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Summary
We propose “score-type” tests for the proportional hazards assumption and for covariate effects in
the Cox model using the natural smoothing spline representation of the corresponding nonparametric
functions of time or covariate. The tests are based on the penalized partial likelihood and are derived
by viewing the inverse of the smoothing parameter as a variance component and testing an equivalent
null hypothesis that the variance component is zero. We show that the tests have size close to the
nominal level and good power against general alternatives, and we apply them to data from a cancer
clinical trial.
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1 Introduction
For regression analysis of censored survival data, Cox's proportional hazards model (Cox,
1972) is unquestionably the most popular framework. The assumption of proportional hazards
may not always be realistic, however; e.g., Gray (2000) notes that effects of prognostic factors
in cancer often do not exhibit proportional hazards, and we have found the assumption
questionable in many cancer and cardiovascular disease data analyses. Accordingly, this
assumption should be critically evaluated and alternative models considered if necessary.

A situation in which the proportional hazards assumption may be suspect is in the analysis of
covariate effects on survival in Cancer and Leukemia Group B (CALGB) Protocol 8541, a
randomized clinical trial comparing three doses (high, moderate, and low) of chemotherapy
(cyclophosphamide, doxorubicin, also known as adriamycin, and 5 fluorouracil, abbreviated
CAF) in women with early stage, node-positive breast cancer. The primary analysis found no
difference in survival between high and moderate doses, both of which were superior to the
low dose. Based on long-term follow-up, subsequent interest focused on whether certain patient
characteristics are prognostic for survival. Figure 1a shows estimated survival curves and the
log-negative-log of survival curves for the 1437 patients for whom Estrogen Receptor (ER)
status was available (520 ER-negative and 917 ER-positive, respectively). Under proportional
hazards, the log-negative-log survival curves should be parallel, which is obviously not the
case; in fact, the two curves cross on the interval (0, 1) year. Figure 1b shows the Schoenfeld
(1982) residuals, which, on average, should be zero if proportional hazards were adequate but
exhibit a noticeable trend away from zero. Formal evidence supporting the visual impressions
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from the figures would be valuable to the data analyst assessing whether the Cox model is an
appropriate framework for inference.

Many approaches have been advocated for assessing the relevance of the proportional hazards
assumption; e.g., Fleming and Harrington (1991, sec. 4.5), Klein and Moeschberger (1997,
secs. 9.2 and 11.4), and Therneau and Grambsch (2000, Chap. 6) discuss procedures such as
including a function of time [e.g., log(t)] as a time-dependent covariate in the linear predictor,
plots of and smoothing of Schoenfeld (1982) residuals (e.g., based on assumed time-dependent
coefficient models), partitioning the time axis into disjoint intervals in each of which the model
is fitted and the results compared, and so on. There is also a large literature on formal testing
approaches (e.g., Pettitt and Bin Daud, 1990; Gray, 1994). O'Sullivan (1988), Hastie and
Tibshirani (1990), Zucker and Karr (1990) and authors referenced therein discussed estimation
in the proportional hazards model with nonparametric covariate or time-varying coefficient
effects using smoothing splines in a penalized partial likelihood approach. Gray (1992,
1994) proposed spline-based tests for parametric covariate and time effects using fixed knot
splines. Numerical results suggest that the tests perform well in moderate samples, but they
require the smoothing parameter to be finely tuned according to the true alternative to achieve
good power properties, which may not be realistic in practice.

Indeed, there is a rich literature in which nonparametric smoothing is used as the basis for
testing and diagnostics in general statistical models. Cox et al. (1988) was among the first major
works in this spirit; these authors developed a locally most powerful test for parametric effects
in generalized spline regression models for independent normal data by taking a Bayesian view;
see Liu and Wang (2004) and Liu, Meiring, and Wang (2005) for related work and extensions.
Barry (1993) and Eubank et al. (1995) developed tests for additivity of nonparametric
regression functions. Guo (2002) proposed likelihood ratio testing for nonparametric functions
in smoothing spline ANOVA models. Gu (2004) discussed model diagnostics for such models
using Kullback-Leibler geometry.

A theme of some of this work (e.g., Guo, 2002) is to exploit explicitly the connection between
random effects models and smoothing splines; Ruppert, Wand, and Carroll (2003) provide a
comprehensive overview of this connection. Using these ideas, Zhang and Lin (2003) proposed
a penalized likelihood approach to deriving a score test for nonparametric covariate effects in
generalized additive mixed effects models, based on regarding the inverse of the smoothing
parameter as a variance component. The test has low degrees of freedom and, moreover, does
not require fitting of the model under the alternative, which can be computationally intensive;
it also enjoys valid size and good power properties in practice. Score tests have also been
applied with great success to testing homogeneity of odds ratio in sparse 2 × 2 tables by Liang
and Self (1985), to testing variance components in generalized linear mixed models by Lin
(1997), and to testing homogeneity in a frailty proportional hazards model by Commenges and
Andersen (1995) and Gray (1998).

The success of these procedures leads us in this paper to adapt the Zhang and Lin (2003) strategy
to testing departures from proportional hazards, described in Section 2. Another problem of
interest is testing for covariate effects in the Cox model; i.e., testing whether the functional
form representing the effect of a covariate on survival time is a fixed-degree polynomial. We
show that this can be addressed similarly in Section 3. We report empirical results for both
tests in Section 4, and apply them to the data from CALGB 8541 in Section 5.

2 Score Test for Proportional Hazards
For subject i, i = 1, …, n, let Ti and Ci be survival and censoring times; Xi a (p × 1) vector of
covariates; and Si a scalar covariate of interest, where Ti and Ci are independent given ( X i

T ,
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Si)T. The observed data are Vi = min(Ti, Ci), Δi = I (Ti ≤Ci). Cox's proportional hazards model
(Cox, 1972) for the hazard function given ( X i

T , Si)T, λ(t|Xi, Si), is

λ(t | Xi, Si) = λ0(t) exp {Xi
Tβ + Siθ}, β(p × 1), (1)

with regression coefficients β and θ (scalar) and unspecified baseline hazard λ0(t). Model (1)
implies for any X that λ(t|X, Sk)=λ(t|X, Sl) = exp{(Sk – Sl)θ} independent of time, the
“proportional hazards” assumption, which, as suggested by Cox (1972), may be evaluated by
including in the model a time-dependent covariate that is the product of S and a function of
time and testing if its coefficient is different from 0. Rather than adopting a known such
function, which limits the scope of possible departures from (1), we consider the alternative

λ(t | Xi, Si) = λ0(t) exp {Xi
Tβ + Siγ(t)}, (2)

where γ(·) is an arbitrary smooth function of time. Because γ(·) is infinite-dimensional, we
follow Gray (1994) and estimate it along with β by maximizing the penalized partial log-
likelihood

lp{β, γ( ⋅ ), η} = lc{β, γ( ⋅ )} − (η / 2)∫{γ (m)(t)}2dt, (3)

where lc {β, γ(·)} is the usual Cox partial log-likelihood, m ≥ 1 is an integer, and η > 0 is a
smoothing parameter controlling the roughness of γ(t) and the goodness-of-fit of the model.

Following Zhang and Lin (2003), we consider the smoothing spline representation of γ(t) of
Kimeldorf and Wahba (1971). Denote by t 0 = (t1

0, … , tr
0)T  the (r × 1) vector of ordered,

distinct Vi’s with Δi = 1 (i.e., all failure times) and by γ the corresponding vector of γ(t) evaluated
at each element of t0. Without loss of generality, assume 0 < t1

0 < ⋯ < tr
0 < 1. As lc {β, γ(·)}

depends on γ(·) only through γ, it is well-known that maximizing lp{β, γ(·), η} leads to a natural
smoothing spline of order m for the estimator for γ(t), expressed as

γ(t) = ∑
k=1

m
δkφk(t) + ∑

l=1

r
alR(t, tl

0), (4)

where {δk} and {al} are constants; {φk (t)}k=1m  is a basis for the space of (m – 1)th order

polynomials; and R(t, s) = ∫0
1(t − u)+

m−1(s − u)+
m−1/ {(m − 1) ! }2du,  where x+ = x if x > 0

and 0 otherwise. The function R(t, s) is easily calculated, especially for small m; e.g., when
m = 1, R(t, s) = min(t, s). Writing δ = (δ1, . . . , δm)T and a = (a1, . . . , ar )T , ∫{γ (m)(t)}2dt =
aT ∑a and γ = Hδ + ∑a, where

H =

φ1(t1
0) ⋯ φm(t1

0)

φ1(t2
0) ⋯ φm(t2

0)

⋮ ⋱ ⋮

φ1(tr
0) ⋯ φm(tr

0)

, Σ =

R(t1
0, t1

0) ⋯ R(t1
0, tr

0)

R(t2
0, t1

0) ⋯ R(t2
0, tr

0)

⋮ ⋱ ⋮

R(tr
0, t1

0) ⋯ R(tr
0, tr

0)

; (5)

e.g., in the case m = 1,
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H =
1
⋮
1 r×1

, Σ =

t1
0 t1

0 t1
0 ⋯ t1

0

t1
0 t2

0 t2
0 ⋯ t2

0

t1
0 t2

0 t3
0 ⋯ t3

0

⋮ ⋮ ⋮ ⋱ ⋮

t1
0 t2

0 t3
0 ⋯ tr

0

Thus, writing τ = 1/η, (3) may be represented as lp(β, δ, τ, a) = lc{β,γ(δ, a)} − aT ∑a/(2τ), where
the Cox partial log-likelihood is now

lc{β, γ(δ, a)} = ∑
i=1

n
Δi Xi

Tβ + Sici
T (Hδ + Σa) − log { ∑

j∈R(ti
0)

exp {X j
Tβ + S jci

T (Hδ + Σa)}} . (6)

Here, R(t) is the risk set at time t; and ci is an (r × 1) vector of all 0’s except when Δi = 1, when
it has a 1 in the position corresponding to the failure time ti

0 for subject i.

Note then that exp{lp(β, δ, τ, a)} = exp[ lc{β, γ(δ, a)}] exp{−aT ∑a/(2τ )}, which has the form
of the partial likelihood, depending on a, times a N (0, τ ∑−1) density up to a constant. This
suggests viewing a as a N (0, τ ∑−1) random vector, with τ as a “variance component,” and
exp[ lc{β, γ(δ, a)}] as a partial likelihood “conditional” on a. Under this perspective, a plays
a role similar to that of a frailty, so we follow the spirit of Commenges and Andersen (1995,
sec. 2) and consider a “marginal partial likelihood” for (βT , δT , τ)T as

L (β, δ, τ) = exp {l(β, δ, τ)} = ∫ exp lc{β, γ(δ, a)} ϕr(a; 0, τΣ−1)da, (7)

where ϕr is the density of an r-dimensional normal distribution.

The natural spline representation of γ(t) in (4) implies that γ(t) is an (m − 1)th order polynomial
if and only if a = 0, which in (7) is equivalent to H0 : τ = 0. Thus, testing whether γ(t) is a
constant as in (1) versus the broad alternative (2) may be addressed by setting m = 1 and testing
H0. Following Zhang and Lin (2003), we propose a “score-type” test for H0 as follows. Making
the transformation u = τ −1/2∑1/2a in (7), and using L’Hôpital’s rule, algebra shows that the
“score" for τ based on (7) takes the form

∂l(β, δ, τ)
∂τ | β̂,δ̂,τ=0 = 1

2 { ∂lc{β, γ(δ, 0)}∂γT
Σ
∂lc{β, γ(δ, 0)}

∂γ + tr( ∂2lc{β, γ(δ, 0)}∂γ∂γT
Σ)} | β̂,δ̂, (8)

where β̂, δ̂ are the usual maximum partial likelihood estimators for β, δ found by maximizing
(6) under H0 : a = 0. The second term on the right hand side of (8) is approximately the negative
of the mean of the first (see the Appendix), and our simulations show that variation in the
second term is negligible relative to that in the first. We thus follow Zhang and Lin (2003),
who considered an analogous test of covariate effects in generalized additive mixed models,
and base our test statistic on the first term in (8). Letting Sγ {β, γ(δ, 0)} = ∂/∂γ[ lc{β, γ(δ, 0)}],
we consider basing the test on

Uτ{β̂, γ(δ̂, 0)} = Sγ
T {β̂, γ(δ̂, 0)}ΣSγ{β̂, γ(δ̂, 0)}. (9)
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In the Appendix, we argue heuristically that, for n large, n−1Uτ {β̂, γ(δ̂, 0)} can be expected to
behave like a certain weighted sum of independent χ1

2 random variables whose distribution
can be approximated by that of a scaled chi-square using the Satterthwaite method. Based on
this heuristic reasoning, for matrices Ŵ  and V̂  given in the Appendix, we propose the test

statistic T = Uτ{β̂, γ(δ̂, 0)} / K, where K = tr{(Ŵ V̂ Ŵ TΣ)
2} / tr(Ŵ V̂ Ŵ TΣ),  and we reject

H0 at nominal level α if T > χν,1−α
2 ,  where χν,1−α

2  is the 100(1 − α)th percentile of the χν
2

distribution, with ν = {tr(Ŵ V̂ Ŵ TΣ)}2/ tr{(Ŵ V̂ Ŵ TΣ)
2}. In Section 4.1, we demonstrate

empirically that this test has reliable operating characteristics.

3 Score Test for Covariate Effects
We use the same setup as in Section 2 but consider instead the general alternative

λ(t | Xi, Si) = λ0(t) exp {Xi
Tβ + γ(Si)},

where the unknown function γ(·) represents the effect of covariate Si on outcome. We wish to
test the functional form of γ(·); specifically, the null hypothesis is H0 : γ(·) is an (m−1)th order
polynomial. Two cases of special interest are that of m = 1, corresponding to a test for no effect,
and m = 2, the situation of a linear effect of Si.

Using the same smoothing spline technique employed in Section 2, we estimate γ(·) along with
β by maximizing the penalized partial log-likelihood

lp{β, γ( ⋅ ), η} = lc(β, γ( ⋅ )} − (η / 2)∫{γ (m)(s)}2ds. (10)

Denote by s 0 = (s1
0, … , sr

0)T  the (r × 1) vector of ordered, distinct Si's and by γ the
corresponding vector of γ(s) evaluated at each element of s0. Again assuming
0 < s1

0 < ⋯ < sr
0 < 1, maximizing lp{β, γ(·),η} leads to a natural smoothing spline of order m

for the estimator for γ(s). We again have ∫{γ(m)(s)}2ds = aT ∑a and γ = H δ + ∑a, where H (r
× m) has (l, k) element φk (sl

0),  and ∑ is positive definite with (l, l′) element R(sl
0, s

l ′
0 ). Equation

(10) can be represented as lp{β, δ τ, a} = lc{β, γ (δ, a)} − aT∑ a/(2τ), where the Cox partial log-
likelihood now has a different form given by

lc{β, γ(δ, a)} = ∑
i=1

n
Δi Xi

Tβ + ci
T (Hδ + Σa) − log { ∑

j∈R(Vi)
exp {X j

Tβ + c j
T (Hδ + Σa)}} .

Here ci is an (r × 1) vector of all 0's with the exception of a 1 in the position corresponding to
the covariate value si

0 for subject i.

Taking the same perspective as in Section 2, treating a as N (0, τ ∑−1) and obtaining the
"marginal partial likelihood," we may cast the null hypothesis as H0 : τ = 0 and derive a similar
test statistic. For reasons of identifiability, the first component of δ must be absorbed into the
baseline hazard so that only the remaining components need be estimated under H0. By
arguments analogous to those in the Appendix, for m > 1, the test of H0 is the same as in Section
2, with the only difference being in the form of lc. A special case is testing for no effect of Si.
The null model is λ(t | X i, Si) = λ0(t) exp (X i

Tβ),  so m = 1, and, because δ has only one
component, it is absorbed into λ0(t), which is equivalent to δ = 0, so that we only need to
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estimate β under H0. The "score" for τ takes the same form as in (8) except now the expression
is evaluated at ( β̂, 0, 0), so that the test is based on
Uτ{β̂, γ(0, 0)} = Sγ

T {β̂, γ(0, 0)}ΣSγ{β̂, γ(0, 0)}.By similar arguments, the test statistic is as in

Section 2, where now the matrix Ŵ V̂ Ŵ T  is defined differently; see the Appendix.

4 Simulation Evidence
4.1 Test for Proportional Hazards

We carried out simulations to evaluate the performance of the proposed test for the proportional
hazards assumption. The cases we considered are similar to those in Gray (1994).

To evaluate size, failure times were generated under the null model λ(t|Si) = λ0(t) exp{Siδ0},
i = 1, 2, . . . ,n, with λ0(t) = 1 and δ0 = 0, 1, or 2. Values of Si were equally spaced on the interval
(0, 1) with equal numbers of subjects having each distinct Si value; e.g., if “number of distinct
covariate values” is 2, then half had Si = 0 and half Si = 1. We considered two censoring
distributions: the unit exponential and a uniform distribution on (0, 2); the former gave
minimum (maximum) censoring probabilities of 0.12 (0.50), which were 0.07 (0.43) for the
latter. Sample sizes were n = 100 and 200, and N = 2000 samples were generated for each
scenario. Empirical size was estimated as the proportion of N samples rejected by the nominal
0.05-level test. Table 1 shows that empirical size is very close to the nominal level for all
scenarios, in most cases within sampling error. Larger differences from the nominal level are
seen under unit exponential censoring, as censoring probability in that case is higher.

To evaluate power, failure times were generated under the alternative λ(t|Si) = λ0(t) exp{Siγ
(t)}, i = 1, 2, . . . ,n. Here, Si was a single binary covariate defining two groups of equal size,
and the true log hazard ratios for the two groups, γ(t), were given by

Curve 1 : γ(t) = log {.75t} Curve 4 : γ(t) = log {(t − .75)2}
Curve 2 : γ(t) = log {2 / (1 + 5t)} Curve 5 : γ(t) = log {e I (t≥1)} = I (t ≥ 1)

Curve 3 : γ(t) = log {e t} = t

where I(·) is the indicator function; these curves are shown in Figure 2a. Curves 1, 2, and 4
were considered by Gray (1994) with the same setup of failure and censoring times. Again
λ0(t) = 1; thus, failure times when Si = 0 were unit exponential and those for Si = 1 were
generated via the appropriate transformation to obtain the required hazard ratio. Censoring was
uniform on (0, 2), yielding censoring probability 0.43 for Si = 0. For each scenario, N = 1000
samples of size n = 200 were generated, and empirical power was estimated as the proportion
of samples rejected by the nominal 0:05-level test. For comparison, we also computed power
for several 1-degree-of-freedom score tests as follows. Under the model λ(t|Si) = λ0(t) exp
{β0Si+β1Sig(t)}, the “linear”, “quadratic”, “log” and “optimal” tests are the score tests of H0 :
β1 = 0 with g(t) = t, t2, log(t), and γ(t), respectively. The “optimal” test is based on the true γ
(·) so provides an upper bound on the power of the other tests.

Results are given in Table 2. For smooth monotone alternatives (curves 1, 2, and 3), power of
our test is very close to that of the “optimal” test. These alternatives are either linear or close
to linear, hence the “linear” test also provides good power for detecting them. For non-
monotone (curve 4) or non-smooth (curve 5) alternatives, power is inferior to that of the
“optimal” test. However, for curve 4 our test out-performs all others, while for curve 5 has
power close to those of the “linear” and “quadratic” and much higher than that of the “log”
test. That our test has better power for monotone than nonmonotone alternatives may be a
consequence of the fact that it tends to be dominated by linear combinations of the Sγ given by
the eigenvectors corresponding to the largest eigenvalues of ∑, where the eigenvector
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corresponding to the largest eigenvalue is positive and monotone; see the Appendix. Also, as
our test is based on the penalized partial likelihood, it considers broader alternatives than any
specific parametric test. The penalty function penalizes non-smooth alternatives more than
smooth ones, hence power is focused toward smoother alternatives. Overall, then, the proposed
test provides some power for non-monotone or non-smooth alternatives, while providing good
power for very smooth alternatives, so is “robust” in the sense of providing good protection
against a wide variety of alternatives.

Gray (1992, 1994) discussed methods based on fixed-knot splines in the Cox model setting.
In particular, Gray (1994) presents three statistics for testing proportional hazards: a penalized
quadratic score statistics Qs, a penalized likelihood ratio statistic Ql, and a Wald-type statistic
Qw. Examining the results Gray (1994, Sec. 4) presents for his tests and the results we obtained
for our test, we find that our test and Gray’s Qs and Ql tests have empirical sizes close to
nominal, whereas the empirical size of Gray’s Qw test deviates markedly from the nominal
level in certain cases. For smooth monotone alternatives, power of our test is comparable to
that of Gray’s. For non-monotone or non-smooth alternatives, his test can have better power
if an optimal degrees-of-freedom (df) is used; however, this optimal df often needs to be tuned
based on the unknown true alternative, which is unrealistic in practice, while our test requires
no such tuning. Our tests are essentially the limit of Gray’s when the smoothing parameter →
∞, or, equivalently, the df of his test → 0, if the distinct failure times are used to construct his
basis functions. This gives some insight into why the performance of our test can be similar to
his low-df test.

4.2 Test for Covariate Effects
Simulations were also carried out to evaluate performance of the proposed score test for
covariate effects. We considered testing both for no covariate effect and for a linear effect.

For size, failure times were generated under the null model λ(t|Si) = λ0(t) (no covariate effect)
and λ(t|Si) = λ0(t) exp{Si}(linear effect), i = 1, 2, . . . , n, with Si values the same as in the size
simulation in Section 4.1, and λ0(t) = 1. Censoring was unit exponential and uniform on (0,
1.5); censoring probabilities were 0.50 for testing no effect and between 0.27 and 0.50 for
testing the linear effect for the former and 0.518 for no effect and between 0.24 and 0.52 for
the linear effect for the latter. Sample sizes were n = 100 and 200, with N = 2000 samples
generated for each scenario. From Table 3, the sizes of the proposed test are again very close
to the nominal 0.05-level for testing both no and linear effect. In fact, with n = 200, all sizes
are within the binomial standard error (0.49%) of the nominal level.

For the power simulation, we used the same setup as in the simulation study of Gray (1994).
Failure times were generated under the alternative λ(t|Si) = λ0(t) exp{γ(Si)}, i = 1, 2, . . . , n,
where n = 200, and we were interested in testing H0 : γ(·) = 0 and H0 : γ(·) is a linear function,
respectively. The following six curves for γ(·) were used for both cases:

E (exponential) : γ(s) = .25 exp {.8s} Q (quadratic) : γ(s) = .3s 2

L (logistic) : γ(s) = .6 exp {3.5s} / (1 + exp {3.5s}) C (cosine) : γ(s) = .5 cos (3.5s)
S1 (step 1) : γ(s) = .9I (s > 1.1) S2 (step 2) : γ(s) = .7I ( | s | < .5).

Plots of these curves are given in Figure 2b. The Si values were equally spaced on [−1.719,
1.719] with step 0.0173 (hence standardized to have mean 0 and variance 1). Censoring times
were uniform on (0, 1.5), and N = 1000 simulation runs were performed for each scenario.

For testing no effect, we also calculated empirical powers of the usual 1-, 2-, and 3-degree-of-
freedom score tests based on adding linear, quadratic, and cubic terms to the null model. For
example, the cubic test is the score test of H0 : β1 = β2 = β3 = 0 in the model
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λ(t | Si) = λ0(t) exp {β1Si + β2Si2 + β3Si3}. Similarly, for testing a linear effect, empirical
powers of the usual 1- and 2-degree-of-freedom score tests based on adding quadratic and cubic
terms to the null model were computed; e.g., the cubic test is the score test of H0 : β2 = β3 = 0
in the model λ(t | Si) = λ0(t) exp {β1Si + β2Si2 + β3Si3}. In both cases, the optimal test is the 1-
degree-of-freedom score test for the true alternative, thus providing an upper bound on power.
For testing no effect, this is the score test of H0 : β = 0 in the model λ(t|Si) = λ0(t) exp{βγ(Si)};
for a linear effect, this is the score test of H0 : β2 = 0 in the model λ (t|Si) = λ0(t) exp{β1Si +
β2γ(Si)}, where γ(·) is the true curve generating the data.

Power simulation results are given in Table 4. For testing no effect, under smooth monotone
alternatives (E, L) the proposed test provides good power that is close to that of the optimal
test. Results are similar for the linear test because these alternatives are close to linear. For the
2-step alternative (S1), our test is better than the linear and is close to the quadratic and the
cubic. For the other three alternatives, which are non-monotone (Q, C) and non-smooth (S2),
our test provides some power and is better than the linear but not as good as the other tests.
Note that no test except the optimal has good power for alternative (C) because of the special
shape of the curve. For testing linear effect, alternatives (E, L) are close to linear so none of
the tests have good power for detecting them. Our test has better power than the quadratic and
the cubic for the other four alternatives except for alternative (Q) for which the quadratic is the
optimal test; even in that case the proposed test has power very close to the that of the optimal.
The spline test generally has better power for testing linear effect than for testing no effect,
because higher order (m = 2) smoothing splines are used for testing linear effect, in contrast to
that m = 1 for testing no effect. Therefore we have better approximation to the nonparametric
function when testing linear effect, consequently increasing the power of the test. Again,
because the proposed test is based on the penalized partial likelihood, power of the proposed
test is focused toward smoother alternatives. Overall, for testing covariate effects, the proposed
test provides good protection against very general alternatives.

Comparison of our results to those in Section 3 of Gray (1994) shows a similar pattern as
discussed in the last paragraph of Section 4.1, so the comments there apply here as well.

5 Application to CALGB 8541
We apply the proposed score tests to the data from CALGB 8541. Data on 1479 eligible patients
were available to us after long-term follow-up.

As discussed in Section 1, the proportional hazards assumption for the binary variable Estrogen
Receptor (ER) status is suspect. Among the 1437 patients who had known ER status, 917 were
censored (63.8%). A proportional hazards fit of time-to-death on ER gives an estimated hazard
ratio of 0.768 with a p-value of 0.003. Application of the proposed testing procedure confirms
the observations in Figure 1ab, yielding a p-value of < 0.001. The “linear”, “quadratic,” and
“log” tests also give p-values significant at level 0.05. Thus, modification of the model is
required to achieve valid inferences. As the hazard ratio appears fairly constant within the time
interval [1, 8), we may fit a piecewise constant hazard ratio model with three pieces: [0, 1), [1,
8), and [8, ∞). Such a fit gives a significant (level 0.05) p-value for non-proportional hazards
on ER (p = 0.003). At nominal level 0.05, the effect of ER is significant on the interval [0, 1)
(hazard ratio = 0.263; p = 0.004) and [1, 8) (hazard ratio = 0.747; p = 0.003) but not significant
on the interval [8, ∞) (hazard ratio = 1.589; p = 0.137), another indication that the hazards are
not proportional.

Another covariate of interest is menopausal status (0=pre-, 1=post-menopausal), abbreviated
“meno.” All 1479 patients had known meno, of which 947 were censored (64.0%). A
proportional hazards fit of time-to-death on meno gives an estimated hazard ratio of 0.921 with
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a p-value of 0.347, which is not significant at level 0.05. Figure 1c shows survival and log-
negative-log of survival curves by meno for 638 pre-menopausal and 841 post-menopausal
patients and is similar to those for ER in Figure 1a; the pattern of Schoenfeld (1982) residuals
(not shown) is also similar to that in Figure 1b. Hence, the proportional hazards assumption
on meno is suspect, and the proposed test yields a p-value of 0.011, while the “linear”,
“quadratic” and “log” tests have a p-value of 0.032, 0.023, and 0.175, respectively. Had we
used the “log” test, we would have not rejected the null hypothesis at level 0.05.

To get a better understanding of the effect of meno, we again consider a piecewise constant
hazard ratio model. The hazard ratio shows a dramatic change on the time interval [2, 3.5) but
otherwise appears fairly constant, hence we fit such a model with three pieces: [0, 2), [2, 3.5),
and [3.5, ∞), which yields a significant (level 0.05) p-value for non-proportional hazards on
meno (p = 0.002). At level 0.05, the effect of meno is not significant on the interval [0, 2)
(hazard ratio = 0.975; p = 0.905) and [3.5, ∞) (hazard ratio = 1.148; p = 0.240) but significant
on the interval [2, 3.5) (hazard ratio = 0.549; p = 0.001). A biological rationale for why
menopause should be associated with benefit only in the range of 2 to 3.5 years post-treatment
and not afterward is not obvious. One possibility is that chemotherapy leads to suppression of
ovarian function, so that any advantage conferred by menopause is lost after a time. Such an
effect would be expected only among ER-positive women, whose tumors are more likely to
grow in a high-estrogen environment; however, the results of fitting the piecewise model
separately by ER group are entirely similar, suggesting an association with some other
phenomenon. This result demonstrates the value of testing the proportional hazards assumption
for revealing important relationships that deserve more detailed study.

Other covariates available to us include treatment, size of breast cancer tumor (cm), number
of histologically positive lymph nodes found. As noted in Section 1, the difference in survival
between the two groups treated with a moderate or high dose was not significant at level 0.05
using the log-rank test (p = 0.814). We hence grouped these two doses as one treatment, so
along with the low dose, we have a binary treatment covariate. After controlling for other
covariates, the smoothing spline-based test of proportional hazards of ER gives a significant
(level 0.05) p-value of 0.012. Again we can fit a piecewise constant proportional hazards model
on ER assuming proportional hazards on other covariates. The flexibility of the approach allows
other tests to be performed. For example, the test of the null hypothesis that the effect of
“number of positive lymph nodes” is linear gives a p-value of 0.457, which is not significant
at level 0.05, suggesting a linear fit is adequate.

6 Discussion
We have developed score tests for the proportional hazards assumption and for covariate effects
in Cox models based on the penalized partial likelihood and natural smoothing spline
representation. The tests achieve size close to nominal and provide good power for general
alternatives, particularly for smooth monotone alternatives. An advantage of the tests is their
simplicity; the test statistic is easy to calculate, requiring only a fit of the null model. This may
be accomplished by maximizing the usual partial likelihood under the null hypothesis using
existing software such as SAS proc phreg or S-PLUS/R function coxph().

If the proportional hazards assumption is rejected, one can include in the predictor interactions
between functions of time and covariates; a difficulty is identifying the form of the interaction.
Plotting and smoothing Schoenfeld residuals may provide some insight. Alternatively one may
use a stratified proportional hazards model. An advantage is that no particular form of
interaction need be assumed. A disadvantage is the resulting inability to examine the effects
of the stratifying covariates.
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Appendix

Heuristic Argument for Test in Section 2
Throughout, assume that H0 : τ = 0 is true, and let (β0, δ0) be the true values of (β, δ). Define
Sβ{β, γ(δ, 0)} = ∂/∂β[lc{β, γ(δ, 0)}], the usual partial likelihood score for β. Let Iββ{β, γ(δ, 0)}
= −∂2/∂β∂βT[lc{β, γ(δ, 0)}], the usual observed partial information for β; Iβγ{β, γ(δ, 0)} =
−∂2/∂β∂γT[lc{β, γ(δ, 0)}], (p×r); Iγβ{β, γ(δ, 0)} = −∂2/∂γ∂βT[lc{β, γ(δ, 0)}]; and Iγγ{β, γ(δ, 0)}
= −∂2/∂γ∂γT[lc{β, γ(δ, 0)}], (r × r), a diagonal matrix.

Because (β̂, δ̂) are the maximum partial likelihood estimators under H0, it follows that
Sβ
T {β̂, γ(δ̂, 0)}, Sγ

T {β̂, γ(δ̂, 0)}H T = 0,  where H is defined in (5); this, along with standard
expansions, yields

Sγ{β̂, γ(δ̂, 0)} = {(0r×pIr) − (Iγβ
* Iγγ

* H )
Iββ
* Iβγ

* H

H T Iγβ
* H T Iγγ

* H

−1 Ip 0p×r

0m×p H T }
× (Sβ{β0, γ(δ0, 0)}Sγ{β0, γ(δ0, 0)}) = W *(Sβ0Sγ0

) = {(0r×pIr) − C *}(Sβ0Sγ0
),

(A.1)

say, where Iββ
* = Iββ{β*, γ(δ*,0)} and similarly for Iβγ

* , Iγβ
* and Iγγ

* ; β* is between β0 and β̂;

δ* is between δ0 and δ̂; and Ik  is the (k × k) identity matrix,. Thus, writing S0 = (Sβ0
T , Sγ0

T )T ,

n−1Uτ{β̂, γ(δ̂, 0)} = n−1S0
TW *TΣW *S0

≈ n−1S0
TW TΣWS0 = n−1S0

T {(0r×pIr) − C}TΣ{(0r×pIr) − C}S0,
(A.2)

where ∑ is defined in (5), Uτ is defined in (9), and W and C are W* and C* with (β*, δ*) replaced
by (β0, δ0). Now W has the form of a “projection matrix,” where C takes account of estimation
of β and δ. In other testing problems, Zhang and Lin (2003) observed that the effect of terms
analogous to C on operating characteristics of the test is negligible for large n. This gives us
reason to conjecture the further approximation n−1Uτ{β̂, γ(δ̂, 0)} ≈ n−1Sγ0

T ΣSγ0.

Replacing ∑ by its spectral decomposition, we may write this as

n−1Uτ{β̂, γ(δ̂, 0)} ≈ n−1Sγ0
T PΛP TSγ0 = ∑

i=1

r
λi(n

−1/2Pi
T Sγ0)

2, (A.3)

where λi are the ordered eigenvalues of ∑ (diagonal elements of Λ) and Pi the corresponding
eigenvectors (orthogonal columns of P ). As noted by Zhang and Lin (2003, app. A), the matrix
∑ has a special structure such that the λi decay rapidly to zero. Moreover, it has been observed
empirically that the elements of P1 are positive and monotone increasing; the first several
elements of P2 are positive and increasing, with the remaining elements decreasing and
negative; and the elements of P3 behave similarly, except that the final few increase and are
positive. It is straightforward to observe that Sγ{β, γ(δ, 0)} (r × 1) evaluated at (β̂, δ̂) is the
vector of Schoenfeld (1982) residuals corresponding to the covariates Si. Thus, from Cox
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(1975) and Schoenfeld (1982), writing Vγγ = Iγγ{β0, γ(δ0, 0)}, the components of Sγ0 have mean
zero and are uncorrelated, with the variance of the kth component equal to the kth diagonal
element of Vγγ. Thus, roughly speaking, P1

T Sγ0 is a positively-weighted mean-zero sum of the
components of Sγ0 (over the failure times), so that, suitably rewritten and under regularity
conditions n−1/2P1

T Sγ0 should behave like a normal random variable with variance

v1 ≈ n−1P1
TVγγP1. Similarly, n−1/2P2

T Sγ0 behaves like a contrast of early and later
components of Sγ0, and we expect it to be approximately N (0, v2). By this reasoning, the next
few terms of the form n−1/2Pk

T Sγ0, k > 2, should also behave like normally distributed
contrasts. Thus, we may write (A.3) as

n−1Uτ{β̂, γ(δ̂, 0)} ≈ ∑
i=1

r
λivi

1/2(n−1/2Pi
T Sγ0vi

−1/2)2. (A.4)

Although (A.4) is a sum over the r failure times, which increases with n, because the λi decay
rapidly to zero, we conjecture that the behavior of (A.4) is dominated by the first few
summands, so that (A.4) may be viewed approximately as a finite, weighted sum of χ1

2 random
variables. Via a standard singular value decomposition, this finite sum can be written as a finite,
weighted sum of independent χ1

2 random variables; thus, we thus suggest using Satterthwaite's
method to approximate its large-sample distribution. Treating n−1/2PTSγ0 as approximately
normal as above, it is straightforward to show that the mean and variance of
n−1Sγ0

T PΛP T Sγ0 are e = n−1tr(Vγ γ∑) and Iτ τ = 2n−2tr{(Vγγ∑)2} Matching these moments to

those of a scaled chi-square, kχv
2 say, we obtain k= Iτ τ/(2e) and ν = 2e2/Iτ τ. This suggests

comparing the test statistic T = n−1Uτ{β̂, γ(δ̂, 0)}/ k  to critical values from a χv
2 distribution;

in practice, one would substitute (β̂, δ̂) in Vγγ to form k and v.

Although the effect of C may be negligible asymptotically, results of Zhang and Lin (2003)
for finite samples suggest that it may be advantageous to take into account the effects of
estimating model parameters under H0. Following their strategy, we consider a “small-sample
correction” for these effects. The correction is based the approximation
n−1Sγ0Σn

−1Sγ0 ≈ S0
TW TΣW S0, which follows from (A.2) and (A.3). This suggests

applying Satterthwaite’s method to n−1S0
TW TΣW S0 instead. Defining Vβγ = Iβγ {β0; γ(δ0;

0)}, Vββ = Iββ {β0; γ(δ0; 0)}, and

V =
Vββ Vβγ
Vγβ Vγγ

,

an argument analogous to the one above shows that the appropriate mean and variance are e =
n−1tr(WVWT ∑) and Iττ = 2n−2tr{(WVWT ∑)2}. Letting Ŵ  and V̂  be W and V with (β̂, δ̂)
substituted, we obtain the test procedure given at the end of Section 2. In fact,

WVW T = Vγγ − (VγβVγγH )
Vββ VβγH

H TVγβ H TVγγH

−1( Vβγ

H TVγγ
),

which reduces to WVWT = Vγγ − VγγH (HTVγγH)−1HTVγγ when Si is the only covariate in the
model (so only δ is estimated), demonstrating how estimation of the parameters is taken into
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account. In the case of testing for no covariate effect in Section 3 with m = 1, it may be shown
that WVM T = Vγγ − VγβVββ

−1Vβγ. If Si is the only covariate in the model, WVWT = Vγγ.
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Figure 1.
CALGB 8541: (a) Survival and log-negative-log of survival distribution by ER status estimated
by Kaplan-Meier method. (b) Schoenfeld (1982) residuals of ER status obtained from SAS
proc phreg. Residuals above and below the horizontal line are for ER-positive and ER-negative
patients, respectively. (c) Estimated survival and log-negative-log of survival distribution by
menopausal status.
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Figure 2.
(a) Curves used in the simulation evaluating power of the tests for proportional hazards. Curve
1: γ(t) = log{.75t}; curve 2: γ(t) = log{2/(1 + 5t)}; curve 3: γ(t) = log{et} = t; curve 4: γ(t) =
log{(t – .75)2}; curve 5: γ(t) = log{eI(t≥1)} = I(t ≥1). (b) Curves used in the simulation evaluating
powers of the tests for covariate effects. Curve E: γ(s) = .25 exp{.8s}; curve L: γ(s) = .6 exp
{3.5s}/(1 + exp{3.5s}); curve S1: γ(s) = .9I(s > 1.1); curve Q: γ(s) = .3s2; curve C: γ(s) = .5
cos(3.5s); curve S2: γ(s) = .7I(|s| < .5).
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Table 1
Empirical sizes of the proposed spline-based nominal 0.05-level tests for proportional hazards of Si in the
model λ(t|Si) = λ0(t) exp{Siδ0}, i = 1, 2, . . . , n, expressed as percent. λ0(t) = 1; values of Si are equally spaced
on the interval (0, 1) with an equal number of subjects having each distinct Si value. Results are based on 2000
simulations for each scenario. The binomial (N = 2000, p = 0.05) standard error for the entries is 0.49%.

True value of δ0

n = 100 n = 200

Censoring distribution Number of
distinct

covariate Si
values

0 1 2 0 1 2

Unit exponential 2 5.10 5.70 6.10 6.20 5.40 4.95
4 5.70 6.05 5.10 5.60 4.65 4.85
10 5.70 6.30 5.95 6.40 5.00 5.30
20 5.60 6.35 5.85 6.40 4.75 4.85
50 5.90 6.20 6.00 6.45 4.65 4.60
100 5.70 6.60 5.95 6.35 4.65 4.60
200 6.40 4.90 4.70

Uniform (0,2) 2 5.20 4.45 5.20 5.60 4.60 4.35
4 5.55 4.55 4.55 4.85 4.75 4.25
10 5.35 4.10 5.20 5.00 4.45 4.75
20 5.30 4.30 4.50 4.95 4.95 4.75
50 5.35 4.15 4.90 4.85 4.70 4.60
100 5.40 4.30 4.90 4.80 4.65 4.45
200 4.80 4.85 4.55
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Table 2
Estimated powers of nominal 0.05-level tests for proportional hazards of Si in the model λ(t|Si) = λ0(t) exp{Siγ
(t)}, i = 1, 2, . . . , n, expressed as percent. λ0(t) = 1; Si is a single binary covariate defining two groups of equal
size; γ(t) is the true alternative; n = 200. Censoring distribution is uniform on (0, 2). Tests and alternatives are
as described in the text. Results are based on 1000 simulations for each scenario. The maximum binomial (N =
1000, p = 0:50) standard error for the entries is 1:58%.

Alternative

Test Curve 1 Curve 2 Curve 3 Curve 4 Curve 5

Spline-based 90.8 78.4 47.6 37.3 28.6
Linear 90.5 78.8 51.4 10.1 30.4
Quadratic 79.7 65.3 50.0 13.8 36.6
Log 93.3 75.8 37.4 32.1 15.5
Optimal 93.3 81.7 51.4 91.5 46.6
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Table 3
Empirical sizes of the proposed spline-based nominal 0.05-level tests for covariate effects of Si in the model λ
(t|Si) = λ0(t) (no effect) and λ(t|Si) = λ0(t) exp{Si} (linear effect), i = 1, 2, . . . , n, expressed as percent. λ0(t) = 1;
values of Si are as in Table 1. Results are based on 2000 simulations for each scenario. The binomial (N = 2000,
p = 0.05) standard error for the entries is 0:49%.

Null hypothesis

n = 100 n = 200

Censoring distribution Number of
distinct

covariate
values

No effect Linear effect No effect Linear effect

Unit exponential 4 5.25 4.65 5.10 4.90
10 5.20 4.35 5.00 4.60
20 5.15 4.60 5.05 4.50
50 5.05 4.45 4.95 4.60
100 5.15 4.25 5.00 4.80
200 4.95 4.70

Uniform (0,1.5) 4 4.90 4.80 4.50 4.65
10 5.30 5.15 5.10 5.05
20 5.00 5.50 4.60 4.90
50 5.05 5.60 4.50 4.95
100 5.00 5.70 4.70 4.95
200 4.70 4.85
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Table 4
Estimated powers of nominal 0.05-level tests for covariate effects of Si in the model λ(t|Si) = λ0(t) exp{γ(Si)}, i
= 1, 2, . . . , n, expressed as percent. λ0(t) = 1; values of Si are equally spaced on the interval [−1.719, 1.719]
with step 0.0173; γ(Si) is the true alternative; n = 200. Censoring distribution is uniform on (0, 1.5). Tests and
alternatives are as described in the text. Results are based on 1000 simulations for each scenario. The maximum
binomial (N = 1000, p = 0.50) standard error for the entries is 1.58%.

Alternative

Null hypothesis Test E L S1 Q C S2

No effect Spline-based 74.0 72.4 73.8 23.1 5.8 16.2
Linear 74.4 71.5 68.9 4.5 4.3 4.2
Quadratic 71.5 60.4 84.1 73.6 5.9 44.7
Cubic 67.2 55.5 84.1 67.7 6.2 38.5
Optimal 81.6 74.2 96.3 81.7 92.0 93.7

Linear effect Spline-based 12.8 4.9 56.0 80.7 7.7 65.4
Quadratic 13.7 4.9 54.0 81.7 6.9 58.5
Cubic 12.0 7.5 54.0 73.7 6.7 46.4
Optimal 14.2 10.5 78.3 81.7 91.9 93.8
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