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A modified susceptible–infected–recovered (SIR) host–pathogen model is used to determine the influence

of plant mating system on the outcome of a host–pathogen interaction. Unlike previous models describing

how interactions between mating system and pathogen infection affect individual fitness, this model

considers the potential consequences of varying mating systems on the prevalence of resistance alleles and

disease within the population. If a single allele for disease resistance is sufficient to confer complete

resistance in an individual and if both homozygote and heterozygote resistant individuals have the same

mean birth and death rates, then, for any parameter set, the selfing rate does not affect the proportions of

resistant, susceptible or infected individuals at equilibrium. If homozygote and heterozygote individual

birth rates differ, however, the mating system can make a difference in these proportions. In that case,

depending on other parameters, increased selfing can either increase or decrease the rate of infection in the

population. Results from this model also predict higher frequencies of resistance alleles in predominantly

selfing compared to predominantly outcrossing populations for most model conditions. In populations

that have higher selfing rates, the resistance alleles are concentrated in homozygotes, whereas in more

outcrossing populations, there are more resistant heterozygotes.
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1. INTRODUCTION

Broad patterns in nature indicate a relationship between

plant mating system and plant–pathogen interactions.

There is a positive correlation between the number of

fungal pathogen species known to infect a plant host and

the outcrossing rate of the host (Busch et al. 2004). In

addition, species with higher outcrossing rates tend to

occur in less disturbed, biologically complex habitats,

where disease and other ‘natural enemies’ are likely to be

more prevalent (see Levin (1975), although alternative

explanations for this pattern exist). These ecological

correlations provide evidence that pathogen pressure may

influence mating system evolution and vice versa. Given

that the mating system of the host controls the genetic

diversity of its progeny (Holsinger 2000) and the degree

of similarity between parent and progeny, the mating

system of the host could affect the evolution of resistance

to infection and the prevalence of disease in populations.

For example, biological control of weedy plants is more

effective for asexually reproducing species than for

sexually reproducing species (reviewed in Burdon &

Marshall 1981), indicating that recombination in host

species may offer protection from natural enemies and

limit the spread of enemies within populations.

Most relevant existing theory investigates the potential

for disease to select for increased outcrossing by
ctronic supplementary material is available at http://dx.doi.
098/rspb.2006.3519 or via http://www.journals.royalsoc.ac.

r and address for correspondence: Department of Biology,
University, Bloomington, IN 47405, USA (jkoslow@

edu).

25 January 2006
13 February 2006

1825
contrasting sexual and asexual reproduction in the

context of the Red Queen hypothesis (e.g. Jaenike 1977;

Hamilton 1980; Hamilton et al. 1990; Howard & Lively

1998). Two previous studies have contrasted self-

fertilization (‘selfing’) and outcrossing, both of which

are forms of sexual reproduction. One model found that

parasites can select for a mixed mating system in a haploid

host with diallelic matching alleles governing infection

(Lively & Howard 1994). Another study used simulations

to investigate the possibility that pathogens can select

against complete selfing in a host (Agrawal & Lively

2001). The simulations showed that parasites select for

outcrossing over a wide range of parameters, but that the

results were sensitive to genetic assumptions mediating

infection. Both of these models consider individual

fitness, but do not scale up to address the potential

consequences of varying mating system on the spread of

resistance alleles and the transmission of pathogens within

populations.

The question of the effect of inbreeding on the

prevalence of disease in a population is of broad interest.

Humans are causing loss and fragmentation of many

species’ habitats. This is likely to increase the amount of

inbreeding in plants. This paper addresses the possible

effects of inbreeding on disease resistance through a

modified SIR host–pathogen model (Anderson & May

1981) to determine the influence of mating system on the

outcome of the host–pathogen interaction. This model

makes the link between host mating system an influential

determinant of genotype frequencies and prevalence of

infection at a population level, rather than focusing on

individual fitness effects. The following specific questions

are addressed.
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Table 1. A list of the terms in the model equations presented
in the order of their appearance in the text.

F inbreeding coefficient
XRR number of homozygous resistant individuals
XRr number of heterozygous resistant individuals
Xrr number of susceptible individuals
Yrr number of infected individuals
new rate of creation of new individuals of a given

genotype
b death rate for healthy individuals
b pathogen transmission parameter
a additional death rate for infected individuals
gamXR number of resistant gametes
gamXr number of susceptible gametes
aRR fecundity of homozygous resistant

individuals
aRr fecundity of heterozygous resistant

individuals
arr fecundity of susceptible and infected

individuals
ainf fecundity of infected individuals
r density-dependence factor
N total number of individuals
f frequency of accompanying variable
seed new individual of a given genotype
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(a) Question 1: will the degree of host selfing affect

the incidence of infection in the host population?

We examined this in the model by looking at the effect of

the inbreeding coefficient (F ) on the number of resistant,

susceptible and infected individuals at equilibrium. We

assumed that host resistance is determined by a single

dominant allele (R). Therefore, in this model, resistant

individuals may be either homozygous resistant (RR) or

heterozygous resistant (Rr). The genetic effect of selfing

alters the distribution of alleles in the next generation by

increasing the proportion of homozygotes and decreasing

the proportion of heterozygotes without altering the

frequency of alleles (Hartl & Clark 1997). Thus, with

increasing selfing, there should be fewer resistant hetero-

zygotes produced and, as a result, a greater proportion of

individuals susceptible to infection in the population. We

therefore expected higher levels of endemic disease in

selfing than in outcrossing populations.

(b) Question 2: will the degree of host selfing affect

the frequency of a dominant resistance allele (R) in

the population?

Although selfing alone will not alter the frequencies of any

allele, increased selfing will lead to an ever greater

production of homozygous individuals, which may leave

a greater proportion of the population susceptible to

infection. Will more susceptibility to infection lead to a

higher gene frequency of the resistance allele in later

generations? We examined this in the model by looking at

the effect of the inbreeding coefficient (F ) on the frequency

of a dominant resistance allele (R) at equilibrium.
2. THE MODEL
Using differential equations, we created a continuous time

model of host population dynamics with both disease and

host genetics. These epidemiological equations were based

on Anderson &May’s formulation (1981), but we added a

genetic component of host resistance to infection and a

host mating system that can be varied. Many host-specific

pathogens are able to infect only particular host genotypes

(Burdon 1987; Thompson & Burdon 1992). In addition,

polymorphism for resistance is common within natural

populations (Simms & Triplett 1994) and may be

maintained by costs of resistance genes (Bergelson &

Purrington 1996) or even by gene flow in structured

metapopulations (Thrall & Burdon 1997). We assumed a

diploid host with a single locus for resistance to infection. A

dominant resistance allele (R) confers complete resistance.

Although many factors can contribute to overall pathogen

resistance, single dominant alleles of major phenotypic

effect have been found to confer resistance in both natural

and agricultural systems (Flor 1955; Thompson & Burdon

1992), and thus represent a tractable way to model

resistance. For simplicity, the pathogen was assumed to

be genetically uniform. Explicit numbers of individual

pathogens were not quantified because the pathogen

was a microparasite that could reproduce within the host.

The pathogen caused similar levels of disease in the host

whether the infection was caused by a single individual or

many individuals of the pathogen, due to the rapid

reproductive rate of the pathogen inside of a susceptible

host (Anderson & May 1981). Infection affected host

fitness by increasing the death rate of infected hosts. The
Proc. R. Soc. B (2006)
model is suitable for pathogens that spread through

horizontal, density-dependent pathogen transmission,

where the host is a perennial. It was assumed that the

pathogen had no alternative hosts, and that the offspring

were all healthy, regardless of the infection status of the

parent(s). We assumed a cost of resistance in the form of

lower fecundity for any individual with the resistance allele.

The model considered three genotypes, one of which

could be either in the infected state or in the uninfected

(susceptible) state. Table 1 is a complete listing of the

variables and parameters in the following equations.

Following Anderson & May (1981), the set of differential

equations for the system is:

dXRR=dt ZnewXRRKbXRR; ð2:1aÞ

dXRr=dt ZnewXRrKbXRr; ð2:1bÞ

dXrr=dt ZnewXrrKðbCbYrrÞXrr; ð2:1cÞ

dYrr=dt ZbYrrXrrKðbCaÞYrr; ð2:1dÞ

where XRR, XRr and Xrr are the numbers of healthy

individuals carrying twoRalleles, oneRandone r allele and

two r alleles, respectively,whileYrr is thenumberof infected

individuals with two r alleles. We assumed that individuals

with an R allele are completely resistant, or immune, to

infection, so there is no need for equations forYRR andYRr.

The model contains several additional assumptions. Once

an individual host was infected it either remained infected

or died because, unlike the assumption in many traditional

models and vertebrate systems, there was no recovery from

the disease, following the observation that plants often do

not recover from pathogen infection (for analysis of a more

general model in which recovery can occur, see electronic

supplementary material, part A). The pathogen was

transmitted directly and equally from any infected indivi-

dual. An Xrr individual’s chance of getting the pathogen

depended on the number of infected individuals in the

population, with an infection rate coefficient b (for analysis

of more general assumptions on pathogen transmission,



Host mating system and disease prevalence J. M. Koslow & D. L. DeAngelis 1827
see electronic supplementarymaterial, part B). For healthy

individuals (Xrr), the death rate was b, whereas for infected

individuals (Yrr), the death rate was (bCa). New indivi-

duals were figured as the number of gametes produced for

resistant and susceptible genotypes, such that the birth

rates for the two gametes were

gamXR Z
aRRXRR C0:5aRrXRr

1CrN
; ð2:2aÞ

gamXr Z
arrXrr CarrYrr C0:5aRrXRr

1CrN
: ð2:2bÞ

Here, aRR, aRr and arr are the birth rates of the three

genotypes. The infected individuals generally had no

reproductive cost to infection. In the analyses that follow,

we considered three cases: (i) aRRZaRr!arr; (ii) aRR!
aRr!arr; and (iii) assign a reproductive cost to infection by

setting the fecundity of infected individuals to some value

(ainf) equal to or less than the fecundity of resistant

individuals. The term rN represents density-dependent

self-limitation on reproduction, where

N ZXRR CXRr CXrr CYrr: ð2:3Þ

In animal-pollinated plants, mating system can be

considered a continuous variable from complete selfing

to complete outcrossing (Vogler & Kalisz 2001). The

mating system of a population can be estimated using the

inbreeding coefficient (F ), which ranges from 0 to 1 (Hartl

& Clark 1997). In comparison to a population composed

of randomly mating (i.e. outcrossing) individuals, com-

plete selfing halves the frequency of heterozygotes each

generation (Wright 1921). Selfing decreases the frequency

of heterozygotes by F, which is the probability that two

alleles in the same individual are identical by descent

(Hartl & Clark 1997). Therefore, offspring genotype

frequencies are determined by the following equations:

f seedXRR Z ð f gamXRÞ
2CF!f gamXR!f gamXr; ð2:4aÞ

f seedXRr Z2!ð1KFÞ!f gamXR!f gamXr; ð2:4bÞ

f seedXrr Z ð f gamXrÞ
2CF!f gamXR!f gamXr: ð2:4cÞ

The frequencies, fgamXR and fgamXr, of each gamete in

the population are simply gamXR=ðgamXRCgamXrÞ and

gamXr=ðgamXRCgamXrÞ, respectively. The total num-

bers of the three offspring genotypes (newXRR, newXRr

and newXrr) used in equations (2.1a)–(2.1c) are deter-

mined respectively, by multiplying each of the above

functions, fseedXRR, fseedXRr and fseedXrr by the total

number of offspring ðgamXRCgamXrÞ. This completes

the development of the model.
3. RESULTS
In order to address the two questions noted above, the

model was studied at steady-state equilibrium. Where

relevant, we examined the behaviour of the model for a

range of model parameters to determine the robustness of

the results.

(a) Steady-state equilibrium, case 1: no pathogen

present and aRR%aRr!arr
In the absence of a pathogen, because aRR%aRr!arr, the

R allele disappears from the system at equilibrium.

Therefore, XRRZXRrZYrrZ0 and it is easy to show that

X�
rr Z ðarrKbÞ=rb: ð3:1Þ
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The loss of the R allele in the absence of a pathogen is

predicted in other models with similar assumptions about

the cost of resistance (e.g. Thrall & Antonovics 1995). It is

important to note that in a spatially explicit metapopula-

tion context, unlike the single population model presented

here, gene flow between populations may increase the time

for gene fixation or prevent fixation altogether.
(b) Steady-state equilibrium, case 2: pathogen

present and aRRZaRr!arr
For this special case, where resistance is dominant and the

cost of resistance is associated with the resistant pheno-

type, it is possible to solve analytically for the steady-state

equilibrium by setting the right-hand sides of equations

(2.1a)–(2.1d ) to zero and using equations (2.2a,b), (2.3)

and (2.4a)–(2.4c). Resistant individuals are maintained in

the population by the presence of the pathogen. The

solutions for X�
rr, Y

�
rr and X�

RRCX�
Rr are:

X�
rr Z ðbCaÞ=b; ð3:2aÞ

Y�
rr Z

X�
rr!b½ðarr=aRRÞK1�

bX�
rrKbðarr=aRRÞ

; ð3:2bÞ

X�
RR CX�

Rr Z ðaRRKbÞ=ðrbÞKX�
rrKY�

rr : ð3:2cÞ

(Analytic formulae can also be found individually for the

last two individual variables, X�
RR and X�

Rr, as quadratic

functions of F; see electronic supplementary material,

part C.) Note that the total population size, including

infected individuals, is ðaRRKbÞ=ðrbÞ in the case where

disease is present, as compared with ðarrKbÞ=ðrbÞ when the

disease is absent. An important conclusion is that the level

of inbreeding does not affect the above equilibrium values,

including Y�
rr =N

�, the fraction of the infected individuals

in the population (figure 1a), because F, the inbreeding

coefficient, does not appear in the solutions. However,

although F does not affect the sum, X�
RRCX�

Rr, it does

affect the individual values of X�
RR and X�

Rr (also see

electronic supplementary material, part C). When the

population is completely outcrossing (FZ0) there are

more heterozygous individuals, while there are none for

complete selfing (FZ1). Because the numbers of resistant,

susceptible and infected individuals are the same for

completely selfing and completely outcrossing popu-

lations, the frequency of the R allele is higher in selfing

populations than in outcrossing populations due to the

absence of heterozygous resistant individuals in comple-

tely selfing populations. (It is possible to extend these

results to more general infection rates than bYrrXrr; see

electronic supplementary material, part B.)

The analytic solutions allow us to examine the effects of

model parameters on the number of susceptible individ-

uals in the population, X�
rr, as well as the number of

infected individuals, Y�
rr. Increased values of b and

decreased values of the ratio arr/aRR (recall aRR!arr) will

decrease equilibrium numbers of infected individuals.

Increased death rates of infected individuals, a, lead to

larger values of X�
rr , because a larger value of a decreases

the steady-state number of the infected individuals in the

population, as close examination of equation (3.2b)

reveals. A similar effect occurs in a predator–prey

population with a prey-dependent functional response;

a higher death rate of a predator increases the equilibrium

population size of its prey.
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Figure 2. The numbers of homozygous resistant, hetero-
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individuals at equilibrium across the range of complete selfing
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Figure 1. The numbers of homozygous resistant, hetero-
zygous resistant, susceptible and infected individuals,
percentage infected in the population and total number of
individuals at equilibrium across the range of complete selfing
to complete outcrossing. Note that the Yrr symbols are
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(c) Steady-state equilibrium, case 3: pathogen

present and aRR!aRr!arr
In case 2 above, in which aRrZaRR, heterozygous

individuals bear the same cost of resistance as the resistant

homozygote. A possible alternative is for the heterozygote

reproductive rate to be intermediate between the two

homozygote reproductive rates. For this case, the model

could not be solved analytically at equilibrium. However,

solutions were possible through numerical evaluation. We

examined the effects of F, in combination with each

parameter, on the prevalence of disease in the population

and summarize the main relationships below.

Consider again the example described in case 2, where

reproductive coefficients aRRZaRrZ0.7 and arrZ0.8. But

now let aRrZ0.75, meaning that the effect of resistance on

reproduction is proportional to the number of resistant

alleles in an individual. The first thing to note, in this case,

is that the equilibria of all variables except forX�
rr vary with

F (figure 1b). The variableX�
rr, the number of susceptibles,

is held at a fixed level by top-down control by the disease

parameters alone and is thus independent of both F and

aRr. Any change in the rate of production of Xrr, that is,

newXrr, changes the steady-state value of Y�
rr . Second,

note that for FZ1 the equilibrium values X�
RR, Y

�
rr , X

�
rr

and N� are the same as the values in case 2 (aRRZaRr).
Proc. R. Soc. B (2006)
The reason is that X�
RrZ0 when FZ1, so all of the

variables are completely independent of the value of aRr,

and thus they are the same as if aRrZaRR. Third, note that

as F is decreased from 1,N� increases (only slightly in this

particular case, but, with other sets of parameters,

decreases in F can result in large increases in N�). The

increase inN� is due to the higher reproductive rate of the

XRr relative to the XRR in conjunction with the greater

prevalence of the XRr as outcrossing increases. Fourth, as

F is decreased from 1, the sum X�
RRCX�

Rr no longer

remains constant, as it did in case 2; the increase in X�
Rr

slightly exceeds the decrease in X�
RR. Fifth, Y

�
rr and Y�

rr =N
�

increase with decreasing F and are almost double in size

when F reaches 0.

The behaviours of Y�
rr and Y�

rr =N
� as functions of F

displayed in figure 1b are typical of situations in which the

infection rate, b, is relatively large. Under the condition of

smaller b, the opposite dependence of Y�
rr and Y�

rr =N
� as

functions of F occurs, in which case these variables

decrease as F decreases (figure 2). In this example, we also

increased a, the increment of mortality due to infection,

from 0.1 to 0.5, which contributes to the reversed slopes of

Y�
rr and Y�

rr=N
� as functions of F relative to parameter sets

with higher b and lower a. Now Y�
rr decreases by more

than 40% as F decreases from 1 to 0.

Thus, depending on parameter values, Y�
rr and Y�

rr =N
�

may increase or decrease as functions of the degree of

selfing. For comparison, 100Y�
rr =N

� from the above two

cases is plotted together with curves for three additional

parameter sets (figure 3a). In one case (curve 5 in

figure 3a), Y�
rr =N

� has a very slight peak at an intermediate

value of F. In a case in which the reproductive rate

associated with the resistance allele is half that of the

non-resistant allele and the disease mortality increment

(a) is small (e.g. curve 4 in figure 3), Yrr is an extremely

large fraction of the population when selfing is relatively

high, as the R-allele is eliminated from the population.

The plots of all of the variables related to curves 4–6 in

figure 3a,b are appended in electronic versions (see

figures E1–E3 in the electronic supplementary material).
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Figure 3. (a) Summary of percentages infected in the
population at equilibrium as a function of F. (b) Summary
of the frequency of R alleles in the population at equilibrium
as a function of F. Parameters: ‘curve 1’ as in figure 1a;
‘curve 2’ as in figure 1b; ‘curve 3’ as in figure 2; ‘curve 4, high
cost of R’ as in curve 2, but with aRRZ0.4 and aRrZ0.6 (see
figure E1 in electronic supplementary material); ‘curve 5,
high a, moderately high cost of R’ as in curve 2, but with
aZ1.0, aRR Z0.6 and aRrZ0.7 (see figure E2 in electronic
supplementary material); ‘curve 6, high a, high cost of R’ as
in curve 4, but with aZ1.0 (see figure E3 in electronic
supplementary material).
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The frequency of the R-allele in the population at

equilibrium for aRR!aRr!arr also follows a variety of

patterns (figure 3b). We examined the relationship under

the same sets of model parameters as above. In general,

increased inbreeding leads to a greater frequency of the

R-allele. However, when there is a high cost of carrying the

R-allele, that is, when values of aRR and aRr are low relative

to arr (curves 4 and 6 in figure 3), as F increases from zero

the frequency of the R-allele in the population will decrease

or even disappear from the population. A low cost of

resistance with a relatively high b will lead to the highest

frequencies of the R-allele at equilibrium (curves 1 and 2).
(d) Steady-state equilibrium, case 4: pathogen

present and ainf%aRRZaRr!arr

We considered the case in which infected individuals have

a reproductive rate that is either equivalent to or less than

that of the resistant individuals. The equilibrium values of

X�
RRCX�

Rr, X
�
rr and Y�

rr were independent of F and Y�
rr

decreased with decreasing ainf (please refer to electronic

supplementary material, part A). The frequency of the R

allele increases with increasing inbreeding as in case 2.
Proc. R. Soc. B (2006)
4. DISCUSSION
According to our model, when a single R allele can confer

resistance and the cost of resistance (lower birth rate) is

the same for the homozygote and heterozygote carrying

that allele (i.e. aRRZaRr, case 2), the host mating system

does not affect the fraction of resistant individuals, or the

prevalence of infection in a population (figure 1a). This is

an apparently new and broad analytic result. Ecological

and life-history factors such as the pathogen transmission

parameter (b), the birth (aRR, aRr, ainf and arr) and death

rates (b and a) and the density dependence factor (r)

determine the number of susceptible and infected

individuals at equilibrium. Only the frequency of the

resistance allele varies with F. The population dynamics

‘compensate’ for disease dynamics such that resistant

individuals are still born into the population at a rate high

enough to maintain their existence despite the potential

influence of selfing in creating a higher number of

susceptible individuals in the population.

The selfing rate does not affect the sizes of X�
RrCX�

RR

or Y�
rr =N

� when aRRZaRr (case 2), because the RR-

homozygote and the heterozygote are both resistant and

have the same reproductive rate coefficients. However,

when the cost of resistance differs between the RR-

homozygote and the heterozygote (aRR!aRr!arr, case 3)

the situation is different, because the heterozygote has

higher fitness than the RR-homozygote. For case 3, for the

particular situation of complete selfing (FZ1), the

fraction of resistant individuals and the prevalence of

infection, Y�
rr =N

�, in a population are the same as in the

case aRRZaRr (case 2; compare figure 1a,b), because there

are no heterozygotes at equilibrium for FZ1, so the value

of aRr has no influence. But, unlike case 2, in case 3 as F

decreases from 1, both the absolute number, Y�
rr and the

fraction, Y�
rr =N

�, of infected individuals in the population

can decrease, increase, or display unimodal behaviour,

depending on the set of model parameters.

Case 3 had to be explored by computer simulations of

the model, so it is hard to draw generalizations, but some

patterns emerge. Increases in Y�
rr =N

� with increasing F

tend to be associated with small values of b and large

values of a (hence large values of X�
rr), while the reverse

trend generally occurs for large values of b and small

values of a. This difference appears to stem from two

facts. First, XRr is superior to XRR because it has a higher

reproductive rate. This alters the balance of XRR and XRr

population from the case in which aRrZaRR (compare

figure 1a,b). In particular, when aRrZaRR, any decrease in

F results in an increase in XRr that is exactly matched by

the decrease in XRR (figure 1a), because they are

equivalent ecologically. However, when aRR!aRr, the

increase in XRr for decreasing F is not matched in

magnitude by the decrease in XRR. In all examples under

case 3 examined here, the increase in XRr exceeded

the decrease in XRR. Thus, XRrCXrr increases with

decreasing F, and there is a higher relative proportion of

XRr (compared with XRR) in the population for F!1 in

the case when aRr!aRR than when aRrZaRR. Second, the

increased size of XRr has a negative density-dependent

effect on the reproduction of Xrr by causing N� to

increase, while the increased proportion of XRr in the

population has a potentially positive effect on Xrr

reproduction because mating between the additional

Rr-individuals and both other Rr-individuals and
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rr-individuals contributes to the Xrr reproductive rate. It

is difficult to say a priori whether the negative or positive

effect will dominate for a particular set of parameters, but

the positive effect tends to exceed the negative effect for

large values of X�
rr (small b and large a) and vice versa.

Hence our original prediction for question 1 that higher

levels of endemic disease should be found in selfing than

in outcrossing populations was found not to be true in

general.

In question 2 (§1b), we asked if increasing inbreeding

would lead to a greater frequency of the resistance allele in

subsequent generations. We usually found a greater

frequency of the resistance allele with increased inbreed-

ing using numerical evaluations of the model (figure 3b).

However, under certain circumstances, such as a high cost

of resistance for homozygotes (i.e. low aRR), the resistance

allele may actually be present in higher frequencies in

populations with more outcrossing, whereas it has smaller

frequencies, or is even lost in some selfing populations

(curves 4 and 6 in figure 3b).

For case 2, or aRRZaRr, despite the higher R-frequency

in a selfing population, selfing and outcrossing popu-

lations have the same phenotypic frequencies of resistant

and susceptible individuals due to their differing levels of

heterozygosity. For case 3, or aRR!aRr!arr, as mentioned

earlier the total number of resistant individuals X�
RrCX�

rr

generally seems to increase with decreasing F, though we

could not determine in general whether X�
RrCX�

rr or the

frequency ðX�
RrCX�

rrÞ=N
� always do so. The only study to

date to examine whether the selfing rate affected the

prevalence of resistance in a population was a study of two

Linum marginale–Melampsora lini host–pathogen metapo-

pulations with different outcrossing rates (Burdon et al.

1999). Results of this study showed that the predomi-

nantly selfing populations did not have significantly lower

levels of resistance to a variety of fungal isolates than

predominantly outcrossing populations.

One assumption of this model is that selfers do not

experience inbreeding depression. This assumption makes

the model a more conservative test of the effect of

inbreeding on pathogen transmission and the frequency

of resistance in a population. Inbreeding depression could

cause disadvantages to selfers in that their offspring would

have a generalized poor condition that could increase the

probability of pathogen infection. Inbreeding depression

would create an inherent advantage to outcrossing that

may alter the conclusions of this model. The results of this

model are still applicable to populations that do not

experience significant inbreeding depression.

An important assumption that affects the results of this

model is a cost of resistance to pathogen infection. Is there

such a cost? The prevalence of polymorphism for

resistance in natural plant populations implies that

resistance must be costly; otherwise, all plants would be

resistant (Parker 1992; Simms 1992). An extensive review

of plants resistant to pathogens found a cost of resistance

in 50% of the studies surveyed (Bergelson & Purrington

1996), although costs are difficult to measure and may

occur only in certain circumstances. Another study

created transgenic Arabidopsis thaliana that differed from

control plants by possessing a single resistance gene (Tian

et al. 2003). These plants suffered a 9% cost of resistance

in the absence of disease.
Proc. R. Soc. B (2006)
In conclusion, this model links the genetic effects of

host selfing to the prevalence of disease in a population

and the frequency of the resistance allele. In this paper, we

have considered only one epidemiological model, albeit an

important one. We show in the electronic supplementary

material, part B, that analytic solution is possible in a

broad array of assumed infection rate functions, including

dependence on F. When costs of resistance are associated

with the number of resistance alleles an individual

possesses (aRR!aRr), the relationship between increased

inbreeding and both the prevalence of disease and the

frequency of the resistance allele is complex. Some sets of

parameters lead to more disease, while others lead to less

disease with increasing inbreeding. Likewise, the fre-

quency of the resistance allele can increase or decrease

with increasing inbreeding depending on other model

parameters. On the other hand, although disease has

direct negative effects on individual fitness through

increased death rate, in the case that costs of resistance

are associated with the resistance phenotype (aRRZaRr),

the selfing rate does not affect the proportion of resistant,

susceptible, or infected individuals in a population. This

surprising result exemplifies the difficulty in translating

effects on individuals to a population level, an important

step when considering density-dependent processes such

as pathogen transmission.
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