell, it is far more complicated.
The gene expression machinery receives input from
the signalling network and outputs requested genes to
the RNA space. The scheme used is far more
complicated than a binary scheme. The input to the
gene expression machinery determines how many
copies of a gene product, either RNA or protein, are
produced. Similarly to purging low-priority infor-
mation from the primary memory in a computer,
RNA is also being degraded. The balance between
production and degradation determines abundance of
each RNA species, which is a major determinant of the
abundance of the corresponding protein. The abun-
dance of a gene product can have a wide range. The
abundance of the constituents of a biochemical path-
way in turn determines the number of concurrently
executing threads, a major determinant of the band-
width of the pathway. This gives rise to a complex
biochemical network, which is reconfigurable through
controlled information loading by the gene expression

J. R. Soc. Interface (2005)

process and which is at the core of the cellular
computing machinery. Coordinating the bandwidth of
multiple biochemical pathways thus becomes an
important issue, which will be re-visited when we
discuss cellular process management later.

8. THE FILE SYSTEM IN A CELL: THE
STORAGE

Efficient information retrieval from the secondary
memory to the primary memory, as discussed above,
relies on good organization of the secondary memory.
Computer memory is organized into files. Computer
files can be classified in many ways. By information
type, some contain just data, while others, the
executables, contain instructions. By way of infor-
mation storage, some are just ordered byte-stream.
Others contain lists of logical record, each with a well-
defined structure. By way of information retrieval,
some are sequentially retrieved. Some are indexed.
However, in a cell, most genes code for proteins
corresponding to instructions. If you analogise the
gene set of a cellular process to a computer file, the
majority of files stored in a genome are executable files.
The genes of a process are located through indexes, the
promoters and the enhancers. Prokaryotic operons are
similar to a computer process file in that the instruc-
tions of a biochemical pathway are organized together
in a sequential order to form a contiguous unit.
However, in eukaryotic cells, genes of a process are
dispersed throughout the genome although they can be
commonly addressed through transcription factors.
Parallel retrieval of multiple instructions often occurs
through the occurrence of the same set of transcription
factor-binding sites in the regulatory regions of these
genes. A transcription factor becomes a one-to-many
memory pointer or an index. Extreme examples include
the locus control region, where no genes are coded but
pointers to multiple genes are provided.

9. PROCESS MANAGEMENT IN A CELL: FROM
PRIMARY MEMORY TO CPU

At the operating level in a cell, process management is
necessary but there is no need for managing CPU time
owing to the parallel computing nature. In a computer,
each loaded process represents just one execution
thread. The bandwidth of the computing machinery
determines how many CPU cycles can be achieved in a
unit time. Process management is achieved through
scheduling, whether and when to assign CPU time to a
process. However, process management becomes much
more complicated in a cell.

The operating system is implemented at hardware
level in a cell. Unlike a computer process, a cellular
process is inherently multi-threaded at hardware
level. As discussed earlier, each biochemical pathway
has a manageable bandwidth, a major determinant
of which is the gene expression process. Process
management therefore has to be achieved through
coordinating the bandwidth of biochemical pathways.
The abundance (copy number) and the biochemical
activity (kinetic parameters) of the proteins in

194 The architecture of cellular computing D. Wang and M. Gribskov

the process are major determinants of the bandwidth
of the process. The constituent’s abundance deter-
mines the number of parallel executing threads. The
constituent’s biochemical activity determines the
execution speed of each thread. Therefore, two
mechanisms are extensively used in process band-
width management.

First, process control is achieved by post-transla-
tional effects. One way is modulating the activity of the
proteins through allosteric interaction or covalent
modifications. One such mechanism is protein phos-
phorylation. For example, glycogen synthase, a key
enzyme in glucose metabolism, is regulated through
phosphorylation by the kinase GSK-3 (Cohen 1986).
Another way is for multiple processes to share common
junction points or routes, commonly termed cross-talk
in molecular and cellular biology. These cross-talks are
analogous to the interprocess signals and shared
resources (such as semaphore) used in computers to
orchestrate multiple processes.

Second, process control is achieved through mod-
ulating the abundance of the proteins in a pathway
through control of gene expression as well as RNA or
protein degradation. KEssentially, the information
loading process becomes part of the process manage-
ment scheme. The best example for this process
management mechanism is the prokaryotic polycis-
tronic operon, which is more analogous to computer
process management through organizing instructions
of a process into one modular unit of execution and
management. In eukaryotic cells, all transcription
units are single genes. However, micro-array analysis
revealed that genes of a biochemical pathway are
more likely to be coregulated at transcription level
(Hughes et al. 2000). The other determinant of the
abundance of a gene product is the degradation
process. Not surprisingly, RNA degradation is regu-
lated in a similar manner (Wang et al. 2002). The
ubiquitin protein degradation system also has proved
to be highly regulated, even though new high-
throughput technology is yet to be developed to
measure the process.

10. SYSTEM-LEVEL PROPERTIES: THE GOAL OF
THE COMPUTATION PROCESS

All aspects at various levels of the two systems support
interdependent properties manifested at the system
level. System integrity, for example, results from
coordinating activities of different parts of the system.
System functionality, as another example, means
responding to environmental signals. A computer
responds to external signals such as user input to
perform requested tasks. A cell actively detects
environmental signals, such as the presence of stress
or changes in nutrient availability, and makes relevant
adjustments. Both systems are capable of executing
programs in response to environmental factors and, at
the same time, maintaining system integrity.

J. R. Soc. Interface (2005)

11. DISCUSSION

The computer is an increasingly important biological
research tool for data storage and analysis as well as for
in silico modelling. In this paper, we propose that it
may serve yet another role, a model system for systems
biology. This is consistent with the use of model
systems in the history of biology, such as the use of
yeast as a model for the study of higher eukaryotic
species.

We have compared the computing architecture in a
computer with that in a cell. These systems are made of
different materials and at different scales (macro-
versus micro-scales) and seemingly have nothing in
common, but they display a surprising parallel in many
aspects of their system architecture and operation
control. We think it is possible to derive a unifying
abstract computational model. This model can be
divided into an information-processing module, a
control module and a communication module that
interconnects the processing module, the control
module and the environment. Modern computers
implement the model in a highly serial (or virtual
parallel through time-sharing) manner and with clear
distinction between hardware and software, performing
computations through controlled electric flux. A cell is
an implementation of such a model in a highly parallel
manner, and with a blurred software-hardware barrier,
performing computations through controlled catalysis
of chemical reactions.

One of the major differences between a computer and
a cell, as discussed above, is the embedding of code for
dynamic construction of hardware components inside
the genome, blurring the distinction between hardware
and software. This enables biochemical pathways to
have a bandwidth manageable through controlling the
abundance of individual components of the hardware,
i.e. the hardware composition. Consequently, while a
computer performs computation through serial CPU
control, in a cell, the computation is performed through
managing hardware composition. Molecular and cell
biology has elucidated mechanisms at the micro-
architecture and the ISA levels. However, at the
operating system level, pathway bandwidth manage-
ment represents the next target of research. Tremen-
dous challenges lie ahead, since as yet we do not have a
systematic understanding of gene expression
regulation.

The other major difference is the maxi-parallel
computing nature of a cell. Whereas parallelism is
virtually implemented through CPU job scheduling in
computers, it is directly implemented at the hardware
level in cells. Essentially, all elements of the biochemi-
cal network are implemented in corresponding gene
products dynamically produced through the gene
expression channel. In contrast to a centralized CPU
in a computer, gene products are loosely distributed in
the cells. The computation is distributed to multiple
cellular network modules, which in eukaryotic cells
often reside in different organelles (Srere 1987; Hartwell
et al. 1999; Norris et al. 1999).

It should be pointed out that a computer entirely
lacks one cellular functional domain: the replication

The architecture of cellular computing D. Wang and M. Gribskov 195

process during which some genomic mutations occur.
The evolution process, the designer of the cell, selects
advantageous changes to the genomic sequences,
embedded in which are the codes for the hardware
components of cellular computing and memory organ-
ization. This evolutionary process has been mimicked
by evolutionary computing technique (Koza et al.
1999). In one experiment, each self-replicating computer
program improved itself by introducing mutations in its
code during replication to better compete for the host
computer’s CPU time, analogous to the selection
pressure in biological evolution. Emergence of complex
features was observed (Lenski et al. 2003). Currently
computers have no self-replication capability. However,
a computer can be interpreted as a cell in a non-
replicating state (as most human cells are) to perform
some functionality, in which case, the cell cycle
machinery can be neglected. A cell, on the other
hand, is a computer with the capability for self-
replication, in which the genome serves as the carrier
for information transmission between generations.

Even though we have focused on potential benefits
for biologists, this comparative study should also prove
useful for computer scientists. Computer engineering
can benefit in at least two aspects. First, parallel
computing is currently a major research topic in
computer sciences. Looking into cells should provide
ample insights for parallel computing principles and
their implementation. Second, the cells exhibit much
better error tolerance capability, resulting in improved
system robustness. Redundancy plays a major role. The
cells have multiple mechanisms to process the same
information. If one fails, there are other ways to ensure
that crucial cellular processes, such as programmed cell
death, are completed. Computer scientists should look
into cells for potential principles in redundancy design
and in balancing redundancy and economical issues in
system design.

Another benefit of this comparative study is in
molecular and cellular biology education, which is
facing increasing challenges in the face of genomic
sequence availability and the routine application of
high-throughput research technologies (Bialek &
Botstein 2004). This comparison suggests that prin-
ciples of computer architecture design and system
operation may serve as a potential framework
(although simplistic) for organizing molecular and
cellular biological knowledge, which currently is
highly fragmentary and often lacking in general design
principles. This approach will effectively break the
barrier between life sciences and other branches of
sciences. Such an integrative approach should equip a
student with a better, organically organized,

J. R. Soc. Interface (2005)

knowledge set to face the daunting challenges in the
post-genomic era.

In summary, besides being a research tool, the
computer may potentially serve as a simple model
system for systems biology. It may prove helpful for the
current integrative approaches in biological research. It
may also be useful in molecular and cellular biological
education, which increasingly demands interdisciplin-
ary approaches (Bialek & Botstein 2004), and which is
inundated with huge amounts of details—often lacking
an organizational framework.

REFERENCES

Adleman, L. M. 1994 Molecular computation of solutions to
combinatorial problems. Science 266, 1021-1024.

Barabasi, A. L. & Oltvai, Z. N. 2004 Network biology:
understanding the cell’s functional organization. Nat. Rev.
Genet. 5, 101-113.

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E.
2004 An autonomous molecular computer for logical
control of gene expression. Nature 429, 423-429.

Bialek, W. & Botstein, D. 2004 Introductory science and
mathematics education for 2l1st-century biologists.
Science 303, 788-790.

Cohen, P. 1986 Muscle glycogen synthase. In The enzymes
(ed. P. Boyer & E. Krebs), pp. 461-497. New York:
Academic Press.

Hartwell, L. H., Hopfiled, J. J., Leibler, S. & Murray, A. W.
1999 From molecular to modular cell biology. Nature
402(Suppl. 6761), C47-C52.

Hughes, T. R., et al. 2000 Functional discovery via a
compendium of expression profiles. Cell 102, 109-126.

Ji, S. 1999 The cell as the smallest DNA-based molecular
computer. BioSystems 52, 123-133.

Koza, J. R., Bennett III, F. H., Andre, D. & Keane, M. A.
1999 Genetic programming I1I: Darwinian invention and
problem solving. San Francisco, CA: Morgan Kaufmann.

Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. 2003 The
evolutionary origin of complex features. Nature 423,
139-144.

Norris, V., et al. 1999 Hypothesis: hyperstructures regulate
bacterial structure and the cell cycle. Biochimie 81,
915-920.

Parker, J. 2003 Computing with DNA. EMBO Rep. 4, 7-10.

Srere, P. A. 1987 Complexes of sequential metabolic enzymes.
Annu. Rev. Biochem. 56, 89-124.

Tanenbaum, A. S. 1999 Structured computer organization,
4th edn. Upper Saddle River, NJ: Prentice Hall.

Wang, D. In press ‘Molecular gene’: interpretation in the right
context. Biol. Phil. 20 (2).

Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J.,
Herschlag, D. & Brown, P. O. 2002 Precision and
functional specificity in mRNA decay. Proc. Natl Acad.
Sci. USA 99, 5860-5865.

	Examining the architecture of cellular computing through a comparative study with a computer
	Introduction
	The prototypes and the scope
	The cell as a multi-layered complex system
	A comparative study of architectural components
	The computing process
	Multi-layered architecture revisited
	Memory management: from storage to main memory
	The file system in a cell: the storage
	Process management in a cell: from primary memory to CPU
	System-level properties: the goal of the computation process
	Discussion
	References

