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ABSTRACT To understand better the effect of electrostatics on the rigidity of the DNA double helix, we define DNA*, the null
isomer of DNA, as the hypothetical structure that would result from DNA if its phosphate groups were not ionized. For the purposes
of theoretical analysis, we model DNA* as identical to ordinary DNA but supplemented by a longitudinal compression force equal in
magnitude but oppositely directed to the stretching (tension) force on DNA caused by phosphate-phosphate repulsions. The null
isomer DNA* then becomes an elastically buckled form of fully ionized DNA. On this basis, we derive a nonadditive relationship
between the persistence length P of DNA and the persistence length P* of its null isomer. From the formula obtained we can predict
the value of P* if P is known, and we can predict the ionic strength dependence of P under the assumption that P* does not depend
on ionic strength. We predict a value of P* for null DNA drastically lower than the value of P for DNA in its ordinary state of fully
ionized phosphates. The predicted dependence of P on salt concentration is log-c over most of the concentration range, with no
tendency toward a salt-independent value in the range of validity of the theory. The predictions are consistent with much of the
persistence-length data available for DNA. Alternate theories of the Odijk-Skolnik-Fixman type, including one by the author, are
considered skeptically on the grounds that the underlying model may not be realistic. Specifically, we doubt the accuracy for real
polyelectrolytes of the Odijk-Skolnik-Fixman assumption that the polymer structure is invariant to changes in electrostatic forces.

INTRODUCTION

The persistence length is a useful measure of the degree of

structural rigidity of a polymer chain and the energy cost of

deforming it (1–4). A continuing stream of persistence-length

data for DNA (5–13) reflects the importance attached to

an understanding of DNA bendability by proteins (14,15).

DNA is among the stiffest of known polymers with a

persistence length of ;50 nm (150 bp) in 0.1 M aqueous

NaCl. Despite that, we have calculated a mere 6% neutral-

ization of phosphate groups as enough to reduce to zero the

energy penalty of bending DNA to its nucleosomal radius of

curvature (16). Further, it is known that neutralization of

phosphate charge on one face of DNA causes bending toward

the neutralized face (14,17,18). Even asymmetric fluctuations

of the distribution of counterions condensed on DNA can

generate bending angles of a few degrees (19), while bending

away from a protein-shaped region of low dielectric constant

maintains well-solvated DNA phosphates (20).

There is some impression that ;50 nm is the smallest

value to which the persistence length can be brought by

weakening phosphate electrostatic repulsions. Nonetheless,

there are data at salt concentrations .0.1 M indicating values

as low as 30 nm (6,9,11). Adding trivalent cobalt hexamine

at concentrations short of triggering condensation of the

DNA, Pörschke found that the persistence-length drops to 20

nm (21). In conditions of more extensive phosphate-charge

neutralization by this trivalent cation, Baumann et al. (13) get

15 nm for the persistence length.

DNA can be deposited as dispersed single molecules on

mica surfaces coated with cationic polyamines of various

species and molecular weights and then viewed as AFM

images. Podestá et al. (22) have carried out a systematic

study of the persistence length by this technique. Controls

include observation of contour lengths typical of B-form

DNA and an expected 56-nm persistence length value in the

absence of the polyamine. The persistence lengths are de-

termined as equilibrium values from segments of the DNA

chains with contours described accurately as equilibrium

wormlike chains. The authors report a DNA persistence length

that decreases with increasing concentration of polyamine to

values as low as 11 nm, or only 32 basepairs.

The observations just discussed are at variance with

theories of the Odijk-Skolnick-Fixman (OSF) type (23–25).

These theories calculate an electrostatic contribution to the

persistence length that tends rapidly to zero with increasing

ionic strength. At 0.1 M NaCl, for example, the maximum

value of the OSF electrostatic persistence length (obtained

from linear Debye-Hückel theory) is ,6 nm. To compare

with a measured overall persistence length, the electrostatic

contribution is assumed additive onto a contribution of

nonelectrostatic origin—which, although unspecified, may,

at most, equal 11 nm, as suggested by the data discussed

above. The OSF predicted persistence length is thus ,17 nm

at 0.1 M NaCl, whereas measurements yield values approx-

imately equal to 50 nm. The large quantitative discrepancy

between OSF theory and measurements suggests a more

fundamental qualitative failing. The OSF model misses the

full implications of an important source of electrostatic

stiffening, namely, the internal electrostatic tension that must

be present in any polyelectrolyte chain.
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In this article, we base a theory of the persistence length of

a polyelectrolyte on the electrostatic stretching force caused

by repulsions among the charged groups on the polymer. We

introduced the concept of polyelectrolyte tension in 1989

(17,26,27), and it has recently been utilized independently by

Netz in a related but different context (28). A preliminary

version of our theory has appeared (26). The arguments here

have been sharpened and made more transparent, leading to

an explicit formula for the polyelectrolyte persistence length.

We begin by assembling the required theoretical tools.

From the theory of polyelectrolytes, we need the calculated

electrostatic stretching force, derived here in a form appli-

cable at higher salt concentrations than in our previous work

(17,26). In an excursion closely related to the analysis by Netz

(28), we find an application of the polyelectrolye tension to

the plastic range of DNA structure (defined below). The

critical length for buckling of a rod under compression was

a seminal contribution of Leonhard Euler to the theory of

elasticity (29,30). The buckling persistence length and its

relation to the more familiar bending persistence length come

from the statistical theory of polymers (4, 31). In connection

with these two different kinds of persistence length, we use

the notation P for the bending persistence length and the

calligraphic symbol P for the buckling persistence length.

The term ‘‘persistence length’’ will mean the usual persis-

tence length for bending fluctuations, whereas reference to

the persistence length for buckling will always be made

explicitly.

We then give the derivation of the primary result of this

article, a formula that relates the persistence length of a

polyelectrolyte to that of its ‘‘null isomer,’’ properly defined.

We offer comparison of theory to experiment for the case of

DNA, emphasizing the low values of persistence length

observed under conditions of extensive neutralization of

phosphate charge. We pay critical attention to recent single-

molecule measurements of the salt concentration dependence

of the persistence length (13), but we review as well the

voluminous data for the salt dependence that preceded them

(5–12). Finally, we come back to a discussion of OSF theory

and its relation to the present one.

POLYELECTROLYTE TENSION AND DNA
PLASTIC YIELD

We use our simplest model for a polyion, a linear array of N
discrete univalent charged sites, where N is large enough to

avoid end effects. This model has been explored in depth

(32), and it has been recently reviewed (25,33). A single such

polyion with counterions of unsigned valence Z is immersed

in a salt solution, and the ions from the salt with charge

opposite to the polyion charge also have unsigned valence Z.

An example would be DNA with Mg21 counterions

immersed in MgCl2 solution, Z ¼ 2. The electrostatic free

energy Gel of this model in the framework of counterion

condensation theory is given by the expression

Gel=NkBT ¼ �1

Z
2� 1

Zj

� �
lnð1� e

�kbÞ � 1

Z
1

1

Z
2
j
: (1)

Here, kBT is the product of the Boltzmann constant and

absolute temperature. The array of charge sites on the

polyion is characterized by spacing b, assumed uniform. The

free energy of interaction of the polyion with solvent in the

absence of counterions and salt is determined by a dimen-

sionless polyion charge density j ¼ ‘B/b, where ‘B ¼ q2/

DkBT is the Bjerrum length for the pure solvent (the distance

at which two unit charges 6 q, where q is the protonic

charge, have unsigned Coulomb energy equal to kBT if the

solvent has dielectric constant D). The salt solution is char-

acterized by Debye length 1/k, where in electrostatic (cgs)

units, k2 ¼ (8p) 3 10�3NA‘BI, the ionic strength I having

molarity units. A convenient numerical formula for the Debye

length in aqueous uni�univalent salt solution of molarity c is

1=k ¼ ð0:304=
ffiffiffi
c
p
Þ nm, or 0.96 nm at 0.1 M aqueous NaCl.

Equation 1 is valid above the charge density threshold for

counterion condensation, j . 1/Z. For our primary applica-

tion to DNA, j is .4.

There is a tension, or stretching force, within the line of

charges representing the polyion due to electrostatic repul-

sions among the charge sites. It may be calculated as the

negative derivative of Gel with respect to the length L¼Nb of

the polyion (for long lengths), holding the number of charge

sites N constant. Designating the tension by Fel, we get

Fel ¼
kBT

Z
2
‘B

ð2Zj � 1Þ kbe
�kb

1� e
�kb � 1� lnð1� e

�kbÞ
� �

: (2)

The electrostatic tension has expected properties. It becomes

weaker at higher salt concentration and lower polyion charge

density, as seen in Fig. 1. From direct inspection of the

formula, one may also check that at constant ionic strength,

the tension is weaker for counterions of higher valence,

which neutralize more of the polyion charge by condensation.

Equation 2 goes beyond the corresponding Debye-Hückel

FIGURE 1 The electrostatic tension in pN as a function of salt molarity

with univalent counterions. Solid curve for DNA parameters, j ¼ 4.2, b ¼
0.17 nm; dashed curve for a polyelectrolyte with half the DNA charge

density, j ¼ 2.1, b ¼ 0.34 nm.
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formula derived by Netz (28) in that it accounts fully for

effects of the condensed layer of counterions, including its

internal free energy as well as charge renormalization.

Equation 2 also has an unusual feature. At high salt, kb �
1, the tension changes sign and becomes a stabilizing mutual

attraction of the charges. This effect is caused by the entropy

of the condensed counterions. There is a detailed discussion

in Manning (33), where corroborating evidence from

simulations for the existence of the attraction is highlighted.

However, for the line charge model with DNA parameters,

the crossover occurs at an impractically high salt concentra-

tion (over 10 M) and has no impact on the present analysis, at

least not for DNA.

An interesting application of Eq. 2 is to the data of

Baumann et al. (13) for the salt concentration dependence of

the B-DNA / S-DNA, or ‘‘overstretch,’’ transition. The

following analysis is closely related to a prior discussion of

Netz (28), but the numbers are somewhat different because

we have handled counterion condensation more completely

by including effects from the internal free energy of the

condensed layer. The quantitative difference allows us to

extend his conclusions slightly.

When an externally applied stretching force is exerted on a

single DNA molecule, the polymer responds with increasing

applied force first by stretching out its entropic flexibility

at low forces to the full length characteristic of ordinary

B-DNA, then resisting further increases of force with almost

no further extension. But then at a critical yield value of the

applied force, the DNA begins to extend with little further

increase of the applied force, ultimately to ;1.7-times the

B-DNA contour length.

The force-extension curve after configurational entropy

has been pulled out would be recognized by a mechanical

engineer as typical of macroscopic materials; see, for ex-

ample, Fig. 1 of den Hartog (34). A metal bar pulled by an

applied tension at first resists with very little elongation in an

elastic response according to Hooke’s Law with a strong

Young’s modulus. Then, at a critical applied tension, the rod

becomes plastic and extends easily under relatively little

increase of the tension. The B-DNA / S-DNA transition

can thus be characterized as a nanoscale example of plastic

yielding. The advantage of this phenomenological view, as

emphasized by Netz (28), is that some analytical discussion

then becomes possible without delving into the unique

features of DNA molecular structure.

The value of the applied force at which DNA begins to yield

depends significantly on the salt concentration. From Fig. 2 A
of Baumann et al. (13) we read that the yield force for l-DNA

is approximately equal to 37 pN at 0.001 M NaCl, to 60 pN at

0.05 M, and to 65 pN at 0.5 M. These data by themselves

demonstrate that there must preexist within the DNA an

internal salt-dependent tension with magnitude on the scale of

tens of pN. The internal tension diminishes with increasing

salt concentration, so that, as observed, a larger applied

tension must be used to bring about plastic yield.

With Netz (28), we suggest that the electrostatic stretching

force Fel of Eq. 2 is the obvious candidate for the tension pre-

existing in DNA even in the absence of an externally applied

tension. We calculate (see Fig. 1) that Fel equals 60 pN, 47

pN, and 36 pN, respectively, at salt concentrations 0.001 M,

0.05 M, and 0.5 M. If these values are added to the corre-

sponding values measured for the yield force as listed in

the previous paragraph for l-DNA, we get a total tension

(internal electrostatic plus applied tensions) equal to 97 pN,

107 pN, and 101 pN, respectively, for the three different salt

concentrations. A reasonable interpretation would be that in

this range of salt concentrations a total tension of ;100 pN

drives l-DNA into its plastic phase.

ELASTIC RESILIENCE OF RODLIKE
POLYMER SEGMENTS

The model of a polymer in solution as a long elastically

rodlike object subject to thermal fluctuations has played a

central effect in the development of the statistical theory of

polymers (1,2). In this section we review some elements of

elastic rod theory (29,30), and then we consider the

flexibility bestowed on an otherwise stiff rod by thermal

fluctuations.

When a thin cylindrical rod of unperturbed length L is

uniformly stretched or contracted along its central axis by the

relatively small amount DL, the elastic energy DU stored in

the rod (free energy if the rod is in thermal equilibrium with

its environment) is given by Hooke’s Law in the form

DU ¼ 1

2
EAL

DL

L

� �2

: (3)

Like any macroscopic energy, DU is extensive (proportional

to rod length L), and like any linear elastic energy, it is

FIGURE 2 The dependence of persistence length in nm on salt concen-

tration in molarity for DNA. The solid curve is Eq. 25 with DNA structural

parameters b¼ 0.17 nm, j ¼ 4.2, R¼ 1 nm. P*¼ 7.4 nm then gives P¼ 55

nm at c ¼ 0.1 M. The data are from Sobel and Harpst (11) (stars); Cairney

and Harrington (9) (squares); Rizzo and Schellman (7) (diamonds); and

Borochov et al. (6), as corrected for excluded volume by Manning (8)

(triangles). For the latter, Post’s excluded volume corrected data are nearly

the same (10,11).

The Persistence Length of DNA 3609

Biophysical Journal 91(10) 3607–3616



proportional to the square of the deformation strain DL/L.

The product EA is the Hooke’s Law compression/extension

stiffness. The coefficient E is Young’s modulus and depends

on the rod material (the atomic composition and structure of

the polymer in this case), while A is the area of the cross

section of the rod,

A ¼ pR2
; (4)

where R is the radius of the rod.

There is also a Hooke’s Law for uniform bending de-

formations of the rod (the central axis of the rod is bent to the

arc of a circle, while its length L remains invariant),

DU ¼ 1

2
BLr

2
; (5)

where the measure of the bending strain is the curvature r of

the axis (reciprocal of its radius of curvature), and the elastic

modulus for stiffness against bending is called B.

Since bending involves compression on the inside of the

bend and extension on the outside, there is a relation between

B and Young’s modulus E,

B ¼ EI; (6)

where I is the moment of inertia of the cross section,

I ¼ 1

4
pR

4
; (7)

so that the ratio B/EA of the two Hooke’s Law moduli

depends only on the radius R of the rod,

B

EA
¼ 1

4
R

2
: (8)

When a small longitudinal compression force is applied to

the ends of a rod, the rod merely becomes slightly shorter.

But if the force is large enough, the rod responds by buckling

radially outwards. Early on in the development of the theory

of elasticity, Euler found that buckling of a rod of given

length L and elastic bending stiffness B is a critical

phenomenon,

FEuler ¼ 4p
2 B

L2; (9)

where physically appropriate boundary conditions determine

the numerical coefficient 4p2 (see below). The meaning of

Euler’s formula is that an applied compression force F ,

FEuler is met by simple longitudinal contraction, but forces

$FEuler buckle the rod.

If we solve Eq. 9 for the rod length L, it is the latter that

becomes critical:

LEuler ¼ 2p

ffiffiffi
B

F

r
: (10)

Now the meaning is that for a given compression force F,

only rods longer than the Euler length LEuler will buckle.

We mentioned that the numerical coefficient in Euler’s

formulas depends on the boundary conditions applicable at

the ends of the rod. In our application to polymers, the rod is

an internal segment of the polymer, and the compression

force originates from abutting segments of the polymer. In

stating the formulas, we chose the boundary condition of

‘‘clamped ends,’’ which corresponds to smooth merging of

the buckled segment into the polymer structure, avoiding

invocation of kinks at the interfaces. (For pictures, see

Fig. 19, in (30).)

To this point, we have not discussed the thermal fluc-

tuations that occur in the shape of the rod when it is im-

mersed in a temperature bath. Isolated from temperature, the

rod is static. It remains straight with constant length unless

acted upon, as in mechanical engineering applications, by

applied forces and torques. At any non-zero temperature,

however, an elastic rod undergoes a variety of conforma-

tional changes. Among them are contraction and extension

fluctuations longitudinally along its central axis. We are in-

terested in a uniform fluctuation of its length, and the corre-

sponding thermal force that causes the length change by

acting at its ends. The root mean-square (RMS) values of this

fluctuating compression/extension force is given by

Frms ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAkBT=L

p
; (11)

where the plus sign corresponds to an extension force and the

negative sign to a compression force. According to this

formula, the thermal force transmitted along the length of the

rod is greater for short rods of large stiffness modulus EA.

This relation was stated but not derived in Manning (31). The

derivation is a brief exercise in classical fluctuation theory

and is given here in the Appendix. In the following, we make

use only of the thermal compression force. Moreover, we

have no need of the negative sign, so we drop it.

An attribute of thermally fluctuating rods more familiar in

polymer theory is the persistence length P (1, 2). In the

context of elasticity theory, it is best defined by

Æcos aæ ¼ e
�L=P

: (12)

On the left is the thermal average of the cosine of the

fluctuating directional correlation of a rod of length L. The

angle a is that between the directions at the two ends of the

rod. The meaning of the definition is that a rod with per-

sistence length P long in comparison with its physical length

L is scarcely bent by thermal fluctuations; the average bend-

ing angle is close to zero. But if the persistence length is

short relative to L, then the directions of the two ends are

uncorrelated; the average bending angle is close to the

orthogonal.

Given this definition and its physical meaning, there must

be a close correlation between persistence length P and the

Hooke’s Law bending stiffness B of the rod. The well-known

relationship from wormlike chain theory is (1,2)

P ¼ B=kBT: (13)
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The persistence length is long for a stiff rod (which bends

only slightly), but it becomes shorter at higher temperatures

when thermally fluctuating bending torques have greater

energy.

We have introduced the idea of a persistence length for

buckling fluctuations to supplement the more familiar per-

sistence length P in Eqs. 12 and 13 for bending fluctuations

(4,31). To understand it clearly requires a slight shift in our

thinking. A polymer in solution is conceptualized as a fluc-

tuating chain of rodlike segments, each of which retains

elastic resilience in the face of thermal buffeting. There is a

fluctuating compression/extension force acting at the ends of

each segment and transmitted undiminished throughout the

length of the segment. The physical origin of the force is the

thermal energy of adjacent segments, and that is why it has

the same effect as a force applied at the ends of an elastic rod.

The buckling persistence length P of a polymer is defined

to be the Euler length corresponding to an RMS compression

force acting at the ends of a rodlike segment. In other words,

polymer segments shorter than P do not buckle in response

to a typical (RMS) compression fluctuation, but segments

longer than P do.

Equation 10 indicates that the Euler length depends on the

bending stiffness B, and according to Eq. 13, the bending

persistence length P is also correlated with B. It is therefore

reasonable to expect that the bending persistence length

P and the buckling persistence length P are related (31).

Here we give an efficient derivation of the relationship.

The quantitative expression of the definition of P is Eq. 10

with P substituted for LEuler and Frms for F,

P ¼ 2p

ffiffiffiffiffiffiffiffi
B

Frms

r
: (14)

The RMS compression force in this definition acts on a rod

of length equal to the buckling persistence length. The

formula for Frms given by Eq. 11 is therefore substituted into

Eq. 14 with rod length L replaced by buckling persistence

length P:

P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EAkBT

P

r
vuuut : (15)

Equation 15 may be solved for P by squaring twice,

whereupon

P3 ¼ 16p
4 B

kBT

� �
B

EA

� �
: (16)

The factoring in Eq. 16 is intentional, since each factor in

parentheses is familiar, the first from Eq. 13 (it equals the

bending persistence length), and the second from Eq. 8 (it

depends only on the rod radius R). Immediately, then, we ob-

tain the desired relation between buckling and bending per-

sistence lengths,

P3 ¼ 4p
4
R

2
P: (17)

As a numerical example, we calculate the buckling persis-

tence length of DNA. With the accepted value 55 nm (160

bp) for the bending persistence length P at 0.1 M aqueous

NaCl at room temperature, and with radius R ¼ 1 nm for the

double helix, P comes out as equal to 28 nm, or 82 bp,

approximately half as long as P. Thus, persistence length

segments of DNA (P segments), being longer than the

buckling persistence length, undergo significant buckling

distortions as well as bending motions in solution.

THE CONNECTION BETWEEN THE
PERSISTENCE LENGTHS OF A
POLYELECTROLYE AND ITS NULL ISOMER

In the previous two sections we have gathered all the the-

oretical tools needed to derive the central result of this article, a

formula that relates the persistence length of an electrostat-

ically charged polyelectrolyte to the persistence length of its

discharged null isomer. We recall our definition of ‘‘null

isomer’’ (26). It is the hypothetical structure that would be

adopted by the polyelectrolye chain if the electrostatic charge

on it were set to zero (without affecting the solvation of the

polymer). In this way we eliminate the effect on polyelectrolye

structure of electrostatic repulsions among its ionized groups.

In the case of a weak polyacid such as polyacrylic acid, the

null isomer has all carboxylate groups fully protonated. It

can be approached in the laboratory by dissolving poly-

acrylic acid in water. Due to the weakly acidic nature of the

monomers, a few of the carboxylate groups ionize, so the

resulting polymer chain bears some electrostatic charge and

is only an approximation to the null isomer, which remains,

strictly speaking, hypothetical. For a strong acid like DNA,

whose phosphate groups are not protonated in ordinary

solution conditions, the hypothetical null isomer has been

approached in the laboratory by other means to be discussed.

To proceed with our derivation of a formula with quan-

titative predictive capability, we require a mathematical yet

physically compelling model for the null isomer. Our aim is

to abolish the polyelectrolyte stretching force with the device

of the null isomer. We therefore take as our model for the

null isomer the fully charged polyelectrolyte supplemented

by an applied compression force F* that is equal but

oppositely directed to the electrostatic tension Fel that exists

internally in the charged polyelectrolyte. The internal tension

is given by Eq. 2. Therefore F* equals the right-hand side of

Eq. 2 (a positive quantity):

F
� ¼ kBT

Z
2
‘B

ð2Zj � 1Þ kbe�kb

1� e
�kb � 1� lnð1� e

�kbÞ
� �

: (18)

For DNA, the null isomer, which we call DNA*, is rep-

resented by ordinary DNA with its fully ionized phosphate

groups and bending modulus B but exposed to an externally

applied compression force F* that exactly balances the
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tension in the DNA caused by phosphate-phosphate repul-

sions. As an elastic rod subject to compression, there is thus a

critical Euler length LEuler* associated with the null isomer

DNA*. It is given by Eq. 10:

L
�
Euler ¼ 2p

ffiffiffiffiffi
B

F
�

r
: (19)

DNA in the absence of thermal fluctuations is straight (if its

basepair sequence is essentially random). But if the DNA

molecule is longer than LEuler*, then the central axis of its

null isomer DNA* is not straight. It is buckled.

For DNA, every quantity in Eq. 19 is known numerically.

In 0.1 M aqueous NaCl, B may be obtained from the known

value 55 nm for DNA persistence length in Eq. 13. The

quantities occurring in Eq. 18 for F* have been discussed in

connection with Eq. 2. The value of LEuler* works out to

equal 14 nm, or 40 bp. We recall from the previous section

that segments of DNA of length less than or equal to 82 bp

do not undergo buckling fluctuations in solution. However,

when the charge on DNA disappears to form the null isomer

DNA*, then 82-bp segments of DNA*, being longer than 40

bp, are buckled.

We pause here to gain some physical intuition. DNA is

under internal phosphate-phosphate repulsive tension. If the

phosphate charge is abruptly eliminated with, initially, no

structural change, then the tension is gone, but the internal

forces that had kept the DNA structure in balance with the

tension are still there. These restoring forces drive the DNA

to a new structure. According to our model, the new structure

will be a slightly contracted version of the original one for

short DNA segments (,40 bp); but the restoring forces are

strong enough to buckle DNA segments longer than 40 bp.

We proceed to consider the effect of thermal fluctuations

on the null isomer. We begin with determination of its

buckling persistence length P*. We assert that it is equal to

the null Euler length LEuler*, i.e., the Euler length of the

polyelectrolyte under the compression F* that balances the

electrostatic tension:

P� ¼ L
�
Euler: (20)

The argument for this identification is that it cannot be

otherwise. To understand why, recall first the definitions of

these two lengths. Null segments of length shorter than P�
are not buckled by the relatively weak RMS thermal com-

pression force Frms. Longer segments are buckled by Frms.

Similarly, null segments of length shorter than LEuler* are

not buckled by the relatively strong compression force F*

that is present in the null isomer. Longer segments of the null

isomer are buckled—even in the absence of thermal fluc-

tuations. Then P* cannot be shorter than LEuler*, since null

segments shorter than LEuler* are not buckled by the weak

force Frms, because they are not even buckled by the stronger

force F*. But P* also cannot be longer than LEuler*, because

null segments longer than LEuler* are already buckled even in

the absence of thermal fluctuations.

We return to Eq. 19, the right-hand side of which now

provides a formula for the buckling persistence length of the

null isomer:

P� ¼ 2p

ffiffiffiffiffi
B

F
�

r
: (21)

But for any polymer, including the null isomer, Eq. 17 relates

the buckling persistence length to the ordinary bending persis-

tence length. We rewrite Eq. 17 as it applies to the null isomer,

ðP�Þ3 ¼ 4p
4
R

2
P
�
: (22)

We solve Eq. 22 for the persistence length P* of the null

isomer, and then we use Eq. 21 to eliminate the buckling

persistence length P*:

P
� ¼ 2

pR
2

B

F�

� �3=2

: (23)

In a final step, we express the bending modulus B in terms of

the persistence length P of the original charged polyelec-

trolye by means of Eq. 13, and at the same time we substitute

the right-hand side of Eq. 2 for F*:

P
� ¼ 2

pR
2

Z
2
‘BP

ð2Zj � 1Þ kbe
�kb

1� e
�kb � 1� lnð1� e

�kbÞ

2
664

3
775

3=2

:

(24)

We have arrived at our central result. In the form of Eq. 24 it

expresses the persistence length of the null isomer, the

polyelectrolyte without its electrostatic charge, in terms of

the persistence length of the charged polyelectrolyte. We will

also use it the other way around. Solving Eq. 24 for P, we get

P ¼ p

2

� �2=3

R
4=3ðP�Þ2=3

Z
�2
‘
�1

B ð2Zj � 1Þ kbe
�kb

1� e
�kb � 1

�

� lnð1� e
�kbÞ
�
; (25)

thus providing a formula for the persistence length of a

polyelectrolyte in terms of the persistence length of the

polyelectrolyte without its electrostatic charge.

A qualitative remark to which we will return repeatedly is

that Eq. 25 states that the relationship between the persis-

tence lengths of a polyelectrolyte and its null isomer is multi-

plicative, not additive. In this theory, there is no additive

electrostatic component to the persistence length of a poly-

electrolyte. There is no ‘‘electrostatic persistence length.’’

NUMERICAL CALCULATIONS AND
COMPARISON WITH EXPERIMENTAL DATA

The null persistence length

We calculate the numerical value of the persistence length

of the null isomer of DNA from Eq. 24. Except for the
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persistence length P of DNA, all the parameters on the right-

hand side of this equation are characteristic either of the

structure of B-DNA (b ¼ 0.17 nm, R ¼ 1 nm), or of water

(‘B ¼ 0.71 nm at room temperature), or of both (j ¼ ‘B/

b¼4.2), or of the counterion (Z ¼11 for Na1), or of the salt

concentration (k ¼1/(0.96 nm) in 0.1 M aqueous NaCl).

Moreover, a consensus measured value of P in these

conditions is 55 nm. The numerical value of P* then works

out to be 7 nm (;20 basepairs of B-DNA).

The remarkably low predicted value for the persistence

length of the null isomer, P* ¼ 7 nm, is consistent with

current knowledge from experiments. As discussed in the

Introduction, increasingly efficient neutralization of phos-

phate charge by counterions yields increasingly smaller

values of the persistence length, from 55 nm at moderate

concentrations of NaCl, to 30 nm at high NaCl (6,9,11)), to

20 nm at concentrations of trivalent cobalt hexamine short of

triggering DNA collapse (21), to 15 nm at cobalt hexamine

concentrations above the collapse threshold (the latter

measurement is under conditions of single-molecule stretch-

ing that prevent collapse) (13). Finally, deposition of DNA

on mica surfaces coated with positive charge (in the form of

poly-L-ornithine) yields images of DNA contours with

persistence lengths decreasing with increasing concentra-

tions of positively charged substrate down to P ¼ 11 nm at

the highest concentrations (22).

The value 55 nm of the persistence length of DNA is much

larger than the 7 nm it would be if the phosphate charge were

lacking. The enhancement of persistence length is due to the

electrostatic tension within the DNA double helix generated

by phosphate-phosphate repulsions. The difference between

55 and 7 is 48. There is no implication, however, that all

polyelectrolytes of linear charge density equal to that of

DNA would have a minimum electrostatic persistence length

equal to 48 nm plus some nonelectrostatic contribution (the

electrostatic tension according to Eq. 2 depends only on the

linear charge density). The reason is that Eqs. 24 and 25 are

not additive relationships. The persistence length P is not the

sum of electrostatic and nonelectrostatic contributions.

For polyelectrolytes of the same linear charge density

(equal values of axial charge spacing b and hence also of

reduced charge spacing j ¼ ‘B/b), the dependence of P on

length quantities from Eq. 25 is

P ; R
4=3ðP�Þ2=3

‘
�1

B ; (26)

where the Bjerrum length factor is independent of polyelec-

trolyte species and serves only to show explicitly that the

units are correct. The two relevant lengths are the polymer

radius R and the persistence length P* of the polyelectrolyte

lacking its charge. Then a hypothetical polyelectrolyte with

the same charge density and radius as DNA but with a null

persistence length 10-times smaller than 7 nm (persistence

lengths of typical single-chain polymers are only a few

monomers long) would have a persistence length P¼ 12 nm.

If, additionally, the hypothetical polymer had a radius three-

times less than DNA (as would be typical of most single-

chain synthetics), then P drops to 3 nm. Finally, if we return

to the full Eq. 25 and use in it the charge density j ¼ 2.8

typical of a polyphosphate chain or a vinylic chain with an

ionized group on every monomer (instead of the DNA value

4.2), then P ¼ 1.5 nm. The prediction thus would be that if

fully protonated polyacrylic acid has a persistence length of

approximately three monomers (0.7 nm), then the fully

ionized polyacrylate chain would have a persistence length

of approximately six monomers.

One may make the preceding numerical estimates without,

however, gaining physical insight. Why do polyelectrolytes

of the same charge density, hence with the same electrostatic

tension in the chain, nevertheless not experience the same

stiffening effect of the tension? The insight, as well as the

numbers, must come from Eq. 26.

The radius R of the polymer cross section appears in Eq.

26 because of the radial dependence of the moment of inertia

of the cross section from Eq. 7. It is the radial cross section

that bears the bending torque generated by longitudinal

buckling and extension forces. Thinner polymers are subject

to smaller torques from the same longitudinal force than

thicker ones, and are thus extended less than thicker ones

from the buckled configuration of the null isomer by the

same electrostatic tension.

The dependence of P on P* indicated by Eq. 26 is also

susceptible to qualitative interpretation. A chargeless poly-

mer with small persistence length P* has a higher config-

urational entropy than one with long persistence length P*.

Equal electrostatic tensions in the two polymers do not have

equal effects. The same tension force Fel experiences more

entropic resistance in straightening the high entropy chain

than the low entropy one.

As discussed, the persistence length of DNA is many

times larger than the persistence length of its uncharged

isomer, that is, the ratio P/P* is large for DNA. Rearranging

Eq. 26 to form this ratio, we get

P=P�;R4=3ðP�Þ�1=3
‘
�1

B : (27)

This equation shows that for polymers of the same charge

density, the slight dependence of P/P* on P* is dominated

by the dependence on the radius of the polymer cross section.

Polyelectrolytes thinner than DNA, even if of comparable

charge density, will not have P/P* ratios as large as DNA.

Ionic strength dependence of the
persistence length

The null persistence length P* is the persistence length of a

polymer with no electrostatic charge. It is reasonable to

assume that P* lacks a dependence on ionic strength.

Therefore Eq. 25 becomes a formula for the persistence

length P of the charged polyelectrolyte with an explicit

dependence on ionic strength. The ionic strength appears

only through the Debye screening parameter k. At first
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glance the dependence looks complicated, but it is not. For

dilute salt, kb , , 1 (for DNA with its small value of b, this

condition covers nearly the entire salt range of interest). The

first term in the bracketed factor in Eq. 25 becomes constant,

and the third term yields a ln-c dependence, where c is the

salt concentration.

The solid curve in Fig. 2 is a plot of P for DNA as given by

Eq. 25. We used the value P* ¼ 7.4 nm, as discussed in the

previous section. Also shown in Fig. 2 are the combined data

from four different laboratories (6,7,9,11). All of these data

report true persistence lengths unaffected by, or corrected for

(8,10), long-range excluded volume effects.

As mentioned in the Introduction, there is some impression

that the measured ionic strength dependence of DNA

persistence length is independent of salt concentration except

at low salt. We will discuss the basis for this impression, but

first we wish to note that it is not visually supported by the data

shown in Fig. 2, which, again, are combined from four

laboratories. Taken separately, the data of Sobel and Harpst

(11) can be fit to a log c dependence with correlation co-

efficient 0.96 up to 3 M NaCl; the data of Borochov et al. (6)

can be fit to a log c dependence with correlation coefficient

0.96 up to 4 M NaCl; the data of Cairney and Harrington (9)

can be fit to a log c dependence with correlation coefficient

0.92 up to 1 M NaCl; and the data of Rizzo and Schellman (7)

can be fit to a log c dependence with correlation coefficient

0.85 up to 0.5 M NaCl. In the analysis of the latter set of data,

an outlier at 1 M NaCl is omitted (but included in Fig. 2).

In Fig. 3, we exhibit two further sets of data that show

strong dependence on salt concentration. Nordmeier’s mea-

surements (12) can be fit almost perfectly to a linear log c
dependence (correlation coefficient 0.99) up to 0.2 M NaCl,

the highest concentration he used. The data of Frontali et al.

(5) fit a log c line with correlation 0.91. These two sets of

data are not used in Fig. 2 because they exhibit a steeper ionic

strength dependence than the data shown there. It may be

noted that the Frontali group used NH4Cl as the salt in their

electron microscopic method. Because the Frontali and

Nordmeier P-values are much higher at lower salt than the

data in Fig. 2, they do not compare quantitatively to our theo-

retical prediction. However, their logarithmic dependence on

salt concentration is in qualitative agreement with the theory.

The impression of ionic strength independence appears to

come from two well-publicized articles. One of these (35)

reports persistence-length values inconsistent with all other

data of which this author is aware, including the data of

Baumann et al. (13). It has been commented upon elsewhere

(11). The other more recent measurements of Baumann et al.

(13) are exhibited in Fig. 4. The difference from the six data

sets in Figs. 2 and 3 is evident. With increasing salt con-

centration, the values of Baumann et al. drop to ;50 nm at

;0.01 M NaCl, and remain more or less constant at 50 nm

up to the highest ionic strength used by the authors, 0.6 M.

It is worth contrasting the data of Baumann et al. with those

of the others in more detail. From 0.01 M NaCl up to 0.6 M,

Baumann et al. find that P remains invariant at ;50 nm. The

data from six other laboratories indicate the following: a

decrease of P from 68 nm to 48 nm over the salt range 0.02–

0.5 M (11); a decrease from 70 nm to 33 nm over the range

0.01–1 M (6); a decrease from 70 nm to 42 nm over the

range 0.01–1 M (9); a decrease from 52 nm to 40 nm over the

range 0.01–0.5 M (7); a decrease from 130 nm to 50 nm over

the range 0.03–0.5 M (5); and a decrease from 78 nm to 45 nm

over the range 0.02–0.2 M (12).

Based on their salt concentration data, Baumann et al.

report observing a ‘‘nonelectrostatic contribution [that]

dominates P’’ at salt concentrations .;0.01 M. With

reference to some of the same data that appear in Fig. 2, they

state further that this observation is ‘‘in accord with previous

experimental determinations. . . .’’ The latter statement is

certainly incorrect.

OSF theories

Polyelectrolyte persistence length theories of the Odijk-

Skolnick-Fixman (OSF) type proceed from the assumption

FIGURE 3 The persistence-length data of Frontali et al. (5) (triangles)

and of Nordmeier (12) (squares). The latter are corrected for excluded-

volume effects according to the procedure in Manning (8).

FIGURE 4 The persistence length data of Baumann et al. (13). At each

salt concentration, we show the average of the three values reported in Table

1 of Baumann et al.
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that electrostatic and nonelectrostatic interactions in a poly-

mer contribute independently to the bending stiffness. The

persistence length data in Figs. 2 and 3 cannot be fit to the

shape of curves calculated from OSF theories, which flatten

out to a constant nonelectrostatic value at higher salt. From a

quantitative point of view, we have noted in the Introduction

that at 0.1 M NaCl, the maximum value consistent with OSF

theories for the total persistence length of DNA is 17 nm,

whereas the actual measured value is ;50 nm.

Baumann et al. (13) report that their data can be fit to an

OSF theory given by their Eq. 3. They incorrectly charac-

terize their Eq. 3 as the result of a nonlinear Poisson-

Boltzmann theory, whereas it actually comes from a linear

Poisson-Boltzmann calculation incorrectly corrected for

counterion condensation (see Discussion in (25)). More

importantly, we are unable to reproduce the solid curve in

their Fig. 5, said to represent their Eq. 3. Instead, we can fit

the data in their Fig. 5 only by assuming a numerical co-

efficient approximately three-times larger than the coefficient

0.324 from their Eq. 3. But there is no physical basis for this

value that fits the data. It corresponds neither to the value

5.80 from uncorrected linear Poisson-Boltzmann, nor to the

value 0.324 incorrectly corrected for counterion condensa-

tion as in their Eq. 3, nor to 2.42 from a more accurate

counterion condensation calculation (25). (Note that the

modified OSF Eq. 13 in (25) is correct, and the factor 2.42

quoted here corrects some errors that crept into the dis-

cussion of this formula.) More importantly still, as discussed

in the previous section, the data of Baumann et al. (13)

appear themselves to be problematic.

According to the model addressed in this article, OSF

theories may suffer from an important omission. It seems

obvious that the stretching force from charge-charge repul-

sions within a polyelectrolyte should play a significant effect

in stiffening the polymer, yet the effect of longitudinal

tension from electrostatic forces is not considered by OSF

theory. The structural change from a buckled to a stretched

conformation that occurs when functional groups on a poly-

mer chain become ionized is missed. The strength of the

internal electrostatic tension depends on salt concentration,

and therefore the structure of a polyelectrolyte chain must

change with salt concentration. The consequence is that the

OSF nonelectrostatic persistence length is not a constant, but

itself depends on salt concentration.

APPENDIX

Here we derive Eq. 11 for the RMS compression/extension force on an

elastic rod in a temperature bath. We follow the classical treatment of

fluctuations in Landau and Lifshitz (36). Let x be any small fluctuation and

w ¼ 1

2
ax

2
(28)

be the work required to establish it to quadratic order, where a is some

constant modulus. The mean-square value of x is calculated from

Æx2æ ¼
RN

�N
x

2
e
�ax

2
=2kBT

dxRN

�N
e
�ax

2
=2kBT

dx
; (29)

since even though x is physically small the exponentials allow extension of

the integration limits to infinity. Therefore the RMS values of x are given by

xrms ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffi
kBT=a

p
: (30)

For length fluctuations DL of an elastic rod of static length L, we take x ¼
DL/L to be the longitudinal strain fluctuation. From Hooke’s Law for the

elastic energy, a is equal to EAL, where E is Young’s modulus, and A is the

cross-sectional area. The RMS strain fluctuation is then

ðDL=LÞrms ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=EAL

p
; (31)

where the plus sign corresponds to extension and the negative sign to

compression. Hooke’s Law also provides a linear stress-strain relation

between the strain DL/L and the compression/extension force F that

produces it:

F ¼ EAðDL=LÞ: (32)

Equation 11 of the text now follows from Eqs. 31 and 32.
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