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ABSTRACT An a priori model-independent method for
the determination of accurate spectra of photocycle interme-
diates is developed. The method, singular value decomposition
with self-modeling (SVD-SM), is tested on simulated differ-
ence spectra designed to mimic the photocycle of the Asp-96
3 Asn mutant of bacteriorhodopsin. Stoichiometric con-
straints, valid until the onset of the recovery of bleached
bacteriorhodopsin at the end of the photocycle, guide the
self-modeling procedure. The difference spectra of the inter-
mediates are determined in eigenvector space by confining the
search for their coordinates to a stoichiometric plane. In the
absence of random noise, SVD-SM recovers the intermediate
spectra and their time evolution nearly exactly. The recovery
of input spectra and kinetics is excellent although somewhat
less exact when realistic random noise is included in the input
spectra. The difference between recovered and input kinetics
is now visually discernible, but the same reaction scheme with
nearly identical rate constants to those assumed in the
simulation fits the output kinetics well. SVD-SM relegates the
selection of a photocycle model to the late stage of the analysis.
It thus avoids derivation of erroneous model-specific spectra
that result from global model-fitting approaches that assume
a model at the outset.

A general problem in spectroscopy is the dissection of spectra
of mixtures of unknown composition into the spectra of the
pure constituents, thereby determining the relative amount of
the components. In a typical experiment, many spectra are
measured, and the variation of an experimental parameter
provides a systematic change in the contribution of the pure
components to each mixture spectrum. The spectra are ar-
ranged in a matrix so that the experimental parameter varies
along one of the dimensions. Various algebraic procedures can
be used to determine the number of pure components (equal
to the effective rank) of the data matrix and to reduce the
random noise content at the same time. Principal component
analysis (PCA) yields orthonormal spectral eigenvectors, and
the corresponding combination coefficients are determined as
dot products between the eigenvectors and the mixture spectra
(1). Singular value decomposition (SVD) derives the same
orthonormal eigenvectors as well as another orthonormal
vector set, which, when multiplied by the singular values,
provides the same combination coefficients as does PCA (2).

The condition that fluorescence or absorption spectra have
no negative intensities permits their normalization before the
analysis, ensuring that the derived spectra of the pure com-
ponents also are normalized (3). The combination coefficients
of the normalized spectra of a rank-two matrix are points along
a normalization line, as one coefficient is plotted versus the

other. The combination coefficients of the pure spectra are
sought on the same line beyond the points corresponding to
measured spectra during self-modeling (SM) (3, 4). When
three pure forms are present, points defined by the combina-
tion coefficients of mixture spectra fall within a triangle on the
normalization plane in three-dimensional space. The sides
represent two component mixtures, and the vertices represent
the pure components, as in a phase diagram (5–11). Once the
SM procedure locates the spectra of the pure components,
reverse normalization provides their actual amplitude.

We describe an application of SVD-SM (analogous to
PCA-SM) to the determination of the spectra of the interme-
diates in the bacteriorhodopsin photocycle. On light excitation,
bacteriorhodopsin (BR), the light-driven proton pump in the
cell membrane of Halobacterium salinarium, exhibits a series of
spectrally distinct metastable intermediates labeled as J, K, L,
M, N, and O before returning to the initial state (BR) (for
reviews, see refs. 12, 13). Although transitions between the
intermediates appear to be first-order reactions, back reactions
andyor parallel pathways result in mixtures rather than pure
intermediates at all times during the photocycle. Moreover, the
intermediate spectra strongly overlap in the visible spectral
range. Hence, decomposing the measured difference spectra
into difference (and absolute) spectra of the intermediates,
and their time-dependent concentrations (kinetics), is a math-
ematically underdetermined problem (14, 15). Global model
fits are in principle capable of determining the spectra and the
kinetics simultaneously, but in practice they are hampered by
spurious local minima of the optimization routines in the case
of noisy data (15). In addition, errors in the models lead to
model-specific erroneous spectra optimally adjusted to fit the
assumed kinetics sequence. The goal in this and the following
paper (16) is to determine accurate model-independent spec-
tra of the intermediates at the outset, thereby defining their
time evolution. Relegation of the selection of the best model
for the kinetics to the final step should enhance the under-
standing of the proton transfer mechanism.

RESULTS

Generation of Simulated Data. SVD-SM was tested on
simulated data resembling the simpler case of the photocycle
of the Asp-963 Asn (D96N) mutant BR with four spectrally
distinct intermediates, K, L, M1, and M2, in the submicrosec-
ond to 100-millisecond range. The data were generated by
modification of the procedure described in ref. 17. A measured
visible absorption spectrum of light-adapted BR was shifted on
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the wavenumber scale to provide spectra at appropriate en-
ergies for the K, L, and M1 intermediates. The amplitudes of
the new spectra were changed, and their half widths were
modified by convolution with Gaussians to yield spectra con-
sistent with previous information. M1 was shifted by 6 nm to
the blue, and its amplitude was decreased by 5% to generate
the M2 spectrum. The two Ms were originally introduced to fit
a kinetic model for the wild-type protein (18) and to account
for the slight spectral shift of the maximum of measured
difference spectra on D96N BR during the rise of the amount
of M (19). Time-dependent concentrations of the intermedi-
ates were simulated by integration of the rate equations
corresponding to the photocycle scheme Kº L1 º L2 º M1
3 M2 3 BR plus M1 3 BR. The two L forms were assumed
to be spectrally indistinguishable. This scheme is adapted from
ref. 20, with the additional branch from M1 to BR introduced
here to account for the new finding of biphasic BR recovery
kinetics in the D96N mutant (16). Table 1 shows the rate
constants used in the simulation.

Products of the difference spectra between the pure inter-
mediates and BR and their kinetics, sampled at logarithmically
quasiequidistant time points, provided mixture-difference
spectra. These were attenuated by a photocycling ratio (PCR)
of 0.15, corresponding to excitation of 15% of the sample to
create the noise-free data matrix with the difference spectra
arranged as column vectors. The individual mixture spectra
were further multiplied with factors deviating from 1 by
normally distributed random numbers, with mean 0 and vari-
ance 0.01, to account for variations of the laser intensity, as in
the case of measured data. Finally, normal distribution random
noise was added to the data points to yield a simulated noisy
data matrix. This spectral noise has increasing amplitudes
toward the blue and red ends of the spectrum as well as
decreasing amplitudes in five steps with increasing time. The
former models lower light intensity at both ends of the
experimental spectra, and the latter models the increasingly
longer gate pulses (and, therefore, longer light integration
times) with increasing delay times of the optical multichannel
analyzer instrument (21). Fig. 1 shows the input absorption
spectra, the input intermediate kinetics, and the noisy data
matrix.

Analysis of Simulated Data: SVD. SVD of the noise-free
data matrix recovers four significant components, with the rest
containing fluctuations reflecting rounding errors. SVD of the
noisy data matrix provides eigenvectors with nonmonoto-
nously varying autocorrelations beyond the first three. This is
the result of the assumed nonuniform noise along both the
spectral and time dimensions. The rotation algorithm of Henry
and Hofrichter (2) was used to reorder eigenvectors 4–8. A
new fourth vector pair was obtained that carries significant
signal as revealed by its high autocorrelation. Subsequent
eigenvectors contain only random noise. The data matrix was
reconstructed with reduced noise by using these first four
eigenvectors. SVD treatment of this matrix provided new,

orthonormal eigenvectors (the orthonormality was lost during
the rotation procedure):

D 5 UzSzVT, [1]

where D (n 3 m) is the reconstructed data matrix whose
elements, Dij 5 D(li,tj), are the absorption difference values at
wavelength li and time tj after the start of the photocycle.
Matrices U (n 3 4) and V (m 3 4) consist of the orthonormal
spectral eigenvectors and the orthonormal kinetics vectors,
respectively, and the S (4 3 4) diagonal matrix contains the
significant singular values. The product

AT 5 SzVT [2]

defines the A (m 3 4) matrix, which is equivalent to the
combination coefficient matrix in PCA-SM and whose ele-
ments were designated previously as aj, bj, gj, and dj (6).

The Stoichiometric Plane. The elements of the data matrix
are products of the difference spectra, D«k, of the pure
intermediates and their time-dependent concentrations, ck:

Table 1. Input and recovered rate constants

Reaction Input k, s21 Output k, s21

K 3 L1 5.00 3 105 5.13 3 105

K 4 L1 1.00 3 105 1.00 3 105

L1 3 L2 5.00 3 103 5.13 3 103

L1 4 L2 1.00 3 103 1.00 3 103

L2 3 M1 1.00 3 107 1.23 3 106*
L2 4 M1 1.00 3 107 1.17 3 106*
M1 3 M2 1.00 3 103 1.00 3 103

M2 3 BR 2.00 3 100 2.09 3 100

M1 3 BR 2.00 3 102 1.48 3 102

Output rate constants were obtained by fitting the SVD-SM-derived
output kinetics for the noisy simulated spectra to the input reaction
scheme. Rate constants denoted with an asterisk are minimum values.

FIG. 1. Input absorption spectra (A, dotted lines) and time evolu-
tion (B, solid lines) of the photocycle intermediates used in the
simulation. Combination of the input spectra and kinetics, with noise
added, yielded the mixture difference spectra (C), with solid lines
representing the final decay of the signal. Output intermediate spectra
(A, solid lines) and kinetics (B, symbols) were obtained from the
analysis of the data in C. In B, ‘‘sum’’ means the total intermediate
concentration, and ‘‘M’’ means M1 1 M2 .
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D~li,tj! 5 O
k51

r

D«k~li! 3 ck~tj!, or, in matrix form, D 5 D«zcT, [3]

where r is the number of intermediates, generally greater than
or equal to the rank of matrix D. Both the difference spectra
and the concentrations on the right-hand side of Eq. 3 are
unknown. There exists an unknown transformation T, how-
ever, that converts the SVD basis sets to the respective real
spectra and kinetics:

D 5 ~UzT!z~T21 z AT! [4]

so that

D« 5 UzT and c 5 AzR, [5]

where R is the transpose of the inverse of matrix T. Up to a
certain time in the photocycle, no recovery of the BR initial
state takes place, and the sum of the intermediate concentra-
tions is constant, or is unity with proper normalization:

O
k51

r

ck~tj! 5 1, j 5 1, . . . , l # m. [6]

Eqs. 5 and 6 together yield for the combination coefficients:

O
k51

r

RkAj,k 5 1, j 5 1, . . . , l # m, [7]

where Rk 5 (i51
r Rk,i are time-independent constants for k 5

1, . . . , r.
The set of Eq. 7 is analogous to the equation of a plane in

three-dimensional space. We therefore designate the r-1 D
surface of points that obey Eq. 7 the stoichiometric plane (SP).
Before the onset of the recovery of the initial state in the
photocycle, each point in this space that corresponds to a
mixture difference spectrum must fall on the SP. Accordingly,
the combination coefficients belonging to the unknown dif-
ference spectra of the pure intermediates also must fall on this
plane. The stoichiometric criterion for the pure intermediate
spectra introduced by Nagle et al. (22) is a consequence of
Eq. 7.

Identification of the SP is based on the combination coef-
ficients contained in matrix A. Because its columns contain
increasing amounts of noise, a new transformation is helpful in
the accurate determination of the SP, which, by properly
mixing the columns of A (and U), provides new combination
coefficient vectors with more evenly distributed noise while the
new spectral basis vectors obtained from U are still ortho-
normal:

UzAT 5 ~UzP! z ~PTzAT!. [8]

For a three- and four-component system, respectively, the
corresponding P matrices are as follows:

P 5 1yÎ2S1 0 1
0 Î2 0
1 0 2 1

D P 5 1y21
1 1 1 2 1
1 2 1 1 1
1 2 1 2 1 2 1
1 1 2 1 1

2
[9]

After this transformation, the first 4, 5, . . . , m equations in
the Eq. 7 are solved consecutively for Rk in the least squares
sense, and, in each case, the standard deviations of the
corresponding 4, 5, . . . , m points from the derived SP are
calculated. The parameter l, i.e., the number of spectral points
before any recovery of the initial state, is identified as the one
before the deviations start to systematically increase. In other
words, l corresponds to the number of spectra that gives the
minimum standard deviation of the spectral points from the

least squares plane defined by these points. Although this
approach reveals the early BR recovery for noise-free data, it
yields the incorrect result of no BR recovery until the 27th data
point, when the entire spectral region of the noisy input data
is analyzed. This result is attributable to the small difference
between the M spectra. Therefore, the SP was searched for on
truncated data matrices in the .540-nm range, where the two
M 2 BR difference spectra are identical and the matrices
behave as robust, three-component systems.

Table 2 shows the standard deviation from unity of the
left-hand side of Eq. 7, as fitted to the first 11, 12, . . . , 34
spectral points of the noisy data. An early increase of this
deviation is followed by a plateau before the final increase. For
the noise-free and the noisy truncated data, the number of data
points before the early recovery was estimated as 18 and 20,
and the Rk parameters in the equation of the SP (Eq. 7) for l 5
18 and l 5 20, respectively, were determined. The standard
deviation before the early recovery of BR for the noisy data is
consistent with the standard deviation from unity introduced
in the simulation to model the laser intensity f luctuations.

Estimation of the Photocycling Ratio. The PCR (also con-
sidered unknown, as in the case of real experiments) was
obtained in a general way without using the pure M2 2 BR
difference spectra that are expected in the millisecond time
domain in the D96N mutant. In the first method, the PCR was
varied until the best SP was found in the least squares sense
that fits the first 20 (18 for noise-free data) truncated differ-
ence spectra augmented with the PCR-scaled negative of the
BR absorption spectrum, in the spectral range 540–750 nm.
The latter is equivalent to the pure M 2 BR difference spectra
in this spectral interval and should fall on the SP of the first 20
mixture spectra when scaled by the proper PCR. The second
method calculates the dot product between the truncated
(2BR) spectrum and the first three spectral eigenvectors
(columns of U) from the SVD output of the first 20 truncated
difference spectra. The resulting combination coefficients are
substituted into Eq. 7 to yield the reciprocal of the PCR. The
averages of these values, 14.99% for the noise-free data and
14.43% for the noisy data, were accepted as the true PCR.

The pure M2 absorption spectrum was obtained from the
average of the late SVD reconstructed difference spectra of
the full data matrix by using the criterion that adding a properly
scaled BR absorption spectrum to the difference spectra
contributed by M2 alone should give uniform baseline for
wavelengths .540 nm. Normalization by the scaling factor
provides the M2 absorption spectrum with the proper ampli-
tude.

SM. SM, as tailored here for the BR problem, is the
technique of searching for the pure intermediate spectra on

Table 2. The stoichiometric plane and BR recovery

No. of
spectra

Standard
deviation

No. of
spectra

Standard
deviation

11 0.011186 23 0.018126
12 0.014940 24 0.019683
13 0.014354 25 0.021780
14 0.013981 26 0.023265
15 0.013530 27 0.023681
16 0.013372 28 0.026399
17 0.013183 29 0.030809
18 0.013412 30 0.036071
19 0.013085 31 0.044445
20 0.012974 32 0.061808
21 0.014920 33 0.088526
22 0.017599 34 0.124710

Standard deviation of the stoichiometric plane fits to the combina-
tion coefficients of the first 11, 12, . . ., 34 noisy difference spectra. Bold
numbers represent the last point considered to be on the plane and the
point where the main phase of BR recovery starts.
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the SP by using geometric criteria as well as criteria regarding
the relative displacement on the wavelength axis of the pure
intermediate spectra. First, a truncated matrix consisting of
difference spectra 1–20, augmented with the negative of the
BR spectrum times the PCR, was created for the 540- to
750-nm spectral region. The last column of this matrix repre-
sents the pure M1 2 BR difference spectrum, and the remain-
ing 20 represent varying mixtures of the K 2 BR, L 2 BR, and
M1 2 BR spectra. SVD on this matrix for both the noise-free
and the noisy data returned a rank of 3, as expected. The
parameters for the SP follow from Eq. 7.

Fig. 2A shows the plot of the second combination coefficient
versus the first one (the third coefficient is automatically
determined by the equation of the SP). Early points show a
progression from K toward L, mostly; then, a turn represents
the onset of the accumulation of M. The LM side of the
triangle corresponding to pure L 1 M1 mixtures was located
first. The line connecting the first and the last (pure M1) points
was divided to yield nine equidistant starting points on the SP,
and a direction was determined that roughly corresponds to
the tangent of the trajectory of the early spectral points (a good

approximation of the KL line). This direction represents
decreasing amounts of K and increasing amounts of L any-
where within the KLM triangle. Moving in this direction along
the parallel lines in Fig. 2 A should lead to points on the LM
line. The search for these points was based on the expectation
that there is a spectral region in which both M and L
absorptions (and any combination thereof) are negligible and
only K (and, potentially, BR) absorbs. This region was varied
from 610–730 to 690–730 nm, and the standard deviation of
the calculated spectra minus the negative of the BR absorption
spectrum times the PCR was determined. The smallest stan-
dard deviation along each search line defines potential L 1 M
mixtures, and the smallest overall standard deviation was
initially monitored to determine the appropriate tail region for
L. This parameter leveled off beyond a certain wavelength for
both the noise-free and the noisy data. Selection of the final
region in which the L spectrum does not contribute was
optimized as follows: For each region, the calculation de-
scribed below was completed, and the resulting trial K, L, M1,
and M2 spectra were used to fit the data matrix in the least
squares sense, with the restriction of nonnegative intermediate
concentrations. The best overall fit identifies the region in
which only K and BR contribute and, consequently, the final
LM line. This line, along with the nine points that determine
it, is shown in Fig. 2 A. Fig. 2B shows the corresponding nine
difference spectra as well as the M1 2 BR spectrum.

These truncated spectra were fitted with the spectral eig-
envectors obtained from the SVD treatment of the first 20
columns of the original, full data matrix. Only the appropriate
region (540–750 nm) of the full length (351–750 nm) SVD
spectral eigenvectors was used in the least squares fit. The
resulting combination coefficients multiplied by the SVD
spectral eigenvectors (full length) yield the nine difference
spectra defining the LM line as well as the pure M1 2 BR
difference spectrum, now over the full spectral interval.

Linear regression of the nine combination coefficient trip-
lets with the M vertex fixed provided the parameters of the LM
line. The pure L 2 BR spectral point was sought by moving
along this line away from the M vertex. The constraint used to
define the L 2 BR point for the noisy data is the expectation
that a spectral region (351–410 nm) exists where the L
intermediate has approximately the same extinction as BR.
The simulated input spectra were constructed in this way,
based on low-temperature and room-temperature spectra de-
termined earlier for L (23, 24). Thus, the vertex corresponding
to the pure L 2 BR difference spectrum was identified as the
point along the LM line that results in a difference spectrum
whose average over the 351- to 410-nm interval is zero.

The criterion used to locate the LM line is not applicable in
the search for the KL line because all mixtures of K and L have
nonzero absorption throughout the entire spectral range.
However, this line must contain the L vertex, and, because no
contribution from M is expected at the earliest times, it must
include the first (several) spectral points. Fig. 2C shows the first
two combination coefficients of the first 20 data points (noisy
matrix, full wavelength), the location of the pure M1 2 BR and
L 2 BR vertices, the LM line, and the KL line, the latter
determined by connecting the L vertex with the average of the
first 3 spectral points. In fact, were it not for the noise, the first
several spectral points alone could be used to locate the KL
line. Then, the L vertex could be found at the intersection of
the KL and LM lines, or, more generally, as an extrapolated
intersection to time zero even if a little M already contributes
to the earliest spectral points. Although this method worked
for noise-free data, in the noisy case the intersecting points
scatter too much (i.e., no clear progression is obtained with
time), so the above method based on the L absorption in the
blue region was preferred.

The pure K spectral point is determined by extrapolation of
the early spectra to time zero. This was accomplished in two

FIG. 2. Demonstration of self-modeling on noisy simulated data.
(A) a-b projection of the stoichiometric plane fitted in the 540- to
750-nm region of the first 20 difference spectra augmented with the
photocycling ratio times the negative of the BR spectrum. Open
circles, input spectra, the first one marked as 1; solid triangles, initial
nine points in the LM line search along the parallel lines; full circles,
the nine points found on the LM line; solid square, pure M1 2 BR. (B)
Difference spectra corresponding to the nine points on the LM line
(solid lines) and the pure M1 2 BR difference spectrum (dotted line)
in the 540- to 750-nm range. The horizontal bar represents the
estimated interval where the L absorption is zero (630–750 nm). (C)
a-b projection of the stoichiometric plane fitted to the first 20
difference spectra (full wavelength scale) augmented with the pure M1
2 BR spectrum. Open circles, input spectra, the first one marked as
1; solid squares, pure M1 2 BR and L 2 BR vertices. The LM and KL
lines also are shown.
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steps. First, the integral of the initial four difference spectra of
the data matrix in the 600- to 750-nm interval minus that of the
pure L 2 BR spectrum yields areas proportional to the
concentration of K. Extrapolation to the parameter value of K
at time zero is achieved by assuming single exponential decay
(see Fig. 3 Inset). In the second step, the K vertex is found by
moving along the KL line beyond the first spectral point until
the corresponding integral parameter reaches the extrapolated
value. The first four difference spectra, the L 2 BR spectrum,
and the extrapolated K 2 BR spectrum are plotted in Fig. 3.

A final SVD treatment of the entire data matrix augmented
by the pure K 2 BR, L 2 BR, M1 2 BR, and M2 2 BR
difference spectra was followed by determining the final ‘‘SP’’
in the four-dimensional space of this rank-4 matrix. This
surface was calculated from the combination coefficients of
the four pure intermediates by simple matrix inversion rather
than by least squares fit. Fig. 4 shows the a, b, g plot of the
combination coefficients of all 34 spectra from the noisy data
matrix as well as that of the pure intermediate difference
spectra, defining a tetrahedron in three-dimensional space.
The origin corresponds to BR, and the adherence of the first
20 points to the ‘‘SP’’ as well as the subsequent deviation from
it as BR recovers is demonstrated in this three-dimensional
projection of the four-dimensional space.

Comparison of the Input and Output Spectra and Kinetics.
The pure absorption spectra of the intermediates are obtained
by addition of the BR spectrum, scaled by the PCR, to the pure
difference spectra corresponding to the vertices of the tetra-
hedron in Fig. 4. The recovered spectra for the noisy simulated
data set are shown in Fig. 1 A. The time evolution of the
intermediates follows directly from the location of the spectral
points within the tetrahedron in Fig. 4. It also can be computed
by linear least squares fitting of the mixture spectra by the pure
intermediate spectra, with the non-negativity constraint for
the concentrations. The output kinetics for the noisy simulated
data set are shown in Fig. 1B. The output pure spectra and
kinetics obtained with the above procedure by using noise-free
input spectra are visually indistinguishable from the pure
spectra and kinetics used in the simulation (data not shown).
The RMS noise content of the input difference spectra varies
between 4.0 3 1023 and 2.9 3 1024 (higher noise in the earlier
spectra). The RMS deviations between the noise-free input
spectra and the output noisy spectra of the intermediates (all
scaled by PCR) are 2.5 3 1023, 2.1 3 1023, 1.4 3 1023, and
2.0 3 1024 for K, L, M1, and M2, respectively.

The output kinetics from the noisy data were fitted to the
same reaction scheme used to generate the input data. The rate
constants are listed in Table 1. The error of the fit is low, and
all but the M1 3 BR rate constant agree very well with the
input rates. With the noise-free data, all recovered rate

constants are essentially identical to those used in the simu-
lation (data not shown). SVD-SM on a noisy data matrix
generated similarly to the one discussed, but without the M13
BR step, resulted in the correct spectra and kinetics lacking the
early BR recovery (data not shown).

DISCUSSION

Multichannel and single wavelength kinetic absorption mea-
surements have been published in numerous articles on bac-
teriorhodopsin (14, 17–21, 24–29). Various strategies have
been applied to obtain the ultimate information, the time
dependence of the photocycle intermediates, which is essential
to the elucidation of the mechanism and energetics of light
energy conversion by this protein. Global model fitting on such
data has generally returned ambiguous results, with spectra of
the intermediates possessing unusual properties, such as more
than one absorption band, incorrect baselines, etc. (25, 26).

L.Z. and J.K.L. have pursued the strategy of a model-
independent determination of the pure intermediate spectra
first, followed by calculation of the intermediate concentra-
tions in the second step. The original trial-and-error method
(27, 28) was improved by a grid search algorithm (17) and more
recently by a Monte Carlo-based procedure to obtain the
spectra (24). Pure intermediate spectra were found approxi-
mately by narrowing the limits imposed on various spectral
parameters: for instance, the height, the width, and the neg-
ative value tolerance. Factor analysis (analogous to PCA)
combined with similar spectral criteria applied simultaneously
on visible and Fourier transform IR spectra was used by others
to dissect the photocycle (29).

SVD was applied to chromoprotein spectra to estimate the
number of spectrally independent components, to eliminate
random noise, and to store spectral information in a com-
pressed form (17, 30, 31). The kinetics vectors of the SVD
output were fitted by sums of exponentials, yielding phenom-
enological rates and amplitudes. Such information can be used
to obtain microscopic rate constants by the fitting of photo-
cycle models. SVD alone tends to underestimate the number
of components from noisy data, which is usually more accu-
rately determined by the multiexponential fit, if the pure
component spectra are not clearly distinguishable (or are not
linearly independent) (32). However, the advantage of SVD is
utilized here and in the following paper (16), where SVD is
combined with the application of self-modeling: i.e., the search
for the pure intermediate spectra in the SVD eigenvector
space. Most of the assumed, empirical spectral criteria that
were essential in earlier methods are rendered unnecessary by
SVD-SM, which takes advantage of the stoichiometric behav-
ior of the photocycle.

FIG. 3. The first four mixture difference spectra (solid line), the
pure L 2 BR spectrum (dashed), and the extrapolated pure K 2 BR
spectrum (dashed line). (Inset) The extrapolation to time zero of the
logarithm of the integral parameter used to locate the K spectral point.

FIG. 4. a, b, g plot of the combination coefficients of the entire
noisy data matrix (open symbols) plus the pure K 2 BR, L 2 BR, M1
2 BR, and M2 2 BR spectra as vertices of the stoichiometric
tetrahedron. The adherence of the data points to the stoichiometric
surface is demonstrated. The M1 and M2 points are very close to each
other because of their spectral similarity.
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D.F.S. and J.S. have applied PCA with self-modeling in
photochemistry in resolving absorption and f luorescence
spectra of mixtures of unknown composition (4, 6–11). The
original SM procedure (33) used no other constraint regard-
ing the location of the pure forms on the combination
coefficient normalization planes (lines) than the inner limits
defined by the most extreme measured spectral points and
the outer limits required by non-negative absorption. This
procedure often results in a wide range of acceptable pure
component spectra. Unique solutions can be obtained by
applying additional constraints dictated by the known chem-
istry of each system. The introduction of the global Stern-
Volmer constant optimization constraints for f luorescence
spectra (9) is an illustration.

Adaptation of the procedure to BR requires several modi-
fications. Normalization of spectra is abandoned because the
input data are difference rather than absolute spectra. The
stoichiometric condition is used instead. The advantage of
relying on stoichiometric relationships is that they reveal as
part of the analysis the time of the onset of BR recovery and
the photocycling ratio. Self-modeling, performed on the stoi-
chiometric plane, readily yields the LM side of the KLM
triangle because only K contributes at the red edge of the
spectra. The location of M on this line is based on its lack of
absorption over most of the visible wavelength range. Because
in the blue region of the visible spectrum there is no wave-
length range in which any intermediate has zero absorption,
two additional criteria are introduced outside the usual frame-
work of SM to locate the remaining pure intermediate spectra:
The absorption of intermediate L is considered the same as
that of BR in the blue region (this constraint is not needed for
the analysis of noise-free simulated spectra), and the spectrum
of K is estimated by extrapolation to time zero. A single
time-dependent exponential function is used in the extrapo-
lation as the most reasonable choice.

Analysis of noise-free simulated data returns the input
spectra almost exactly. Closer examination reveals a slight shift
of the output M1 spectrum toward M2 and a minor discrepancy
between the tails of the input and output L spectra (data not
shown). Both are caused by imposing the three-component
approximation to the first 18 mixture spectra. Although the
stoichiometric condition holds up to the 18th spectrum, there
is a small amount of M2 present after the 15th spectrum. SVD
of the noise-free input matrix reveals this, but, with the noisy
matrix, the presence of trace M2 is concealed. When SVD-SM
analysis is performed on the noise-free matrix with only the
first 15 mixture spectra included, the slight spectral discrep-
ancies disappear. The same procedure does not succeed with
the noisy data matrix because the level of noise and the small
accumulation of M prevent the location of the proper SP when
only 15 spectra are considered.

The small spectral discrepancies cause more visible devia-
tions between input and output kinetics, the latter computed
by non-negative least squares fitting the input mixture spectra
with the output pure spectra. However, despite the noise level
introduced here, the fit of the same reaction scheme to the
output kinetics as the input photocycle model gives very good
agreement, and with only minor differences in the rate con-
stants. Only the M1 3 BR rate deviates by '25%, mostly
because of the 3% underestimation of the PCR in the case of
the noisy data.

The overall agreement of the input simulated spectra and
kinetics with those recovered by SVD-SM shows that this
approach, while avoiding the imposition of subjective spectral
constraints, significantly narrows the range of potential solu-
tion spectra relative to earlier approaches based on the grid
search and on the Monte-Carlo method. In the accompanying

paper, we demonstrate that SVD-SM leads to more accurate
intermediate spectra and kinetics in cases of real experimental
data as well.
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