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Migrating birds often complete long non-stop flights during which body energy stores exclusively support

energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet

poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km flight to their single

spring stopover site and thus provide an excellent model in which to determine the energy fuels associated

with endurance travel. To this end, we evaluated plasma concentrations of six key metabolites in arriving

godwits caught immediately upon landing near their stopover site. Initial metabolite levels were compared

with levels after 5 h of inactive rest to determine how flight per se affects energy metabolism. Birds refuelling

on the stopover site were also examined. Arriving godwits displayed elevated plasma free fatty acids, glycerol

and butyrate, confirming the importance of lipid fuel in the support of extended migratory activity. Further-

more, elevated plasma triglycerides in these birds suggest that fatty acid provisioning is facilitated through

hepatic synthesis and release of neutral lipids, as previously hypothesized for small migrants with high mass-

specific metabolic rates. Finally, elevations in plasma uric acid suggest that protein breakdown contributes

to the support of long-distance movement, to possibly maintain citric acid cycle intermediates, gluconeogen-

esis and/or water balance.
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1. INTRODUCTION
Migrating birds often travel thousands of kilometres

between summer breeding areas and winter feeding sites.

Such migratory journeys can impose tremendous energetic

demands. Bouts of uninterrupted flight may last several days

(e.g. Battley et al. 2000), during which time migrants rely

exclusively on body energy stores.

In support of migratory flight, birds primarily derive

energy from lipids stored as triglycerides in adipose tissue

(Berthold 1975; Ramenofsky 1990), because lipid fuel

imposes a low degree of wing loading relative to protein or

carbohydrate (Schmidt-Nielsen 1990). The extent to

which energy is derived from lipid mobilization is exempli-

fied by studies on passerine migrants, in which plasma free

fatty acids and glycerol—breakdown products of triglycer-

ides—are markedly elevated in association with active flight

( Jenni-Eiermann & Jenni 1991). Migratory red knots, Cali-

dris canutus, flying under controlled conditions in a wind

tunnel also show significant elevations in fat breakdown

metabolites ( Jenni-Eiermann et al. 2002).

Although plasma free fatty acids increase in association

with migratory flight, they may not suffice to support the
high energetic demands of extended travel: the rate of fatty

acid transport in blood is limited by plasma binding pro-

teins. Recent evidence suggests that migratory songbirds

with high mass-specific metabolic rates may supplement

plasma fatty acids with plasma triglycerides to provide

additional energy to working muscle ( Jenni-Eiermann &

Jenni 1992). However, the importance of triglycerides dur-

ing free flight in larger migrants remains unclear.

Although migrants rely primarily upon lipid stores, ele-

vations in plasma uric acid in several short-flying passerines

( Jenni-Eiermann & Jenni 1991) suggest that catabolism of

body protein also occurs (Mori & George 1978; Robin et al.

1987). Furthermore, flight in a wind tunnel increases

plasma uric acid in a migratory shorebird ( Jenni-Eiermann

et al. 2002). Thus, migrants do not seem to avoid protein

use during flights: a strategy that would extend tolerable

fasting time (Robin et al. 1987; Lindgård et al. 1992) and

would provide a buffer against travel delays. However, the

extent to which protein breakdown supports long-distance

movement in a free-living migrant has not been determ-

ined, although large changes in the lean dry mass of some

long-flying species suggest a heavy use of proteins (Biebach

1998; Battley et al. 2000; Bauchinger & Biebach 2001).

Shorebirds complete migratory flights of especially long

duration: they often cross large inhospitable barriers, such

as the open ocean, and also have a limited number of
#2005 The Royal Society
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suitable areas in which to stop to refuel. Thus, shorebirds

provide an excellent model in which to examine the energy

substrates involved in the support of long-distance move-

ment. For example bar-tailed godwits, Limosa lapponica,

undertake a two-day non-stop flight from west African win-

tering areas to their single stopover site in the Wadden Sea

of Germany, The Netherlands and Denmark. The month-

long stopover period that follows is indicative of the

tremendous energetic demands encountered during travel.

In fact, godwits display specialized adaptations to alleviate

flight costs, for example they strategically adjust the size of

internal organs before flight, possibly in an effort to

minimize wing loading (Landys-Ciannelli et al. 2003).

To determine the extent to which specialized long-

distance migrants use fat substrates and protein breakdown

to support flight, godwits arriving at their stopover area were

evaluated for plasma levels of six key metabolites: triglycer-

ides, free fatty acids, glycerol, butyrate, uric acid and glu-

cose. Triglycerides are the storage form of lipids. They are

synthesized in the liver and are transported to peripheral

tissues for deposition into fat bodies, but can also enter blood

through dietary absorption (Robinson 1970). Free fatty

acids and glycerol are released when triglycerides are hydro-

lysed, and indicate lipid mobilization from adipose tissue

(Scow & Chernick 1970; Hurley et al. 1986; Elia et al. 1987).

Butyrate (a ketone body) is synthesized from free fatty acids,

and replaces some of the glucose requirements during energy

shortage in tissues unable to catabolize fatty acids, such as

the heart and brain (Robinson & Williamson 1980). Uric

acid results from the breakdown of proteins that originate

from body tissue or the diet (Mori & George 1978; Robin et

al. 1987; Lumeij & Remple 1991; Lindgård et al. 1992).

We compared metabolite levels between just-landed

godwits and birds subjected to 5 h of inactive rest to deter-

mine the degree to which flight per se affects energy metab-

olism. We also measured plasma metabolites in birds

captured on the stopover site to determine how energy

metabolism differs between periods of flight and refuelling.
2. METHODS
(a) Study animals

The godwit subspecies examined (L. l. taymyrensis; Engelmoer &

Roselaar 1998) winters on the coastal mudflats of Mauritania and

Guinea-Bissau and breeds just west and south of the Taymyr Pen-

insula, Russia (Boere & Smit 1981). The 9000 km distance

between wintering sites and breeding areas is undertaken in only

two bouts of flight, each of which takes ca. 2.6 days to complete

(Piersma 1987; Landys-Ciannelli et al. 2002). Birds interrupt

flight for a month-long refuelling stop in the Wadden Sea area

(Piersma & Jukema 1990).

Northward-migrating godwits were captured at two sites: (i) in

the dunes near Castricum, located on the western coast of The

Netherlands and just 60 km short of the Wadden Sea (52�320 N,

04�370 E); and (ii) on their refuelling grounds in Texel: an island

in the Dutch Wadden Sea (53�030 N, 04�480 E).

Godwits do not normally stop in Castricum, but can be lured to

land during daylight hours with song playback and decoys, so are

uniquely representative of migrants arriving after a long non-stop

flight (Landys-Ciannelli et al. 2002). We henceforth refer to god-

wits captured in Castricum as ‘arriving’ birds. Arriving godwits

were captured with clap nets on 29 April to 7 May 1998 and 30

April to 6 May 1999.
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On the island of Texel, refuelling godwits were captured during

daylight hours with a large wind-driven pull-net: the wilsternet

(Jukema et al. 2001). We sampled refuelling birds on 13–22 May

1998 and 15–17 May 1999.

After birds were captured, blood samples were obtained by

puncturing the alar wing vein with a sterile 23 gauge needle and

then collecting pooling blood droplets (ca. 300ml volume) into

heparinized micro-haematocrit capillary tubes. Birds were sub-

sequently weighed and measured for body morphometrics (as

described in Piersma & Jukema 1990).

Differences in body mass between arriving and refuelling god-

wits were tested with a two-way ANOVA. Sex was included in the

model as a factor. Body mass data were normalized through log-

transformation.

Because godwits are sexually dimorphic, we corrected body

mass for sex-related size differences by calculating body mass resi-

duals for all birds according to wing length (see Landys-Ciannelli

et al. 2002). Body mass residuals were used to categorize godwits

captured in Texel as ‘initial-refuelling’ or ‘advanced-refuelling’

birds, according to negative or positive mass residual values,

respectively. It should be noted that some birds show similar mass

residual values even though they have been divided into different

groups (i.e. when absolute residual values are close to zero), so

group comparisons are conservative.

(b) Initial metabolic profile

Plasma levels of metabolites from collected blood samples were

determined for arriving, initial-refuelling and advanced-refuelling

birds. Jenni-Eiermann & Jenni (2001) have shown that levels of

some metabolites change within 20 min of capture in night-

migrating passerines. Thus, we tried to obtain blood samples from

godwits as quickly as possible, i.e. within 4.2 ^ 2.8 min

(average^s:d:) of capture.

Differences in plasma metabolite levels among migratory stages

were examined with one-way ANOVA tests. Tukey tests were

used to conduct post hoc comparisons. To satisfy conditions of

normality, all metabolite data were log-transformed.

(c) Resting metabolic profile

To determine the degree to which flight and stopover per se affect

plasma metabolites, we compared initial metabolite levels of a

subset of arriving and refuelling birds sampled immediately after

capture with metabolite levels of the same birds kept inactive for

5 h. During captivity, birds were kept singly in a box without

access to food. We assumed that 5 h would suffice to induce a rest-

ing energetic state because metabolite levels begin to return to

baseline values within 30 min of flight in the pigeon (Schwilch et

al. 1996). One-way repeated-measures ANOVAs were used to

compare initial metabolite levels with levels resulting from 5 h of

inactivity. Arriving and refuelling birds were analysed separately.

Power analyses were conducted when significance fell just short of

the a ¼ 0:05 level. Because of the small sample sizes obtained in

this part of the study, we did not divide birds captured on the stop-

over site into different refuelling groups.

(d) Assay techniques

All blood samples were stored on ice and centrifuged within 10 h.

Aspirated plasma was placed into micro-centrifuge tubes and sub-

sequently stored at �80 �C. Metabolite concentrations in blood

plasma were determined on a powerwave 340�microplate spec-

trophotometer (BioTec Instruments). Assays were run in 400 ml

flat-bottom, 96-well polystyrene microplates (NUNC) exactly as

described in Landys et al. (2004a).
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3. RESULTS
(a) Arrival versus refuelling

As previously shown for this species (Landys-Ciannelli et

al. 2002), body mass was significantly different between

arriving and refuelling birds (F1;47 ¼ 151:533; p < 0:001;

figure 1). Female godwits were heavier than males

(F1;47 ¼ 18:615; p < 0:001).

Examined godwits showed considerable differences in

five of the six examined metabolites (figure 2). Plasma free

fatty acids (F2;48 ¼ 56:160; p < 0:001), glycerol (F2;47 ¼
7:810; p < 0:001) and butyrate (F2;48 ¼ 27:170; p <

0:001) were significantly different among migratory stages.

Specifically, arriving birds had higher levels of free fatty

acids, glycerol and butyrate than initial-refuelling or

advanced-refuelling individuals ( p < 0:05).

Migratory stages were also marked by significant differ-

ences in plasma triglycerides (F2;47 ¼ 36:212; p < 0:001)

and uric acid (F2;48 ¼ 9:533; p < 0:001; figure 2). Trigly-

ceride levels were lowest in arriving godwits and highest in

advanced-refuelling birds ( p < 0:05). Similarly, plasma

uric acid was lower in arriving godwits than in initial-refuel-

ling or advanced-refuelling birds ( p < 0:05).

Plasma levels of glucose did not change with stage of

migration (F2;46 ¼ 1:270; p ¼ 0:290).

(b) Inactive fasting

Energy metabolism was significantly affected during the 5 h

inactivity trial (table 1; figure 3). In arriving godwits, plasma

free fatty acids, glycerol and triglycerides decreased with

inactivity. Plasma triglycerides also decreased in refuelling

godwits, whereas plasma free fatty acids and glycerol did

not change. However, refuelling godwits subjected to

inactive fasting showed a trend to increase plasma butyrate

(power of performed test with a ¼ 0:05 was 0.328).

Forced inactivity resulted in alterations to protein

metabolism. In response to 5 h of confinement, plasma uric

acid significantly decreased both in arriving and in refuel-

ling birds.

Finally, plasma glucose markedly increased during con-

fined inactivity in arriving godwits and showed a strong
Proc. R. Soc. B (2005)
trend to increase in refuelling birds (power of performed

test with a ¼ 0:05 was 0.466).

4. DISCUSSION
In this study, we compared the metabolic profile of bar-

tailed godwits during arrival onto their stopover site after a

4500 km bout of flight with that of birds refuelling during

the subsequent stopover period. To our knowledge, this is

the first study to address the metabolic correlates of long-

distance flight in a free-living migrant.

(a) Lipid metabolism

Our results confirm the importance of lipid stores in the sup-

port of long-distance migration: plasma free fatty acids and

glycerol were markedly elevated in arriving godwits as com-

pared with refuelling birds. Moreover, arriving godwits sub-

jected to 5 h of inactivity showed a dramatic decrease in

plasma free fatty acids and glycerol, suggesting a high degree

of lipolysis specifically in association with migratory travel.

A significant increase in plasma free fatty acids and gly-

cerol also occurs with endurance flight in a non-migratory

species: the pigeon, Columba livia (Bordel & Haase 1993;

Schwilch et al. 1996). Although this suggests that lipids

may play a general role in the support of extended move-

ment, migrants may nevertheless show specific adaptations

for rapid lipid mobilization and transport (Guglielmo et al.

2002b): plasma fatty acids in arriving godwits

(3.2 ^ 0.2 mmol l�1; average^s:e:m:) are almost twice as

high as in pigeons flown for up to 22 h (ca.

1:9 ^ 0:1 mmol l�1; Bordel & Haase 1993). Fatty acids in

arriving godwits are also higher than in migratory red knots

flying for 10 h in a wind tunnel (1:1^0:1 mmol l�1; Jenni-

Eiermann et al. 2002). This threefold difference suggests

that wind tunnel flight may produce relatively lower ener-

getic demands, for example flight altitude need not be

adjusted. Furthermore, captive birds cannot anticipate the

timing of departure and may not fully upregulate lipid

transport mechanisms before flight.

Triglyceride levels in arriving godwits decreased with

forced inactivity, suggesting a distinct elevation in associ-

ation with flight. Thus, the triglyceride pathway may play a

role in fatty acid delivery not only in small birds with high

mass-specific metabolic rates (as hypothesized by Jenni-

Eiermann & Jenni (1992)), but also in larger migrants. In

fact, flying godwits circulate as much lipid energy in

triglycerides as in free fatty acids (1 mmol of

triglycerides ¼ 3 mmol of fatty acids; see figure 2). Even in

pigeons, triglyceride levels surpass resting values with

increased flight time (Schwilch et al. 1996). Energy provi-

sioning through the triglyceride pathway may function to

maintain flight velocity: speed in marathon runners is lim-

ited mainly by rate of fatty acid transport (Guppy 1988).

Although plasma triglycerides decreased with forced

inactivity both in arriving and refuelling godwits, we argue

against the possibility that captivity stress may be a plaus-

ible alternative cause of observed changes in triglycerides.

Psychological stress in humans (Stoney et al. 2002) and

restraint stress in mice (Kurihara et al. 2002) disrupts the

clearance rate of triglycerides and, thus, elevates rather

than lowers plasma triglyceride levels.

In refuelling godwits, elevated plasma triglycerides clearly

suggest pronounced lipid deposition. Results support the

changes in body fat content previously described in this
bo
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species (Landys-Ciannelli et al. 2003) and are commensur-

ate with the observed pattern of increased plasma triglycer-

ides during migratory fattening in other birds (see, for

example, Mori & George 1978; deGraw et al. 1979; Jenni-

Eiermann & Jenni 1996; Guglielmo et al. 2002a). In fact,

because plasma triglycerides positively correlate with body

mass gain in many migrants ( Jenni-Eierman & Jenni 1994;

Williams et al. 1999; Jenni & Schwilch 2001), the higher tri-

glyceride levels in advanced-refuelling godwits as compared

with those in initial-refuelling birds (see figure 2) suggest

that mass gains may be especially pronounced during the

later stages of stopover. Mass deposition in initial-refuelling

birds may be constrained because godwits recently arrived

at the stopover site show reduced digestive machinery

(Landys-Ciannelli et al. 2003) and may express limitations

in the assimilation of ingested food matter.

In conjunction with elevations in other lipid breakdown

metabolites, plasma butyrate, which is synthesized from

free fatty acids and supplements energy requirements in

glucose-dependent tissues, was markedly higher during

arrival than during refuelling. Plasma butyrate in arriving

birds remained high during inactivity, suggesting that
Proc. R. Soc. B (2005)
butyrate supports general energetic requirements (such as

those associated with fasting), rather than the specific ener-

getic demands of flight. This elevation contradicts the

hypothesis that butyrate is maintained at a low level to

facilitate lipid mobilization during extended travel ( Jenni-

Eiermann & Jenni 1991; Jenni-Eiermann et al. 2002). In

fact, butyrate levels steadily increase with flight duration in

the pigeon (Schwilch et al. 1996). Thus, migrants may be

able to minimize ketogenesis only in association with short

flights that minimize fasting time.

In godwits captured on the stopover site, plasma butyr-

ate showed a strong trend to increase during inactivity.

Thus, short-term fasting may necessitate glucose-

supplementation by fat substrates even during a phase of

fuel deposition. Results are in agreement with past studies

that indicate a marked increase in plasma butyrate within

several hours of food removal in captive passerine migrants

( Jenni-Eiermann & Jenni 1997; Landys et al. 2004a).

(b) Protein metabolism

Uric acid levels decreased with forced inactivity in godwits

arriving at the stopover site, suggesting the occurrence of a

higher rate of protein catabolism in flying godwits than in
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inactive fasting birds. This interpretation is commensurate

with observations of a low total protein content in arriving

godwits (Landys-Ciannelli et al. 2003). Although uric acid

levels also decreased in refuelling birds that were kept inac-

tive, we argue that changes in uric acid levels were not an

effect of captivity stress: the administration of glucocorti-

coids (hormones typically associated with unpredictable

perturbations) increases rather than decreases plasma

levels of uric acid in birds (see, for example,

De La Cruz et al. 1981; Simon 1984), as does restraint

stress in rats (Al-Qirim et al. 2002).

An interspecific comparison indicates that uric acid

levels in arriving godwits (1:2 ^ 0:2 mmol l�1; average ^

s.e.m.) were as high as those found in migratory songbirds

sampled during short nocturnal travel (pied flycatcher: ca.

1:2 ^ 0:1 mmol l�1; garden warbler: ca. 0:9 ^ 0:1 mmol l�1;

robin: ca. 1:1 ^ 0:1 mmol l�1 ( Jenni-Eiermann & Jenni

1991)). This suggests that long-bout migrants do not spare

protein to a greater degree than migrants travelling in short

bouts (as previously suggested by Jenni-Eiermann & Jenni

(1991)), even though lower protein use would extend toler-

able fasting time (e.g. Robin et al. 1987; Lindgård et al.

1992) to provide a buffer against unforeseen travel delays.

However, further reductions in the relative contribution of

protein towards energy provisioning may not be possible:

compared with mammals, birds already show an amazing

ability to spare protein, i.e. the proportion of protein that

contributes to total energy expenditure is kept relatively

constant even with increasing exercise intensity ( Jenni &

Jenni-Eiermann 1998). However, compared with non-

migratory birds, migrants may show some metabolic adap-

tations in this regard: uric acid levels of arriving godwits are

considerably lower than those of pigeons having flown for

up to 22 h (ca. 1.8 ^ 0.1 mmol l�1; Bordel & Haase 1993).

Although the functional relevance of protein breakdown

during migratory flight is as yet unclear, several hypotheses

have been proposed (reviewed in Bauchinger & Biebach

(2001)). For example, protein breakdown may maintain

citric acid cycle intermediates that are necessary for fatty

acid oxidation and may also provide energy to working

muscles through gluconeogenesis (Veiga et al. 1978; Dohm

1986). Protein breakdown has also been postulated to lib-

erate metabolic water for the maintenance of water balance

(Bintz & Strand 1983; Klaassen 1996), and might explain

the lack of dehydration in godwits arriving after their two-

day flight (Landys et al. 2000).

In contrast to arriving godwits, refuelling birds showed

exceptionally high levels of plasma uric acid, clearly
Proc. R. Soc. B (2005)
suggesting the breakdown of dietary protein for use as an

energy substrate or for transformation into lipid (Cherel &

Le Maho 1988; Lumeij & Remple 1991). Indeed, godwits

rely on protein-rich Tipulidae larvae during refuelling on

the Wadden Sea.

(c) Carbohydrate metabolism

Similar glucose levels between arriving and refuelling god-

wits are in agreement with the idea that glucose in blood

plasma is regulated within narrow limits. Stable glucose

levels in various other migrants sampled during flight sup-

port our results ( Jenni-Eierman & Jenni 1991; Jenni-Eier-

mann et al. 2002). Furthermore, endurance flight in the

pigeon does not elevate plasma glucose (Bordel & Haase

1993), although a transient increase (Schwilch et al. 1996)

may reflect an initial dependence on glycogen stores: sud-

den bursts of activity, such as take-off or rapid acceleration,

are primarily performed by glucose-dependent ‘fast-twitch’

muscle fibres (Parker & George 1975). However, because

the contribution of glycogen to overall energy reserves in

migrants is negligible (Farner et al. 1961), glucose levels in

blood plasma are probably maintained through gluconeo-

genesis and the substitution of glucose by butyrate.

Although plasma levels of glucose were similar between

arriving and refuelling godwits, glucose levels in both

groups increased after 5 h of confinement. This glucogenic

response may be a consequence of a handling-induced

increase in the glucocorticoid hormone—corticosterone

(Landys-Ciannelli et al. 2002)—and may assist animals in

overcoming immediate energetic demands associated with

unpredictable perturbations. Alternatively, increased glu-

cose levels after recent endurance exercise may occur as a

consequence of reduced glucose uptake by muscles

(Schwilch et al. 1996), although this does not explain the

strong trend for plasma glucose to increase also in refuel-

ling godwits.

5. CONCLUSIONS
Through the examination of plasma metabolites in godwits

arriving onto their stopover site and in subsequently refuel-

ling birds, we have verified that long-distance migratory

flight is primarily fuelled by lipids. Corticosterone (as well

as other lipolytic agents) may contribute to the mobiliza-

tion of lipid stores: corticosterone is elevated specifically in

association with migratory flight in many species (Landys-

Ciannelli et al. 2002; Landys et al. 2004b,c) and has been

shown to promote fatty acid release in a passerine migrant

(Landys et al. 2004a). Furthermore, our results indicate

that in association with extended travel, fatty acid transport
Table 1. Results of the one-way repeated-measures ANOVAs used to examine effects of inactive fasting on plasma metabolites
(mmol l�1) in arriving and refuelling godwits. Data were evaluated separately for the stages of arrival and refuelling, represented by
15 and 6 birds, respectively.
arriving godwits
 refuelling godwits
independent variable
 t-statistic
 p-value
 t-statistic
 p-value
free-fatty acids
 2.689
 0.018
 0.943
 0.389

glycerol
 3.332
 0.005
 1.683
 0.153

triglycerides
 3.239
 0.006
 6.906
 < 0.001

uric acid
 7.184
 < 0.001
 9.543
 < 0.001

glucose
 �6.044
 < 0.001
 �2.536
 0.052

butyrate
 0.148
 0.884
 �2.135
 0.086
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is facilitated through the circulation of plasma triglycerides:

a pathway thought to apply only to small migrants with

high mass-specific metabolic rates. Finally, results suggest

that protein breakdown contributes to the support of long-

distance flight even though protein sparing would be ben-

eficial in extending tolerable fasting time. Future studies

will hopefully confirm the importance of the triglyceride

pathway in the support of long-distance flight in larger

migrants and will elucidate the manner in which physio-

logical mechanisms and hormones such as corticosterone

support the many specialized metabolic pathways used

during long-distance travel.
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Figure 3. Effects of inactive rest on plasma metabolites in arriving and refuelling godwits: (a) fatty acids; (b) glycerol; (c)
triglycerides; (d) uric acid; (e) glucose; and ( f ) butyrate. Filled bars represent initial metabolite levels and hatched bars represent
metabolite levels after 5 h of rest. The asterisks indicate significant differences between initial and resting metabolite levels within a
migratory stage. Non-significant trends are indicated. Error bars denote standard errors of the mean. Sample sizes include 15
arriving birds and 6 refuelling birds.
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Y. 1987 Uric acid and urea in relation to protein catabolism
in long-term fasting geese. J. Comp. Physiol. B 157,
491–499.

Robinson, A. M. & Williamson, D. H. 1980 Physiological
roles of ketone bodies as substrates in mammalian tissues.
Physiol. Rev. 60, 143–187.

Robinson, D. S. 1970 The function of the plasma triglycerides
in fatty acid transport. In Comprehensive biochemistry, vol. 18
(ed. M. Florkin & E. H. Stotz), pp. 51–105. Amsterdam:
Elsevier.

Schmidt-Nielsen, K. 1990 Animal physiology: adaptation and
environment, 4th edn. Cambridge University Press.
Proc. R. Soc. B (2005)
Schwilch, R., Jenni, L. & Jenni-Eiermann, S. 1996 Metabolic
responses of homing pigeons to flight and subsequent recov-
ery. J. Comp. Physiol. B 166, 77–87.

Scow, R. O. & Chernick, S. S. 1970 Mobilization, transport,
and utilization of free fatty acids. In Comprehensive biochem-
istry, vol. 18 (ed. M. Florkin & E. H. Stotz), pp. 19–50.
Amsterdam: Elsevier.

Simon, J. 1984 Effects of daily corticosterone injections upon
plasma glucose, insulin, uric acid and electrolytes and food-
intake pattern in the chicken. Diabetes Metab. 10, 211–217.

Stoney, C. M., West, S. C., Hughes, J. W., Lentino, L. M.,
Finney, M. L., Falko, J. & Bausserman, L. 2002 Acute
psychological stress reduces plasma triglyceride clearance.
Psychophysiology 39, 80–85.

Veiga, J. A. S., Roselino, E. S. & Migliorini, R. H. 1978 Fast-
ing, adrenalectomy, and gluconeogenesis in the chicken and
a carnivorous bird. Am. J. Physiol. 234, R115–R121.

Williams, T. D., Guglielmo, C. G., Egeler, O. & Martyniuk,
C. J. 1999 Plasma lipid metabolites provide information on
mass change over several days in captive western sand-
pipers. Auk 116, 994–1000.
As this paper exceeds the maximum length normally permitted, the

authors have agreed to contribute to production costs.


	Metabolic profile of long-distance migratory flight and stopover in a shorebird
	INTRODUCTION
	METHODS
	Study animals
	Initial metabolic profile
	Resting metabolic profile
	Assay techniques

	RESULTS
	Arrival versus refuelling
	Inactive fasting

	DISCUSSION
	Lipid metabolism
	Protein metabolism
	Carbohydrate metabolism

	Conclusions
	REFERENCES


