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Summary
Functional neuroimaging has successfully identified brain areas that show greater responses to visual
motion [1–3] and adapted responses to repeated motion directions [4–6]. However, such methods
have been thought to lack the sensitivity and spatial resolution to isolate direction-selective responses
to individual motion stimuli. Here, we used functional magnetic resonance imaging (fMRI) and
pattern classification methods [7–10] to show that ensemble activity patterns in human visual cortex
contain robust direction-selective information, from which it is possible to decode seen and attended
motion directions. Ensemble activity in areas V1–V4 and MT+ allowed us to decode which of 8
possible motion directions the subject was viewing on individual stimulus blocks. Moreover,
ensemble activity evoked by single motion directions could effectively predict which of two
overlapping motion directions was the focus of the subject’s attention, and presumably dominant in
perception. Our results indicate that feature-based attention can bias direction-selective population
activity in multiple visual areas, including MT+/V5 and early visual areas (V1–V3), consistent with
gain modulation models of feature-based attention and theories of early attentional selection. Our
approach for measuring ensemble direction selectivity may provide new opportunities to investigate
relationships between attentional selection, conscious perception, and direction-selective responses
in the human brain.

Results
In this study, we investigated whether ensemble activity patterns in the human visual cortex
contain sufficiently reliable direction-selective information to decode seen and attended motion
directions. We hypothesized that each voxel may have a weak but true bias in direction
selectivity, and therefore the pooled output of many voxels might provide robust direction
information. Such biases might arise from random variations in the distribution or response
strength of neurons tuned to different directions across local regions of cortex. Irregularity in
columnar organization (~300–600 μm width) or biases in vasculature patterns might also lead
to greater variability in direction selectivity at more coarse spatial scales of sampling [10]. By
pooling the ensemble information available from many weakly direction-selective voxels
obtained from individual visual areas, we evaluated whether it is possible to decode which
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motion direction was being viewed on individual stimulus blocks and which of two overlapping
motion directions was perceptually dominant due to feature-based attentional selection.

We predicted (decoded) the motion direction being viewed from the fMRI activity of each
subject using a “direction decoder” (Figure 1). The input to the decoder was an averaged fMRI
activity pattern in a 16-s stimulus period during which the subject perceived limited-lifetime
random dots moving in one of 8 directions (0°, 45°,…, 315°). fMRI activity was collected at
3x3x3 mm resolution using standard methods, and the intensity pattern of fMRI voxels
identified in areas V1–V4 and MT+/V5 (“MT+”, hereafter) were used for the analysis (see
Experimental Procedures). The decoder consisted of a statistical linear classifier that was
first trained to learn the relationship between fMRI activity patterns and motion directions
using a training data set. It was then used to predict the corresponding motion direction of an
independent data set to evaluate generalization performance. Cross-validation performance
served as an index of direction selectivity for each visual area of interest.

Ensemble activity from areas V1-MT+ (total 900 voxels) led to remarkably precise decoding
of stimulus direction for all 4 subjects (Figure 2A, individual directions for a representative
subject; Figure 2B, 8 directions pooled for all 4 subjects; 63.4±5.0% correct; chance
performance, 12.5%). These results indicate that ensemble patterns of fMRI activity in these
visual areas contain reliable direction-selective information. We also calculated decoding
performance for the motion-sensitive region MT+ separately, which is thought to be a
homologue of the direction-selective areas MT and MST in the macaque monkey [1, 2, 11].
Although MT+ is a small region with fewer available voxels for analysis (~100 voxels),
direction decoding exceeded chance performance for all subjects (Figure 2C, binomial test,
P < 0.005 in all subjects).

Analysis of individual areas revealed above-chance levels of direction decoding for each region
tested (200 voxels for each of areas V1, V2, V3, and V3a/V4 combined, and 100 voxels for
MT+; binomial test, P < 0.005 in all areas and subjects; Figure 3). For this analysis, voxels
from V3a and V4 were combined for the present analysis to equate for the number of voxels
across retinotopic areas. Interestingly, errors were found more frequently at the opposite
direction than at orthogonal directions for areas V1–V4 (t-test, P < 0.01) but not in MT+ (Figure
3A). This is potentially consistent with the columnar organization of motion direction found
in the early visual areas of some animals, in which direction preference often shifts abruptly
by 180° [12–14]. Under such conditions, columns for opposite motion directions would be
more likely to be sampled together by voxels than those for orthogonal directions.

Overall, we observed no significant difference in decoding performance across early visual
areas V1–V4 (Figure 3B). Although human visual area V3a is known to be functionally distinct
from V4 and more responsive to visual motion than to static or flickering stimuli [15, 16],
activity patterns in each of these areas led to comparable levels of performance, revealing no
evidence of greater direction selectivity in V3a (100 voxels from each area; 30.0 ±2.3% and
34±10.2% correct for V3a and V4, respectively; chance performance, 12.5%).

Although decoding performance appeared to be somewhat lower for motion-sensitive area MT
+ than other areas, this difference was attributable to the comparatively small size of MT+.
When only 100 voxels were analyzed from each visual area to match the number of voxels
available in MT+, performance was comparable across all visual areas and did not reliably
differ. Furthermore, the degree of direction selectivity found across visual areas differed from
degree of orientation selectivity found in our previous study [10]. Orientation selectivity was
most pronounced in areas V1 and V2, and declined in higher extrastriate areas, with no evidence
of ensemble orientation selectivity in MT+ (Figure 3B). Although MT+ exhibited only a
moderate level of direction selectivity when analyzed with our method, the comparison with
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orientation selectivity is consistent with the notion that this region is more sensitive to motion
than to form information.

Plots of the direction preference of individual voxels on flattened cortical maps revealed
scattered patterns that were variable and idiosyncratic across subjects (Supplemental Figure 1
and 2). There was no clear global pattern of direction selectivity in retinotopic cortex as one
might expect if different motion directions led to systematic shifts in eye position or differential
responses at the leading and trailing edges of the motion stimulus [17]. If motion decoding
were due to global shifts of the activated region in retinotopic cortex, then regions
corresponding to the boundary of the stimulus should be more informative than regions
corresponding the middle of the stimulus. However, decoding performance was much worse
for retinotopic regions around the border of the stimulus as compared to the middle of the
stimulus (40±7.5% and 60±5.2% correct, respectively; chance performance, 12.5%; 400 voxels
from V1–V4). Additional experiments using rotational motion, which is less likely to cause
systematic eye movements or global shifts in retinotopic activity, revealed similar levels of
decoding performance as translational motion (classification of two opposing directions for
rotation and translation, 72±8.2% and 80±7.8% correct, respectively). To further test whether
motion decoding depended on some type of global retinotopic modulation associated with
different stimulus directions, we performed the same decoding analysis after normalizing the
voxels intensities within subsets of voxels corresponding to different polar angles or
eccentricities in the visual field. This was done by dividing the visual field into 16 different
polar angle sectors or eccentricities, identifying all voxels in V1–V4 that responded best to a
particular polar angle or eccentricity, and subtracting out the mean activity level of the voxels
corresponding to each polar angle or eccentricity. Even after this normalization procedure, the
decoding performance remained nearly the same, indicating the importance of local variations
in motion preference across retinotopic cortex.

Finally, we tested whether cortical visual activity can reveal which of two overlapping motion
directions is dominant in a person’s mind when viewing two groups of dots moving in opposite
directions (Figure 4). This experiment allowed us to test whether feature-based attention can
lead to top-down bias of direction-selective population responses in the visual cortex when
conflicting motion direction signals originate from a common spatial location. First, a decoder
was trained to discriminate fMRI responses to dots rotating either clockwise or
counterclockwise (stimulus blocks). Then we tested whether the trained decoder could classify
perceived motion direction under ambiguous stimulus conditions in which both clockwise and
counterclockwise moving dots were presented simultaneously (attention blocks). Subjects
performed a speed discrimination task on only one set of dots, thereby restricting attention to
one direction.

The decoded motion direction for ensemble activity in areas V1-MT+ (total 900 voxels) was
reliably biased toward the attended direction (Figure 4; t-test of group data, P < 0.05).
Additional analyses of individual visual areas also revealed significant bias effects in V1, V2,
V3, and MT+. When V3a and V4 were separately analyzed (100 voxels each), a significant
bias effect was also observed in V4. Overall, the results indicate that the direction attended in
an ambiguous motion display can be predicted from fMRI signals in visual cortex, based on
the activity patterns induced by unambiguous stimulus directions. Direction-selective
ensemble activity can be reliably biased by feature-based attention, and these bias effects begin
to occur at early stages of the visual pathway.

We conducted additional analyses to assess the reliability of cortical activity patterns for
attended motion directions and single motion directions, and the similarity between these
activity patterns. For individual experimental blocks, the attended motion direction could be
predicted from the activity patterns obtained from all other attention blocks (cross-validation
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performance using 900 voxels from V1-MT+, 63±6.0% correct), but performance was no better
than our ability to decode the attended direction from activity patterns elicited by single motion
directions (66±5.9% correct). An analysis of direction preferences plotted on the visual cortex
revealed a small but reliable correlation between template activity patterns for stimulus motion
and attended motion (R = 0.14 ±0.04, P < 0.001 in all subjects; Supplemental Figure 2). Thus,
paying attention to one direction in an ambiguous motion display can produce activity patterns
that are more similar to those induced by a stimulus of the same single direction.

Discussion
We have shown that ensemble fMRI signals in the human visual cortex contain reliable
direction information that allows for prediction of seen and attended motion directions.
Direction-selective ensemble activity was found throughout the human visual pathway in areas
V1–V4 and MT+, as indicated by reliable decoding of the motion direction viewed on
individual stimulus blocks. Activity not only reflected the seen motion stimulus but also
reflected the attended or perceptually dominant motion when subjects viewed two overlapping
sets of random dots moving in opposite directions. Ensemble activity in multiple visual areas,
including areas V1–V3 and MT+, was reliably biased toward the attended motion direction.

These results provide novel evidence that feature-based attention can alter the strength of
direction-selective responses throughout the visual pathway, with top-down bias effects
emerging at very early stages of visual processing. Our results are consistent with current
theories of feature-based attention, such as the feature-similarity gain model [18] and the biased
competition model of attention [19]. These models assume that attention modulates the activity
of individual neurons according to the similarity between the attended feature and the neuron’s
preferred feature. When attention is directed toward a feature in the presence of competing
features, such modulation will enhance the activity of neurons preferring the attended feature
(or suppress neurons preferring unattended features). As a result, one would predict that
attention should bias the pattern of neural activity to more closely resemble the activity pattern
that would be induced by the attended feature alone, as was found here using fMRI pattern
analysis of population activity.

Previous neurophysiological studies in monkeys have shown that feature-based attention can
alter the gain of direction-selective neurons in area MT [20,21], but little is known about
whether direction-selective activity may be biased in early visual areas. Human neuroimaging
studies have shown that directing attention to a moving stimulus as opposed to an overlapping
stationary stimulus leads to enhanced activity in MT+ [22]. Feature-based attention can also
enhance the strength of fMRI responses throughout the human visual pathway for an
unattended motion stimulus if it matches the direction of attended motion presented elsewhere
in the visual field [23]. These neuroimaging studies have relied on measures other than direction
selectivity to infer the effects of feature-based attention. Here, we found that feature-based
attention can directly alter the strength of direction-selective activity in the human visual cortex
for the attended stimulus in question, with reliable bias effects occurring not only in MT+ but
emerging as early as V1. These results complement our recent findings that feature-based
attention can bias orientation-selective ensemble activity in V1 and higher areas [10],
indicating the generality of these attentional bias effects. Such biasing of activity at the earliest
stages of visual cortical processing may be important for maximizing the efficiency of top-
down attentional selection in many feature domains, and may also be important for enhancing
the representation of attended visual features in awareness [24,25].

Although the proportion of direction-selective neurons is known to vary across areas of the
primate visual system, we observed comparable levels of ensemble direction selectivity across
visual areas. Given that human MT+ is highly motion-sensitive [1–3] and that monkey MT is
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rich in direction-selective neurons and shows evidence of columnar organization [26,27], one
might ask why decoding performance was not better for this region. Area MT+ was about half
the size of other visual areas, and thus only a small number of voxels were available for analysis.
Our ability to extract fine-scale information from coarse-scale activity patterns may be limited
by the absolute size of an anatomical region. It is also possible that the spatial arrangement of
direction-selective columns in MT+ may be very uniformly distributed or involve considerable
pairing of opponent motion directions in neighboring columns [27], such that the local region
sampled by each voxel exhibits only a very small bias in the proportion of neurons tuned to
different directions. Finally, it seems likely that early human visual areas are also quite sensitive
to motion direction. Although direction-selective columns have not been demonstrated in early
visual areas of primates, such columns have been found in striate and extrastriate areas of other
animals [12,13]. fMRI studies of both humans and monkeys have also revealed that early visual
areas show reliable effects of direction-selective adaptation [4–6,28], suggesting a continuum
of motion processing throughout the visual pathway.

Because our method depends on random variations in the proportion of direction-selective
units within single voxels, careful examination will be necessary when one relates the direction
selectivity measured with our method to that observed at the columnar [12,13] and cellular
[14] levels. It should be noted that the degree of decoding accuracy may not directly reflect
direction selectivity of individual neurons in an area of interest, since it depends also on how
direction-selective units and their responses are spatially distributed. Future studies will be
necessary to characterize how variations in the distribution of direction-selective neurons at
multiple spatial scales may contribute to the weakly direction-biased signals found in each of
the visual areas investigated here.

Despite these limitations, our method provides a unique opportunity to investigate visual
direction selectivity in humans, which has been challenging to study with conventional
neuroimaging approaches [2,4,29]. The neural decoding approach presented here may be
extended to the study of the neural substrates underlying various subjective motion phenomena
and illusions [30], by comparing subjective perception and decoded directions for different
brain regions of interest. These methods may be effectively applied to test whether direction-
selective activity in specific visual areas may reflect the contents of visual awareness [25,31]
or show evidence of residual visual processing for unperceived stimuli [32]. Thus, our approach
for measuring direction-selective responses in individual areas of the human brain may provide
a powerful new tool for investigating the relationship between the neural representation of
motion direction and the subjective contents of motion perception.

Experimental Procedures
Subjects

Four healthy adults with normal or corrected-to-normal visual acuity participated in this study.
All subjects gave written informed consent. The study was approved by the Institutional
Review Panel for Human Subjects at Princeton University.

Experimental design and stimuli
Visual stimuli were rear-projected onto a screen in the scanner bore using a luminance-
calibrated LCD projector driven by a Macintosh G3 computer. All experimental runs consisted
of a series of 16-s stimulus blocks (not interleaved with rest periods) with a 16-s fixation-rest
period occurring at the beginning and at the end of each run. In the first experiment, subjects
viewed random dots drifting in each of 8 possible motion directions (dot lifetime 200 ms, 1000
dots per display), in a randomized order for each run. Subjects maintained fixation on a central
fixation point while motion stimuli were presented in an annulus aperture (2°–13.5° of
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eccentricity) at varying speeds (~8°/s) while subjects performed a two-interval speed
discrimination task (stimulus duration 1.5 s, interstimulus interval 250 ms, intertrial interval
750 ms, 4 trials/block). An adaptive staircase procedure was used to maintain task performance
at about 80% correct (QUEST; [33]). Each subject performed 20–22 runs for a total of 20–22
trials per motion direction.

In the second experiment, random-dot displays were presented using rotational motion while
subjects performed the speed discrimination task. For training runs, either clockwise or
counter-clockwise moving dots were presented (0.167 revolutions/s). For test runs, both motion
directions were simultaneously presented with half of the dots assigned to each direction. The
color of the fixation point indicated the motion direction to be attended for the discrimination
task. A single run had 16 stimulus blocks in randomized order; 8 blocks for each condition.
Subjects performed a total of 6 training runs and 6 test runs. (Training and test runs were
interleaved.)

In a separate run, subjects viewed a reference stimulus to localize the retinotopic regions
corresponding to the stimulated visual field. The “visual field localizer” consisted of high-
contrast dynamic random dots that were presented in an annular region for 12-s periods,
interleaved with 12-s rest/fixation periods, while the subject maintained fixation. We used a
smaller annular region for the visual field localizer (4°–11.5° of eccentricity) than for the
motion stimuli (2°–13.5°) to avoid selecting voxels corresponding to the stimulus edges, which
may contain information irrelevant to motion direction. In separate sessions, standard
retinotopic mapping [34,35] and MT+ localization procedures [1,2] were performed to
delineate visual areas on flattened cortical representations.

fMRI data preprocessing
All fMRI data underwent 3-D motion correction [36], followed by linear trend removal. No
spatial or temporal smoothing was applied. fMRI data were aligned to retinotopic mapping
data collected in a separate session, using Brain Voyager software (Brain Innovation).
Automated alignment procedures were followed by careful visual inspection and manual fine-
tuning at each stage of alignment to correct for misalignment error. Rigid-body transformations
were performed to align fMRI data to the within-session 3D-anatomical scan, and next to align
these data to retinotopy data. After across-session alignment, fMRI data underwent Talairach
transformation and reinterpolation using 3x3x3 mm voxels. This transformation allowed us to
restrict voxels around the gray-white matter boundary and to delineate individual visual areas
on flattened cortical representations. Note, however, that these procedures involving motion
correction and interpolation of the raw fMRI data may have resulted in the reduction of
direction information that may be contained in fine-scale activity patterns.

Voxels used for decoding analysis were selected on the cortical surface of V1 through V4 and
MT+. First, voxels near the gray-white matter boundary were identified within each visual area
using retinotopic maps delineated on a flattened cortical surface representation. Then, the
voxels were sorted according to the responses to the visual field localizer (V1–V4) or to the
MT+ localizer. We used 200 voxels for each of areas V1, V2, V3, and V3a/V4, and 100 voxels
for MT+ by selecting the most activated voxels.

The data samples used for decoding analysis were created by shifting the fMRI time series by
4 seconds to account for the hemodynamic delay, and averaging the MRI signal intensity of
each voxel for each 16-s block. Response amplitudes of individual voxels were normalized
relative to the average of the entire time course within each run (excluding the rest periods at
the beginning and the end) to minimize baseline differences across runs.
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Decoding analysis
We constructed a direction decoder to classify ensemble fMRI activity according to motion
direction (Figure 1). The input consisted of the response amplitudes of fMRI voxels in the
visual area(s) of interest, averaged for each 16-s block. A linearly weighted sum of voxel
intensities was calculated for each direction by a unit called “linear ensemble direction
detector”; the voxel weights were optimized so that each detector’s output became larger for
its direction than for the others. The final output prediction was made by selecting the most
active detector as the most likely direction to be present.

The calculation performed by each linear ensemble direction detector with preferred direction
θk can be expressed by a linear function of voxel inputs x=(x1, x2,..., xd) (“linear detector
function”)

gθk
(x) = ∑

i=1

d
wixi + w0

where wt is the “weight” of voxel i, and w0 is the “bias”. To achieve this function for each
direction, we first calculated linear discriminant functions for the pairs of all directions using
linear support vector machines [37] (SVM). The discriminant function, gθk θl(x) for the
discrimination of directions θk and θl, is expressed by a weighted sum of voxel inputs plus bias,
and satisfies

gθkθl
(x) > 0 (if x is fMRI activity induced by direction θk)

gθkθl
(x) < 0 (if x is fMRI activity induced by direction θl)

.

Using a training data set, a linear SVM finds optimal weights and bias for the discriminant
function. After the normalization of the weight vectors, the pairwise discriminant functions
comparing θk and the other directions were simply added to yield the linear detector function

gθk
(x) = ∑

m≠k
gθkθm

(x).

This linear detector function becomes larger than zero when the input x (in the training data
set) is an fMRI activity pattern induced by direction θk. Note that other algorithms, such as
Perceptrons or Fisher’s linear discriminant method combined with principal component
analysis, could be used to analyze and classify fMRI activity patterns [8,32 38].

To evaluate direction decoding performance, we performed a version of cross-validation by
testing the fMRI samples in one run using a decoder trained with the samples from all other
runs. This training-test set was repeated for all runs (“leave-one-run-out” cross-validation). We
used this procedure to avoid using the samples in the same run both for training and test, since
they are not independent because of the normalization of voxel intensity within each run.
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Figure 1.
Decoding analysis of ensemble fMRI signals. An fMRI activity pattern (cubes) was analyzed
by a “direction decoder” to predict the direction of moving dots seen by the subject. The decoder
received fMRI voxel intensities, averaged for each 16-s stimulus block, as inputs. The next
layer consisting of “linear ensemble direction detectors” calculated the weighed sum of voxel
inputs. Voxel weights were optimized using a statistical learning algorithm applied to
independent training data, so that each detector’s output became larger for its direction than
for the others. The direction of the most active detector was used as the prediction of the
decoder.
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Figure 2.
Decoding results for 8 motion directions. (A) Distribution of decoded directions (gray) for each
of 8 directions in a representative subject S1 (900 voxels from V1-MT+, 22 samples per
direction). Arrows show the true stimulus directions. (B, C) Distribution of decoded directions
for all 4 subjects, using 900 voxels from V1-MT+ (B), and using 100 voxels from MT+ (C).
Results for individual directions are realigned relative to the upward direction (arrow).
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Figure 3.
Direction selectivity across the human visual pathway. (A) Distributions of decoded directions
are shown for individual visual areas from V1 through V3a/V4 and MT+ (S3, 200 voxels from
each of areas V1 through V3a/V4, and 100 voxels from MT+). The voxels from V3a and V4
were combined to make the number of available voxels comparable to those from V1, V2, and
V3. Results for 8 directions are realigned relative to the upward direction (solid line). The color
map indicates t-values associated with the responses to the visual field localizer for V1 through
V4, and to the MT+ localizer for MT+, which were used to select the voxels to be analyzed
(see Experimental Procedures). Voxels from both hemispheres (and from dorsal and ventral
portions of V1-V4) were combined to obtain the decoding results (only the right hemisphere
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is shown). (B) Comparison of direction and orientation selectivity. Cross-validation
performance for the classification of 8 directions (black) and 8 orientations [10] is plotted by
visual area (chance level, 12.5% indicated by a dotted line; error bar, standard deviation across
4 subjects).
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Figure 4.
“Mind-reading” of attended direction. Decoding accuracy of attended direction is plotted by
visual area (error bar, standard deviation across 4 subjects; chance level, 50%). For the analysis,
we used 900 voxels from V1–MT+, 200 voxels from each of areas V1 through V3a/V4, and
100 voxels from MT+. Asterisks indicate direction decoding that exceeds chance-level
performance, as assessed by a statistical t-test of group data (*, P < 0.05; **, P < 0.01). When
the voxels from each of V3a and V4 were analyzed separately (100 voxels from each), only
V4 showed significantly above-chance performance (P < 0.05).
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Supplemental Figure 1.
Direction preference maps plotted on flattened cortical surfaces. Color maps depict the
direction preference of individual voxels on the flattened surface of left V1 through MT+ for
subjects S1 and S2 (scale bar, 1 cm). Each color patch is the cross section of a single voxel
(3x3x3 mm) at the gray-white matter boundary. Voxel colors depict the direction detector for
which each voxel provides the largest weight. The overall color map indicates a template
pattern that activates each detector most effectively. The weights were calculated using 900
voxels from V1 through MT+. Other subjects also showed scattered but different patterns of
direction preference.
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Supplemental Figure 2.
Comparison of preference/weight maps for stimulus motion direction and attended direction.
(A, B) Maps of the weights calculated to discriminate two rotational motion directions for
stimulus direction (A), and for attended direction (B) (subject S4; V1-MT+ 900 voxels; scale
bar, 1 cm). Color indicates the sign and amplitude of the weights for clockwise motion (flipped
signs for counterclockwise motion). (C) Correlation between the weights for stimulus and
attended direction. The scatter plot shows the normalized weights for stimulus and attended
direction (clockwise) for each voxel (subject S4). The solid line indicates the regression line
for these two sets of weights. Although there is no apparent similarity between the two weight
maps (A and B), their correlation was statistically significant (correlation coefficient, 0.14
±0.04; P < 0.001 in all 4 subjects).
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