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ABSTRACT The single-parameter G matrix of force constants proposed by the Gaussian Network Model (GNM) is iteratively
modified to yield native state fluctuations that agree exactly with experimentally observed values. The resulting optimized G

matrix contains residue-specific force constants that may be used for an accurate analysis of ligand binding to single or multiple
sites on proteins. Bovine Pancreatic Trypsin Inhibitor (BPTI) is used as an example. The calculated off-diagonal elements of the
G matrix, i.e., the optimized spring constants, obey a Lorentzian distribution. The mean value of the spring constants is ;�0.1, a
value much weaker than �1 of the GNM. Few of the spring constants are positive, indicating repulsion between residues.
Residue pairs with large number of neighbors have spring constants around the mean, �0.1. Large negative spring constants
are between highly correlated pairs of residues. The fluctuations of the distance between anticorrelated pairs of residues are
subject to smaller spring constants. The importance of the number of neighbors of residue pairs in determining the elements of
the G matrix is pointed out. Allosteric effects of binding on a single or multiple residues of BPTI are illustrated and discussed.
Comparison of the predictions of the present model with those of the standard GNM shows that the two models agree at lower
modes, i.e., those relating to global motions, but they disagree at higher modes. In the higher modes, the present model points
to the important contributions from specific residues whereas the standard GNM fails to do so.

INTRODUCTION

Residues of a protein in the native state exhibit large-scale

fluctuations about their equilibrium positions. The extent of

the fluctuations of a given residue depends predominantly on

the number of its closest spatial neighbors. The mean-square

fluctuation of a residue is, in general, smaller than that of

another residue with a smaller number of neighbors. This

observation forms the basis of the Gaussian network model

(GNM) of proteins (1), which predicts the residue fluctua-

tions in native proteins, in simple analogy with fluctuations

of junction positions in Gaussian elastomeric networks (2).

The fact that the size of the fluctuation domain of a junction

in a Gaussian network varies inversely with the number of

other junctions that share this domain is now well established

(3), and serves as a plausible analogy for the protein fluc-

tuations. The second simplifying assumption of the GNM

was based on an earlier postulate (4) that because of the

central limit theorem, the large-scale fluctuations of residues

could be characterized by a single-parameter Gaussian

energy function. According to this approximation, all the

Ca-Ca interactions as well as the strength of the covalent

bonds are assumed identical. The simplification introduced

by adopting a single-parameter representation of fluctuations

by Tirion (4) and Bahar et al. (1) is notable. Several articles

(5–10) following the original GNM article showed that a sim-

ple harmonic potential with a single interaction-parameter

indeed captures the basic physics underlying the equilibrium

fluctuations in proteins. However, a closer and more careful

examination of the articles comparing experiment with GNM

predictions (7,9,10) shows that if the single-parameter po-

tential is replaced by a potential that somehow reflects the

environment of a given residue in more detail, the agreement

between theory and experiment will be further improved.

The specific aim of this article is to introduce a simple

method for calculating the environment-dependent interac-

tion parameters for a protein when its B-factors are given.

We do this by iteratively modifying the residue-residue

interaction parameters, until the recalculated G matrix of the

system yields the experimentally observed mean-square res-

idue fluctuations. The starting G matrix is that of the GNM.

The parameters of the optimized G matrix then give the

strength of the residue-specific pairwise interactions, which

are corrections to the single-parameter GNM.

Micheletti et al. (8) used a self-consistent Gaussian model

to study the equilibrium behavior of proteins in which the

pairwise interactions are not equivalent, but are amino-acid

specific. Starting with a Hamiltonian similar to that of the

GNM, they introduced an iterative self-consistent approach

for calculating the equilibrium probabilities of the contacting

pairs of residues. Their work clearly shows the importance of

differentiating pairwise interactions in a protein in the native

state and gives the method of calculation. The approach of

this article is similar to their iterative method.

In the next section, we critically review the GNM and

point out to what may be missing in the model. In Theory,

below, we describe the computational scheme for reevaluat-

ing the spring constants to match experimental data. As an

application, we determine the spring constants for the pro-

tein Bovine Pancreatic Trypsin Inhibitor (BPTI; PDB code

No. 5PTI) and present an extensive discussion of the
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residue-specific spring constants that lead to precise descrip-

tion of the observed B-factors. The present model gives a

consistent theoretical description of the B-factors. A precise

and consistent description of the fluctuations in proteins is of

great consequence for a quantitative understanding of protein

function, ligand binding, and protein-protein interactions.

We discuss different possible applications of the model using

the optimized values of the spring constants.

THEORY

Review of the Gaussian theory of fluctuations
in native proteins

The equilibrium fluctuations in a protein are related to the experimentally

measured Debye-Waller factors, also referred to as the temperature or

B-factors, by the relation

ÆDR2

i æ ¼ 3

8p
2 Bi; (1)

where ÆDR2
i æ is the mean-square fluctuation of the ith residue and Bi is its

Debye-Waller factor in Å2. The Hamiltonian, H, for the native protein is

usually assumed to consist of Lennard-Jones type pair interactions

bH ¼ b

2
+
i.j

Eij

Rij

Rij

� �12

�2
Rij

Rij

� �6
" #

; (2)

where Rij and Rij are the instantaneous and time-averaged distances between

the ith and jth residues, b ¼ 1/kT, k and T being the Boltzmann constant and

the absolute temperature, respectively. The value Eij is the energy parameter

for the ijth pair, a positive quantity for attractive interactions. Expanding Eq.

2 in Taylor’s series and keeping the first two terms leads to the Gaussian

approximation

bH ¼ �b

2
+
j.i

Eij 1
b

2
+
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36Eij

R
2

ij

 !
ðRij � RijÞ2: (3)

Replacing ðRij � RijÞ2 by the equivalent expression (DRi � DRj)
2 in Eq. 3,

where DRi is the instantaneous fluctuation of the ith residue from its time-

averaged position, the Hamiltonian may be recast into the form

bH ¼ b

2
H0 1

b

2
DRT

GDR; (4)

where DR is the column vector of DRi values, H0 ¼ �+
j.i

Eij, and G is

given as

Gij ¼
�36Eij

R
2

ij

i 6¼ j

+
k

36Eik

R
2

ik

i ¼ j 6¼ k
;

8>><
>>: (5)

the partition function for a protein of n residues may be written as

Z ¼ exp �b

2
H0

� �Z
exp½�DRT

GDR�dfDRg ¼ C0

p
n

detG

� �3=2

;

(6)

where dfDRg [ dDR1 dDR2 . . . dDRn, and C0 ¼ exp½�b

2
H0�.

The average quantity ÆDRi � DRjæ is obtained from Eq. 6 according to the

known operations (2) as

ÆDRi � DRjæ ¼
3

2
ðG�1Þij: (7)

The diagonal elements of Eq. 7 express the connection between fluctuations,

ÆDR2
i æ, and the residue-residue interaction energy parameters, Eij, in the

Gaussian approximation. Combining Eqs. 1 and 7 leads to

ðG�1Þii ¼
1

4p
2 Bi: (8)

The ijth off-diagonal element of the matrix G defined by Eq. 5 shows the

strength of interaction between residues i and j. The matrix is simplified in

the GNM by assuming that the energy parameter Eij equates to a constant g*

if the residues i and j are separated by less than a cutoff distance rc, and to

zero otherwise:

Gij ¼
�g

�
if i 6¼ j and Rij#rc

0 if i 6¼ j and Rij . rc

�+
k

Gij if i ¼ j 6¼ k
:

8><
>: (9)

Defined in this manner, the off-diagonal elements of the G matrix give the

contact map of the native protein if the single-parameter g* is taken as unity.

The single-parameter g* may be regarded as a weighting factor. It weights

each contact equally in the G matrix. The value of the ith diagonal element of

G equates to the total number of its contacts, weighted with g*.

The G matrix may be written as G ¼ D 1 U, where D and U are the

matrices of the diagonal and off-diagonal elements, respectively. The in-

verse G�1¼ (D 1 U)�1 may be written for small off-diagonal terms by Taylor

series expansion up to the linear term in U as

G
�1 ¼ D�1 � D�1UD�1

1 . . . (10)

The diagonal component D�1 shows the contribution of the local packing

density to G�1. The second term, D�1UD�1, shows the contributions

resulting from positional correlations among different residue pairs. Thus,

the off-diagonal terms carry information on the spatial connectivity of the

protein. Depending on the strength of these latter correlations, the con-

tributions of the off-diagonal terms of G to the fluctuations may be sig-

nificant. These effects are included in the GNM. Some time ago, Halle (7)

proposed the local density model (LDM) where only the contribution of

diagonal terms, D�1, are considered, and all pairs of nonhydrogen atoms

within a cutoff distance are counted in D. Accordingly, the mean-squared

fluctuations of atoms are represented as

ÆDR
2

i æ ¼
1

Di

: (11)

Halle chose 38 nonhomologous proteins and showed that the LDM gives

excellent agreement with the experimental values of the B-factors. However,

a closer inspection of the LDM shows that whenever LDM is in good

agreement with experiment, GNM also is in good agreement, and whenever

LDM fails, GNM also fails. The main source of the failure of LDM relates to

the absence of the off-diagonal contributions and to the choice of the same

spring constant for all pair interactions, which in turn affects the contri-

butions from the off-diagonal terms.

Recently, Kundu et al. (9) published an important article where they

studied possible improvements in the GNM by using an extensive set of

113 proteins as their data. On the average, the predictions of the model in

the form it was first proposed (1) gave satisfactory results. To obtain better

agreement of the theory with experiment, they varied the spring lengths,

including the possible interactions between proteins that are adjacent to

one another in the crystal structure. With all these improvements, the best

correlation coefficient that measures the relative agreement between

B-factors and the GNM was 0.662. Although this correlation coefficient

may be accepted as satisfactory for the complex systems at hand, it is rather

low for quantitative use of the model. Further attempts to improve the

comparisons by using an anisotropic version of the GNM failed, showing

that directional correlations are not the significant factors affecting the

considered variables. Kundu et al. (9) also showed that there are no large

systematic contributions of lattice disorder to crystallographic B-factors.
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Three factors, that may be important, are missing in the GNM. First, each

spring constant gij connecting two neighboring residues i and j is taken as

equal. This is an oversimplification and deviations from this single-peaked

distribution of spring constants may be significant. Secondly, the proteins are

situated on a lattice and crystal packing effects are nonnegligible as shown

by Kundu et al. (9). Thirdly, non-Gaussian or anharmonic effects may make

nonnegligible contributions to the thermal fluctuations, and therefore B-factors,

and therefore a purely harmonic model may underestimate the atomic fluc-

tuations. The specific and practical aim of the present work is to express

protein fluctuations precisely, by keeping the simple Gaussian structure and

systematically readjusting or optimizing the spring constants. This is done by

iteratively renormalizing the quadratic Hamiltonian. In this way a distribu-

tion of spring constants are obtained that lead to fluctuations that are in

agreement with experimentally observed data. The second effect cited above,

i.e., contributions from crystal packing effects are present, a posteriori, in the

spring constants calculated with the present model. An increase in the number

of neighbors of a surface residue coming from crystal packing decreases the

fluctuations of that residue and this decrease is in turn represented in the

present model by an increased value of the spring constant. Therefore, the ef-

fects of crystal packing are implicitly contained in the present model, ac-

curately, if they lie in the harmonic range. Non-Gaussian effects constitute a

problem of higher complexity, and currently it is not possible to incorporate

such effects directly into the GNM or to any harmonic model. In this respect,

the calculated spring constants are to be regarded as effective spring constants

that are renormalized to reflect anharmonic effects using an harmonic model.

It should be noted, however, that matching experimental data by adjusting the

spring constants using an harmonic model may lead to systematic errors, and

the present model should be considered with care in this respect. As an

example, we cite the modal decomposition of fluctuation trajectories. Within

the harmonic approximation the modes are uncoupled and energy imparted to

any mode remains forever in that mode, whereas with an anharmonic

potential, energy flows to other modes, as has been shown earlier (11,12).

Determination of neighbor-dependent
spring constants

The model

The protein is represented in its Ca form. The starting Hamiltonian of the

iterative scheme is that of the GNM. The strength of the interaction between

all covalently bonded pairs, i.e., the spring constants, of Ca-values along the

chain backbone is chosen as g*, and kept fixed throughout the iterations.

The constancy of this bond strength follows (8) from the fact that the

backbone bonds are formed at the outset and remain in that state at all times.

The initial strength of interactions between all pairs of nonbonded residues

that are within a cutoff distance of rc is taken as g* and is varied at each

iteration for each residue pair. A Monte Carlo renormalization scheme is

employed for evaluating the Hamiltonian of the system iteratively. The

iterative computational scheme starting with the single initial interaction

parameter g* is as follows: The matrix G is formed according to

Gij ¼

�g
�

if ji� jj ¼ 1

�g
�
cij if ji� jj. 1 and Rij , rc

0 if ji� jj. 1 and Rij . rc

�+
k

Gij if i ¼ j 6¼ k

:

8>>><
>>>:

(12)

In the first step, the cij-values are taken as unity (but they are modified in

subsequent steps according to Eq. 13 below). The G matrix is then inverted

and the diagonal elements of G�1 are compared with experimental ÆDR2
i æ

using Eq. 8. A residue i is then chosen randomly, and its interaction with all

of its first neighbor residues (excluding the covalently bonded ones) is

updated according to

GijðnewÞ ¼ GijðoldÞ1 e ðG�1ðoldÞÞij �
1

4p
2 Bi

� �
; (13)

where e is a small positive number, and j (jj�ij.1) goes from 1 to n (total

number of residues). The G matrix is then symmetrized, and its new diagonal

elements are calculated. The correction introduced in Eq. 13 modifies the

spring constants, or the cij-values, between the ith residue and all of its

contacting neighbors, j. Upon inversion of G, the correction introduced to

the ij pairs propagate to all residues that are affected by the fluctuations of the

ith residue. The iterative scheme outlined above is repeated in this manner,

until the experimental and theoretical values of ÆDR2
i æ converge. At the end

of the iterations, a different value of the interaction parameter for each pair of

contacting residue is obtained.

RESULTS

Evaluation of the modified interaction parameters
for BPTI and comparison with experiment

Here, we apply the method of the preceding section to the

widely studied protein Bovine Pancreatic Trypsin Inhibitor,

BPTI, which has 58 residues. The choice of this protein is

only because it is one of the most widely studied proteins and

its native structure is known to within an RMSD of 1 Å.

In the calculations, the cutoff distance is taken as 7.0 Å.

Iterative calculations were made according to Eq. 13 with e¼
0.01. Iterations were continued until the mean-squared error

between the calculated and experimental B-factors reached

a steady low value. Initially, the GNM gave a mean-squared

error of 7 Å2. At the end of 5000 steps the mean-square

deviation decreased to and remained at a steady value of

0.8 Å2. The value of the scaling factor g* was obtained as

18.14.

In Fig. 1 a, predictions of GNM are compared with ex-

perimental B factors. Although the fluctuation patterns of

various domains are predicted well, there are significant

deviations for individual residues. For example, the decrease

in fluctuations in going from residue 1 to 5, the minimum

about residue 10, the peak about residue 15, the minimum

about residue 20, the peak around residue 40, and the two

peaks around residues 48 and 54 are all predicted. However,

individual peaks at residues 8, 14, 21, 26, 30, 38, 42, 47,

51, and 55 exhibit significant deviations from experiment.

Normal mode decomposition of fluctuations to investigate

structure-function relations, as have been the common prac-

tice in interpreting the GNM results, is most satisfactory in

the low frequency modes relating to the domain motions.

For the higher modes to be meaningful, precise agreement

between experiment and theory is needed. This is established

with the present model. In Fig. 1 b the agreement of the

results of the model and experiment are clearly seen.

The spring constants are all equal in the GNM model,

hence their distribution is a spike at �1. The present model

transforms this distribution into a single-peaked Lorentzian.

This is elucidated in Fig. 2. The ordinate in the figure shows

the range of g-values obtained as a result of the iterative pro-

cedure of the present model. The negative values correspond

to attractive forces between the corresponding residues. The

ordinate represents the fraction of the gij-values correspond-

ing to the indicated values of the abscissa. Some of the spring
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constants are positive, indicating repulsive forces between

residue pairs that are spatially too close to each other. This

last statement will be further discussed below. The solid

curve is the best fitting Lorentzian that has the equation

fij ¼
A

2p

v

4ðgij � gcÞ
2
1 v

2

 !
; (14)

where fij is the fraction of gij-values, and the parameters A,

gc, and v are obtained for the fit shown in Fig. 2 as A ¼
0.426, gc ¼ �0.0887, and v ¼ 0.174. Thus, the single peak

at gij ¼ �1.0 for the GNM is now shifted to gc ¼ �0.0887,

and the distribution is slightly diffused around this value as

seen in the figure. Calculations for several other proteins

along the same lines also transform the spring constant

distribution into a Lorentzian. The Lorentzians for all the

proteins studied may be superposed into a single curve with

proper scaling. A detailed analysis of this feature is in prog-

ress in our lab.

The distribution shown in Fig. 2 is obtained by randomly

choosing a residue and modifying its interactions with all of

its neighbors. The set of spring constants obtained in this

manner should be independent of the random choice of the

residues. The solid points in Fig. 2 show results obtained

with another initial choice of the spring constants. Only those

points that exhibit sufficient deviation from the original

distribution are visible as solid points in the figure, the others

being essentially identical and masked by the original open

circles. The values of gij are presented in Table 1.

In Fig. 3 we compare the g-values obtained by two dif-

ferent iterations. The random numbers used for choosing the

residue pairs in the calculations were different in the two sets.

The abscissa and ordinate labeled as g1 and g2, respectively,

FIGURE 1 (a) Experimental B factors for BPTI (thick curve) compared

with the GNM prediction (light curve and solid circles), (b) Experimental B

factors (light curve), which are in agreement with calculated values (solid

circles).

FIGURE 2 The fraction of gij-values obtained as a result of the present

iterative model.

FIGURE 3 Comparison of the calculated spring constants gij for two dif-

ferent Monte Carlo runs.
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indicate the two sets of the parameters gij obtained by the

two independent runs. The points collapse perfectly on a 45�
line that passes though the origin, indicating that the scheme

is independent of the randomness inherent in the Monte

Carlo scheme employed.

The dominant factor that leads to the Lorentzian distribu-

tion shown in Fig. 2 is the average number, nij, of residues in

the domains of fluctuation of the residues i and j, defined as

nij ¼ ðni � njÞ1=2
; (15)

where ni is the number of neighbors of residue i. In Fig. 4, the

average number of residues nij are presented as a function of

gij. The shaded circles are obtained by counting the number

of neighbors ni and nj that are within a cutoff distance of 7 Å

of residue i and j, respectively, and using Eq. 15. The vertical

dotted line shows the values of g for the GNM and is draw

for reference. The solid vertical line locates the zero of g and

is drawn to guide the eye. The average number of junctions

obtained by using Eq. 15 varies between 4 and 12. The cal-

culated values of gij are shifted to larger values, but still

mostly negative, indicating that the attractive forces between

pairs of residues are diminished relative to that of GNM.

There are, however, few positive values that represent repul-

sive forces between pairs. Pairs of residues in crowded

environments represented by large values of nij correspond

to small values of gij. Stated in another way, these pairs are

weakly connected to each other. The solid circles are ob-

tained by averaging the values of nij in a given interval of gij.

For negative values of gij, averaging is done over equal

intervals of 0.25. For positive values of gij, the interval is

taken as 0.05 since there are fewer points in the positive

region and their range is smaller. The line connects the solid

points to guide the eye. The peak of the curve representing

the averages is ;g ¼ �0.1.

The present model is applied to 12 different proteins of

different sizes (B. Erman, unpublished) and the magnitudes

of attractive spring constants are observed to scale as

gij ;
1

ÆDR
2

ijæ
m; (16)

where m is in the order of 1.6 and ÆDR2
ijæ is the mean-square

fluctuation of the distance between the ith and jth residues,

defined in terms of the mean-square residue fluctuations as

ÆDR
2

ijæ ¼ ÆDR
2

i æ� 2ÆDR
2

i � DR
2

j æ 1 ÆDR
2

j æ: (17)

The value of ÆDR2
ijæ is affected by two factors: First, if the

mean-square fluctuations of the residues are small, then

ÆDR2
ijæ will be small, leading to a large value of the spring

constant. Thus, residues in crowded regions where ÆDR2
ijæ are

small, are joined by stiffer spring constants. Secondly, for

residues in less crowded regions, for anticorrelated fluctu-

ations, the dot product in the middle term in Eq. 17 will be

negative and consequently ÆDR2
ijæ will be large, leading to a

small value of gij. For correlated motions, the dot product

will be positive, and ÆDR2
ijæ may be small, leading possibly to

a large value of the spring constant.

With the expectation of decreasing the scatter in the cal-

culated shaded points in Fig. 4, another run was made where

the starting gij-values were not equated to �1 at the outset

but their values were assigned according to 1/2nij. At the end

of the iterations, the values of gij-values satisfied the 45�
relation of Fig. 3. This shows that 1), the computational

scheme is robust; and 2), there is an underlying effect that

consistently leads to a unique set of gij-values.

Effects of binding on fluctuations

A unique set of spring constants for a protein that gives a

precise description of fluctuations may suitably be used for

the investigation of binding effects on them. Binding of a

ligand on a single residue, say ith, has the effect of increasing

the number of neighbors in the domain of fluctuation of the

residue. This changes the number nij, thereby affecting the

fluctuations of the jth residue, and the effect propagates

throughout the protein. For some residues, this effect may

propagate further into the protein and for others it may die

out fast. To describe and study these effects, a detailed and a

precise Hamiltonian is needed and the present method of

improved G matrix is suitable for this. Without an accurate

description of fluctuations, changes caused in them by bind-

ing can only be studied qualitatively and only in the slow

modes. In this section, we formulate the GNM with binding

and apply it to the analysis of ligand binding on various

residues of BPTI.

Binding of a ligand on a single residue

We assume that a ligand binds on the ith residue of a protein

of n residues. The G matrix of the new system, i.e., the protein

plus the ligand, will be
FIGURE 4 Relationship of gij-values on the average number of neighbors

of residues i and j.
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The value of gi,n11 measures the strength of binding of the

ligand to the residue. A value of �1 makes it equivalent to a

covalent bond. In the calculations below, we adopt this

value.

In Fig. 5, we show the changes in the fluctuations of

residue j when a ligand binds on ligand i. The solid and dark-

shaded contour regions indicate a decrease of fluctuations of

the corresponding residues j, and the open and light-shaded

regions indicate an increase. For example, binding on residue

15 decreases the fluctuations of residue 37 that falls in the

solid contour. The solid regions indicate a decrease of the in-

dicated residues along the ordinate by 3–5% relative to the

unbound state. The open regions indicate an increase of

fluctuations by 1–2%. The contours indicate a strong

symmetry with respect to exchange of axes. This shows

that the effect on residue j when binding is on residue i is

similar to the effect on residue i when binding is on residue j.
Response of residues to perturbation has previously been

formulated and analyzed for several proteins (14–16).

In Fig. 6, effects of binding on Lys15 and Gly37 are

compared. The solid curve shows the percent change in the

fluctuations of other residues when binding is on residue

Lys15. The fluctuations of the residues 9–20 decrease upon

this binding. Also, the fluctuations of Gly37 are decreased

significantly, as observed from the second minimum in the

solid curve. Binding also increases the fluctuations of some

residues, specifically, those of 21–33 and 41–58. It is to be

noted that the decrease in fluctuations of Gly37 is a direct

consequence of the fact that Lys15 and Gly37 are close spatial

neighbors. The thin line shows the changes taking place

when a ligand binds on Gly37. Thus the effects induced by

binding on Gly37 are similar to those of binding on Lys15,

indicating the approximate reciprocity of binding to Lys15

and Gly37.

FIGURE 5 Contour map of perturbation of a residue j when binding takes

place on a residue i. FIGURE 6 Binding on Lys15 and on Gly37, separately.

G ¼

1� +
n

k¼3

g1k

� �
�1 g13 g14 � � � � g1n 0

�1 2� +
n

k¼4

g1k

� �
�1 g24 g25 � � � g2n 0

� � � � � � � � � 0

�1 2� gi;n11 � +
i�2

k¼1

gik � +
n

k¼i12

gik

� �
�1 gi;i12 � � gin gi;n11

0

0

0

0

0

0 0 0 gi;n11 0 � � � �gi;n11

2
666666666666666666664

3
777777777777777777775

: (18)
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When the two residues are not neighbors in space, binding

on one effects the fluctuations of the other, but the reciprocity

stated above does not necessarily hold. As an example, in

Fig. 7, effects of binding on residues Tyr35 and Ala58 are

shown. Binding on Tyr35 and Ala58 is indicated by the thin

and thick lines, respectively. Binding on Ala58 induces an

increase in the fluctuations of Tyr35, but binding on Tyr35

does not have any effect on the fluctuations of Ala58. Further-

more, binding on Ala58 induces an increase in the fluctua-

tions of residues 8–21, whereas binding on Tyr35 induces a

decrease of fluctuations for these residues.

Binding to multiple sites on the protein

The G matrix defined by Eq. 16 may be extended to the case

of multiple binding to different residues of a protein. For a

protein of n-residues and a ligand that binds to m-sites, Eq.

16 may be written in block form as

G ¼ ½g�n;n ½s�n;m
½s�m;n ½gs�m;m

� �
: (19)

Here, [s]n,m is the matrix that has n-rows and m-columns

defined as

½s�ij ¼
gij if j

th
point of the ligand is bound to i

th
residue

0 for j ¼ 1; . . . ;m if no binding to i
th

residue
:

(

(20)

The matrix [gs]m,m has the form

where m-bindings have taken place on residues i, j, k, . . . , p,

q, r. The ligand is assumed to constitute a linear chain of

m-binding sites, and the linear connectivity is acknowledged

by �1 values along the first off-diagonal terms of [sg]m,m.

In Fig. 8, the effects of simultaneous binding on Lys15 and

Gly37 are shown. Compared to Fig. 6, binding simultaneously

on both of these residues causes a fourfold-larger decrease

than if binding took place on Lys15 only, or Gly37 only.

The effects of binding two independent ligands to two

residues are significantly different than when the two ligands

are connected to form a single molecule. In Fig. 9, effects of

simultaneous and independent binding on Gly28 and Ala58

are compared. The two residues are 7.1 Å apart, and hence

not within the cutoff distance of 7.0 Å.

The thin line represents the effects when the spring con-

stant between the two ligands are taken as 0 that corresponds

to independent binding, i.e., two independent ligands binding

FIGURE 7 Comparison of the effects of binding on Tyr35 and Ala58. FIGURE 8 Binding on Lys15 and Gly37.

½gs�m;m ¼

1� gi1 �1 0 0 0 0 0

�1 2� gj2 �1 0 0 0 0

0 �1 2� gk3 �1 0 0 0

� � � � � � �
0 0 0 �1 2� gp;m�2 �1 0

0 0 0 0 �1 2� gq;m�1 �1

0 0 0 0 0 �1 1� grm

2
666666664

3
777777775
; (21)
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on these two sites. The heavy solid curve is obtained when

this spring constant between the two ligands is equated to

�1. This makes the ligand behave as a single entity of two

binding sites. The fluctuations of Gly28 are not affected much

upon this modification of the ligand. However, the fluctu-

ations of Ala58 are significantly reduced, and the fluctuations

of the rest of the protein between residues 1–23 and 29–52

increase significantly. In Fig. 10, effects of binding at five

points on the helix Ser47-Gly56 are shown by the solid curve.

The light-shaded curve indicates effects of binding to only

one residue, Glu49, on the helix. Comparison of the two

curves shows the magnification of the effect of simultaneous

binding on several successive residues. The figure also

shows the allosteric effects of binding, according to which

binding on one part induces strong changes on another part

of the protein that is far from the binding site.

DISCUSSION AND CONCLUSION

This article consists of two parts. In the first part, the

originally proposed GNM is modified to obtain an exact

match between experimental and predicted values of residue

fluctuations. This improvement in the model is important

because it provides an exact description of fluctuations in a

consistent way, with the aid of which residue-specific events

relating to fluctuations can be analyzed in greater detail and

accuracy. The second part of the article involves the

application of the model to a specific protein. In this part,

we showed that an accurate description of fluctuations is

indeed useful in understanding the detailed behavior of the

protein. A wide range of properties of proteins relating to

fluctuations have been addressed successfully with the

original version of the GNM, which showed remarkable

agreement with experiment at the coarse-grained level. The

improvement introduced here allows for the analysis of

specific details very accurately at the residue level. Correc-

tions to an already successful model have to be justified

carefully. First, it should be robust, which in turn requires the

model to yield the same results irrespective of the initial

distribution of gij. This has been shown to be the case for

BPTI. Calculations carried out on several other proteins but

not reported here also show that the gij-values converge to a

fixed distribution, irrespective of the starting distribution of

gij-values. A few patterns on the magnitudes of gij-values

may be extracted from the results on BPTI. Firstly, the

distribution of gij-values obey a Lorentzian distribution,

which has a pronounced peak at the small value of �0.088

(compared to �1 of GNM), and there are a few positive gij-

values. The repulsive springs are required in the cases where

a cluster of neighboring attractive springs tend to bring

certain pairs of residues close to each other, and the repulsive

springs are needed to prevent the collapse of these residues

onto each other. Examples of this are given below. It is to be

noted that the number and strength of the repulsive springs

are much smaller than those that would possibly lead to the

instability of the protein. Calculations were carried out by

allowing only attractive springs and equating the spring

constant to zero when the simulation indicated a repulsive

spring. However, convergence of the calculated fluctuations

to the experimental ones was not possible in that case, and

the model was not accurate. Residue pairs that have fewer

neighbors are located at the surface. These are the important

residue pairs in the sense that the absolute values of their gij-

values are large. These pairs are either strongly attracted

together (pairs connected with a stiff attractive spring, or

high negative value of gij) or repel each other strongly (pairs

connected with a stiff repulsive spring, or high positive value

of gij). An analysis of the spring constants given in Table 1

shows that the locations of these residues are important

for the stability and/or function of the protein. For example,

the largest value gij ¼ �1.09 is for the pair Asn24-Ala27,

both of which are located on a tight turn at the surface. The

next important pair is also on the same tight turn, Asn24-

Gly28 with gij ¼ �0.68. The pair Ala16-Gly37 with gij ¼
�0.48 joins the turns of two major loops at the surface of the

protein. Phe4-Arg42 pair with the next highest gij ¼ �0.389FIGURE 10 Binding on Ala48-Met52 of the helix.

FIGURE 9 Effects of simultaneous binding on Gly28 and Ala58.
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is also located at the center, joining the tail of the chain to a

point on the body. The locations of these important inter-

actions are presented in Fig. 11 a. The pair Arg53-Gly56 with

the highest positive gij ¼ 0.193 is located at the end of the

chain, where Gly56 is on the free unstructured tail of the

helix. Arg53 is situated on the helix. The repulsive spring

prevents Gly56 from collapsing on the helix and keeps it

protruding out from the surface. Similarly, each residue of

the pair Gly12-Arg39 with gij ¼ 0.113 is on the surface and

located at the midpoints of the two neighboring long coils of

the protein. The repulsive spring between them keeps the two

coils from collapsing onto each other.

The locations of these pairs on the surface of the protein

are shown in Fig. 11 b. These examples indicate that the

factors affecting the magnitudes of the spring constants

depend on diverse structural features of the molecule

probably relating to stability and simultaneously to function.

However, inspection of Fig. 4 shows that the majority of gij-

values lie in a narrow region ;gij¼�0.088. The outliers are

those pairs at the surface of the protein.

The present model describes the fluctuations of residues in

more detail than the standard GNM. To clarify the predic-

tions of the present model relative to those of the standard

GNM, we conducted a detailed modal decomposition of the

present model according to the expression (17)

ÆDR
2

i æk ¼
3kT

g

� �
l
�1

k ½uk�2i : (22)

Here, ÆDR2
i æk denotes the kth component of the fluctuation of

the ith residue, lk is the kth eigenvalue, and [uk]i is the ith

component of the kth eigenvector. In Fig. 12 a, the collective

contribution of the lowest five modes is shown. The dotted

line is for the standard GNM, and the solid curve is for the

present model, and the two agree more or less perfectly in

the lowest five cumulative modes. Fig. 12 b compares the

highest five modes of the two models. Here, the thick solid

line refers to the present model and the thin line to the

standard GNM, and significant detail is observed in the

present model while it is not present in the standard GNM.

FIGURE 11 (a) Pairs with large attractive spring constants. (b) Pairs with

large repulsive spring constants.

FIGURE 12 (a) Contribution of the lowest five modes to the fluctuations

of residues. Solid line shows results of the present model; dotted line that of

the standard GNM. (b) Contribution of the highest five modes. Thick solid

line, present model; thin solid line, standard GNM.
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Specifically, the latter predicts a peak for the range of

residues 33–42, as observed from Fig. 12 b, but the present

model resolves this peak to a peak at Arg39 and Arg42, the

two important residues of the binding site. Similarly, the

standard GNM gives a diffused peak in the range of residues

9–20, whereas the present model points to the significance of

residues 12, 15, 16, and 19 in this range. We therefore

conclude that the present model is more detailed and more

specific in the higher modes. The relevance of this detail to

known experimental data for different systems is the subject

of future work.

Finally, it is worthwhile to add several recently published

articles relating to research reported in this article; for

example, Ming and Wall (18), who improved the model by

strengthening backbone interactions; Tobi and Bahar (19),

who found correlations between intrinsic motions of un-

bound proteins and structural changes upon binding; and Sen

et al. (20), who systematically compared Gaussian Network

Models with varying scales of coarse-graining.

It is a great pleasure and an overdue duty to acknowledge the contributions

of Dr. Andrzej Kloczkowski to our understanding of the Gaussian Network

Model. His critical appreciation of the work of Flory and especially of

Pearson and his clear reformulation of the theory have been crucial in the

development of the Gaussian Network Model for proteins.
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