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Glioblastoma is the most common primary malignant brain tumor
of adults and one of the most lethal of all cancers. Patients with this
disease have a median survival of 15 months from the time of
diagnosis despite surgery, radiation, and chemotherapy. New
treatment approaches are needed. Recent works suggest that
glioblastoma patients may benefit from molecularly targeted ther-
apies. Here, we address the compelling need for identification of
new molecular targets. Leveraging global gene expression data
from two independent sets of clinical tumor samples (n � 55 and
n � 65), we identify a gene coexpression module in glioblastoma
that is also present in breast cancer and significantly overlaps with
the ‘‘metasignature’’ for undifferentiated cancer. Studies in an
isogenic model system demonstrate that this module is down-
stream of the mutant epidermal growth factor receptor, EGFRvIII,
and that it can be inhibited by the epidermal growth factor
receptor tyrosine kinase inhibitor Erlotinib. We identify ASPM
(abnormal spindle-like microcephaly associated) as a key gene
within this module and demonstrate its overexpression in glio-
blastoma relative to normal brain (or body tissues). Finally, we
show that ASPM inhibition by siRNA-mediated knockdown inhibits
tumor cell proliferation and neural stem cell proliferation, support-
ing ASPM as a potential molecular target in glioblastoma. Our
weighted gene coexpression network analysis provides a blueprint
for leveraging genomic data to identify key control networks and
molecular targets for glioblastoma, and the principle eluted from
our work can be applied to other cancers.

epidermal growth factor receptor vIII � Glioblastoma � modules �
weighted gene coexpression network analysis � network-based screening

Molecularly targeted therapies are transforming the treat-
ment of cancer (1). Small molecule inhibitors that target

key enzymes on which cancer cells depend, raise the possibility
of rational approaches to cancer therapy. We have demonstrated
that targeted inhibition of the epidermal growth factor receptor
(EGFR), a receptor tyrosine kinase commonly amplified, over-
expressed, or mutated in glioblastoma, promotes significant
clinical response in a subset of glioblastoma patients, and we
have identified the molecular determinants of this response (2).
This provides a proof-of-principle for the potential efficacy of
molecularly targeted therapy for glioblastoma; identifying new
drug targets is a critical next step.

The wealth of molecular information provided by genomic
technologies provides a remarkable opportunity for new target
discovery (3, 4). Gene expression data can provide a key first step
toward constructing a systems level view of the perturbed
networks in cancer cells, thus potentially identifying key genes,
networks, or pathways that can be therapeutically targeted (5).
However, the identification of key molecular targets still remains
a challenge. Recent work highlights the potential for uncovering
oncogenic pathways and molecular targets, when genomic data
are analyzed at the level of gene coexpression modules or

metagenes or when aggregated gene sets are used to assess
modules enriched for key biological processes (6–8). Integrating
this type of data with studies in model systems in which modules
can be studied in response to relevant molecular perturbations
(e.g., oncogene overexpression or pharmacological inhibition)
may further facilitate the identification and validation of novel
molecular targets (9–11). Here, we adopt an unbiased strategy
to detect an oncogenic module in glioblastoma and integrate this
with studies in isogenic cell systems to identify and validate
ASPM (abnormal spindle-like microcephaly associated) as a
previously undescribed glioblastoma target.

Results
Identification of genes with expression levels that are highly
correlated may help shed light on shared biological processes or
common regulatory mechanisms that could potentially be tar-
geted. Therefore, we performed global gene expression profiling
on RNA from 120 glioblastoma patient samples (data set 1, n �
55 (12); and data set 2, n � 65). To facilitate the identification
of gene modules (groups of highly coexpressed genes), we
constructed a weighted gene coexpression network based on
pairwise Pearson correlations between the expression profiles.
Unsupervised hierarchical clustering was used to detect groups,
or modules, of highly coexpressed genes (13). To facilitate
reproducibility of this analysis, the complete gene expression
data, module composition, and statistical software code are
available upon request.

Five gene coexpression modules were detected in glioblastoma
data set 1 (Fig. 1a). These modules were significantly enriched
for genes with the following specific ontologic classes: (i) mito-
sis�cell cycle (185 genes, P � 7.2 � 10�42); (ii) immune response
(606 genes, P � 2.4 � 10�36); (iii) neurogenesis (143 genes, P �
4.0 � 10�4); (iv) cytoplasm (1,112 genes P � 1.1 � 10�12); and
(v) metabolism (136 genes, P � 1.8 � 10�2) (EASE software:
http:��david.niaid.nih.gov�david�ease1.htm) (Fig. 1d). The fact
that unsupervised clustering based on a coexpression measure
resulted in modules enriched for biologically important pro-
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cesses, including cancer-related themes, suggests that these
modules are a robust feature of the molecular architecture of
glioblastoma.

To determine whether these modules were reproducible, we
used the genes from data set 1 to construct a weighted gene
coexpression network in data set 2. We found the same five gene
coexpression modules as in data set 1: 87.4% of the genes in data
set 2 were embedded within the same module in data set 1
(Pearson �2 test, P � 2.2 � 10�16, Rand index measure of

agreement � 0.9) (Fig. 1b). Thus, gene coexpression modules are
highly preserved in both glioblastoma data sets.

To determine whether these modules were detectable in
another cancer type, we analyzed a publicly available breast
cancer data set (14). This data set was sufficiently large and
contained gene expression data from a different microarray
platform, allowing for array platform independent conclusions.
Probe sets that were common to both array platforms were
mapped, and a weighted gene coexpression network was con-
structed based for the breast cancer data set. To determine
whether glioblastoma modules were present in breast cancer, we
assigned glioblastoma module colors to the genes in the hierar-
chical clustering tree of the breast cancer data. This revealed that
two glioblastoma modules (the cell cycle�mitosis module and the
immune response module) were highly preserved (Fig. 1c) (data
available upon request). This suggested that the cell cycle�
mitosis module may be involved in biological processes that are
shared by both cancer types.

To further assess whether the mitosis�cell cycle module
(MCM) is present in other cancers, we determined whether the
genes contained within the module are part of the ‘‘metasigna-
tures’’ of cancer that have been derived from metaanalyses of a
large numbers of samples of different cancer types (15). Two
metasignatures (MS) of cancer have been identified by large-
scale metaanalyses across multiple cancer types, including a MS
of ‘‘undifferentiated cancer’’ (15). Of the 48 genes of the
‘‘undifferentiated cancer’’ MS that were present in the glioblas-
toma data set, 33 (69%) were present in the MCM (P � 2.7 �
10�31).

To correlate individual expression profiles with the entire
module, we summarized the expression profile of the module
genes by the first module eigengene, which is defined by using the
singular value decomposition of the expression data (16). To
determine whether this MCM is a proliferation cluster, we
correlated the module eigengene with Ki67 and PCNA (two
clinically used markers of cancer cell proliferation and members
of the module) (17). The module eigengene was highly corre-
lated with both Ki67 and PCNA (Ki67: r � 0.74; P � 6.2 � 10�7

for data set 1; and r � 0.81; P � 1 � 10�20 for data set 2; PCNA:
r � 0.79 P � 1 � 10�20 for data set 1; and r � 0.80; P � 1 � 10�20

for data set 2) (Fig. 5 a–d, which is published as supporting
information on the PNAS web site). We next examined the
expression pattern of these module genes across 353 samples
including glioblastoma and other tissues (both tumor and nor-
mal). Expression of MCM genes goes up or down together across
a wide range of tissue types, including glioblastoma, meningi-
oma, normal brain, fetal brain, a range of normal nonbrain
tissues, and a range of fetal nonbrain tissues (Fig. 1e). The
pattern of expression of this module in a subset of glioblastomas
is quite similar to that of fetal tissues (including fetal brain), and
quite unlike that of normal mature brain or body tissues. Further,
this module is highly expressed in only a subset of glioblastomas,
the type 2A pattern, which we have shown to be associated with
poor prognosis (12). The module is not highly expressed in some
other subsets of glioblastoma, including the type 2B pattern that
we have shown to be a highly aggressive tumor type as well (12).
This raises the possibility that this proliferation module is
specific to a subset of glioblastomas and that it shares similarity
with a fetal proliferation signature.

Highly connected ‘‘hub’’ genes are thought to play an impor-
tant role in organizing the behavior of biological modules
(18–21). Therefore, we set out to identify the MCM hubs (22).
We defined a connectivity measure (K) for each gene based on
its Pearson correlation with all of the other genes in the module
as described in Methods (13). Because highly connected hub
genes are far more likely than nonhub genes to be essential for
survival in lower organisms (18–20), we hypothesized that
intramodular hub genes may be associated with survival in
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Fig. 1. Detection of gene coexpression modules in glioblastoma and breast
cancer. (a) In glioblastoma data set 1, five gene coexpression modules were
detected. (b) The network genes derived from data set 1 were mapped to data
set 2. The genes maintain the same color coding for module association from
data set 1, facilitating visual inspection of module conservation. The same
module association in both data sets was found for 87.4% of genes (P � 2.2 �
10�16). (c) Two of the five glioblastoma modules (brown, cell cycle mitosis;
blue, immune response) were detected in a set of 77 breast cancer samples. (d)
The green�red expression diagram shows the relative expression of the mod-
ule across 353 samples, including 180 glioblastomas, 66 meningiomas, 64
normal adult body tissues of different types, 18 adult normal brain tissue
samples, 11 fetal brain tissue samples, and 14 fetal nonbrain tissue samples.
The MCM is highly expressed in only a subset of glioblastomas (type 2A) (12),
and its expression pattern is similar to a fetal proliferation signature. (e) Mean
expression of ASPM in the 353 clinical samples, including glioblastomas,
meningiomas, normal brain, normal body tissues, fetal brain, and fetal body
tissues.
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cancer. To define a measure of prognostic significance, we used
a univariate Cox proportional hazards regression model to
regress patient survival on the individual gene expression pro-
files. The resulting univariate Cox-regression p-values were used
to define a measure of prognostic significance as follows: GS �
–log10(Cox P value), i.e., this measure of gene significance is
proportional to the number of zeroes in the P value. In the MCM,
intramodular connectivity K and prognostic significance GS,
were significantly correlated in both glioblastoma data sets (r �
0.59, P � 7.1 � 10�19 in data set 1, and r � 0.59, P � 6.5 � 10�19

in data set 2) (Fig. 2 a and b).
Highly connected hub genes of the glioblastoma MCM tend to

be highly connected in the breast cancer network as well: the
correlation between the respective connectivity measures was
highly significant (r � 0.62; P � 1.9 � 10�20) (Fig. 2c). Next, we
determined whether the highly connected hub genes identified
in glioblastoma are also related to a clinical outcome in breast
cancer. Because the overall survival data were not available for
that data set, we considered cancer recurrence time as the
clinical outcome of interest. For each gene, we defined a
measure of prognostic significance by correlating individual gene
expression profiles with recurrence time. Specifically, we defined
a prognostic gene significance measure as minus the logarithm
of the Spearman correlation test P value GS � �log(P value).
Consistent with the association between K and outcome in
glioblastoma, intramodular connectivity K was also significantly
associated with prognostic significance for recurrence in breast
cancer (r � 0.70; P � 3.4 � 10�20) (Fig. 2d). Thus, the hub genes
identified in glioblastoma were also predictive of breast cancer
recurrence.

Some of the most highly connected genes within the MCM
already have been identified as potential cancer targets (topo-

isomerase II�, ARKB, PTTG1�sercuin, Survivin, and EZH2)
(23–27). To identify a potential novel gene target, we looked for
the most highly connected genes that have not been extensively
studied as cancer targets. This led us to study the ASPM gene,
because it had the highest K value in both glioblastoma data sets
of any gene that has not been previously recognized as a cancer
target. ASPM is the human ortholog of a Drosophila mitotic
spindle protein, encoding the protein microcephalin (28–30).
ASPM is thought to regulate neuroblast proliferation (29), and
it has recently been shown to be a key regulator of brain size
through evolution (31–33). Mutations within this gene are
associated with primary human microcephaly (29, 30). A recent
study demonstrated increased ASPM in ovarian and uterine
cancers, suggesting that it may play a role in other cancer types
(34), although it was not part of the MS of undifferentiated
cancer (15), suggesting that it may have specificity for only a few
tumor types including glioblastoma. Because ASPM is expressed
at a very low level in normal brain (and normal body tissues)
relative to glioblastoma (Fig. 1f ), we reasoned that it could
present a compelling molecular target.

Strikingly, the traditional proliferation markers Ki67 (Cox
regression P � 0.13) and PCNA (P � 0.021) were less
associated with glioblastoma survival than 9 of the top 10 most
connected hub genes, including ASPM. Specifically, for the
combined glioblastoma data set, the P values in the univariate
Cox model for these nine hub genes were as follows: TOP2A
(P � 0.00088), RACGAP1 (P � 0.0022), KIF4A (P � 0.0030),
TPX2 (P � 0.0021), CDC2 (P � 0.0072), EZH2 (P � 0.024),
CDC20 (P � 0.0029), KIF14 (P � 0.0020), RAMP (P � 0.015),
and ASPM (P � 0.0059). These results suggest that the hub
genes, including ASPM, may be more predictive of clinical
outcome than the traditional markers of proliferation, PCNA
and Ki67. Further, we found that the top third most connected
genes encode proteins that are known to interact physically
and�or functionally to regulate metaphase to anaphase tran-
sition (Fig. 6, which is published as supporting information on
the PNAS web site).

To identify a potential molecular mechanism underlying reg-
ulation of the MCM, we used a series of isogenic U87 glioblas-
toma cells engineered to express EGFR, EGFRvIII, and PTEN
in relevant combinations (2) (Fig. 3). These molecular alter-
ations are common in glioblastoma (35–37), and they play a
critical role in determining response to EGFR kinase inhibitor
therapy (2). We performed global transcriptional profiling from
RNA that was extracted from duplicate cultures of each of the
isogenic U87 lines and analyzed the expression of the MCM.
MCM genes were significantly up-regulated in the EGFRvIII
overexpressing cells (Fig. 3a). Of note, these are also the most
proliferative of the cells. These data suggested that the module
is potentially downstream of EGFRvIII signaling; possibly via
the PI3K pathway signaling because PTEN coexpression inhib-
ited up-regulation of this module. We therefore analyzed ex-
pression of a series of these genes in response to the EGFR
inhibitor erlotinib. Expression of each of six representative hub
genes tested (ASPM, PRC1, ARKB, MELK, PTTG1, and TOP2�)
was increased by EGFRvIII, which was abrogated by treatment
with the EGFR inhibitor erlotinib (Fig. 3b). Thus, up-regulation
of the MCM is regulated by EGFRvIII signaling in glioblastoma
cells, likely via its ability to confer a proliferative advantage to
these cells.

To validate the biological significance of ASPM, we used
siRNA to stably knock down ASPM in U87 cells expressing
EGFRvIII and in low passage explant culture from a glioblas-
toma patient. Low-passage primary patient-derived glioblas-
toma cells treated with two different ASPM siRNAs showed
specific and dramatic inhibition of proliferation (Fig. 4a), as did
five independent clones of U87-EGFRvIII cells with stably
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Fig. 2. Clinical association between hub gene status and outcome in glio-
blastoma and breast cancer. (a) Scatterplot between connectivity K in the
MCM (x axis) and gene significance defined as GS � –log10(Cox P value) (y axis)
for glioblastoma data set 1. (b) Analogous scatterplot for glioblastoma data
set 2. (c) Scatterplot between intramodular connectivity K in the breast cancer
network (x axis) and K in the glioblastoma network (y axis). (d) Scatterplot
between intramodular connectivity K and prognostic gene significance in
breast cancer (14).
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expressing ASPM siRNA (Fig. 4b). These results suggest that
ASPM is a potential molecular target in glioblastoma.

Brain tumor stem cells can be found in glioblastoma and have
been hypothesized to play a role in their pathogenesis (38–41).
Because this could potentially result from overexpression of
genes that promote self renewal and because our data suggested
that the module shares some similarities with fetal brain, we
tested the functional role of ASPM in fetal murine neural
stem�progenitor cells. These cells form floating neurospheres
when cultured in the presence of basic fibroblast growth factor
and�or EGF. Withdrawal of mitogen from neurosphere induces
differentiation into neurons, astrocytes, and oligodendrocytes.
ASPM was highly expressed in murine neurospheres and expres-
sion dramatically declined during differentiation (Fig. 4c). When
murine neurosphere cultures were incubated in the presence of
ASPM siRNA (Fig. 4d) and then recultured at clonal density as
spheres, there was a marked loss in the production of secondary
spheres, suggesting that ASPM regulates self-renewal neural
stem�progenitor cells. Thus, ASPM promotes neural stem cell
self-proliferation, further implicating it as a potential molecular
target in glioblastoma.

Discussion
We used WGCNA to identify gene coexpression modules and
therapeutic targets in glioblastoma. Several computational
methods for incorporating biological pathway information and
gene sets into microarray data analysis have been proposed. For
example, gene set enrichment analysis (GSEA) determines
whether an a priori defined set of genes shows statistically
significant, concordant differences between two biological states
(6). Although WGCNA shares the philosophy of GSEA of
focusing on gene sets as opposed to individual genes, it does not
make use of a priori defined gene sets. Instead, gene sets
(modules) are constructed from the expression data by using
unsupervised clustering. Although it is advisable to relate the
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resulting modules to gene ontology information for assessing
their biological plausibility, it is not required.

WGCNA also alleviates the multiple testing problem inherent
in microarray data analysis. Instead of relating thousands of
genes to the clinical outcome, it focuses on the relationship
between a few (here 5) modules and the clinical trait. It is worth
repeating that the modules were constructed in an unsupervised
manner, i.e., without regard to the clinical outcome. Because the
modules may correspond to biological pathways, focusing the
analysis on module eigengenes (and equivalently intramodular
hub genes) amounts to a biologically motivated data reduction
scheme. WGCNA starts from the level of thousands of genes,
identifies clinically interesting gene modules, and finally uses
intramodular connectivity to suggest suitable targets. Because
the expression profiles of intramodular hub genes inside an
interesting module are highly correlated (in our data, r � 0.90)
typically dozens of targets result. Although these targets are
statistically equivalent, they may differ in terms of biological
plausibility or clinical utility. In many applications, the list of
module hub genes may be further winnowed down based on (i)
biological plausibility based on external gene (ontology) infor-
mation, (ii) the availability of protein biomarkers for further
validation, (iii) the availability of suitable mouse models for
further validation, and�or, (iv) the druggability, i.e., the oppor-
tunity for therapeutic intervention.

Understanding how broad cancer-related modules interact
with specific molecular lesions in an individual patient is a critical
step in finding new molecular targets. Our finding that the MCM
is downstream of EGFRvIII signaling suggests a potentially
important link by which this process is switched on by an
upstream molecular lesion. It is not surprising that the EGFRvIII
expressing, PTEN-deficient glioblastoma cells also were the
most proliferative. Many of the hub genes identified here
(ASPM, BUB1, HEK, STK6, NEK2, PTTG1, PRC1, KNSL2,
CCNB1, CDC2, and CDC20) also have been shown to be
downstream of other key molecular lesions such as BRCA1 in
breast cancer (42) or the human papilloma virus proteins E6�E7
in patients with cervival cancer (for which a ‘‘proliferation
cluster’’ of 123 genes associated with HPV E6�E7 in clinical
samples strikingly overlapped with the glioblastoma mitosis�cell
cycle module; P � 2.2 � 10�16) (43). In addition, there was a
highly significant overlap with genes that have been shown to be
highly overexpressed in high grade breast cancer (P � 3.6 �
10�75) (44). These data indicate that the MCM may be up-
regulated by a number of key molecular lesions that confer a
proliferation advantage, thus raising the possibility that common
therapies targeting this module may be useful in patients with
different types of aggressive cancer.

ASPM had the highest connectivity index in both glioblastoma
data sets for any gene not already known to be a cancer target,
and it is expressed at very low level in normal brain (and normal
body tissues) relative to glioblastoma. ASPM also has been
recognized as a critical regulator of brain size, likely via its role
in promoting neuroblast proliferation and symmetric division
(28–30, 45). Our data showing that neural stem cell differenti-
ation results in loss of ASPM expression and that siRNA-
mediated knockdown of ASPM specifically inhibits neural stem
cell self renewal and glioblastoma growth suggests the possibility
that this gene may be involved in glioblastoma pathogenesis by
promoting a stem cell phenotype. Further studies will be nec-
essary to examine the suitability of targeting ASPM in glioblas-
tomas and to determine whether it mediates its effects on
glioblastoma by promoting cancer stem cell self-renewal. In
summary, this study provides a blueprint for using genomic data
to identify key control networks and molecular targets for
glioblastoma and, potentially, for other cancers.

Methods
Microarray Data. Glioblastoma gene expression profiling with
Affymetrix high-density oligonucleotide microarrays was per-
formed and analyzed as described in ref. 12. Quantification was
performed by using model-based expression and the perfect
match minus mismatch method implemented in dCHIP. We used
the breast cancer microarray data (14) (Agilent) to find prog-
nostic genes for breast cancer recurrence. The Ingenuity Path-
ways Knowledge Base (Ingenuity Systems, Redwood City, CA)
was used to identify to subnetwork of potential interactions (46).

Genomic and Functional Analysis in Glioblastoma Cell Lines. The
isogenic U87MG expressing PTEN, EGFR, and EGFRvIII in
varying combinations have been reported in ref. 2. In brief, cell
lines were grown in duplicate cultures under serum free condi-
tions for 48 h, and RNA was isolated by using the Qiagen
(Valencia, CA) RNeasy Mini Kit Gene. Expression analysis by
using Affymetrix HG-U133A arrays was performed and ana-
lyzed, as described above.

EGFR Inhibitor Treatment and siRNA Studies. The EGFR tyrosine
kinase inhibitor Erlotinib (Tarceva, OSI-774) was kindly pro-
vided by Genentech (South San Francisco, CA). U87MG and
U87-EGFRvIII cells (1 � 105) were seeded, respectively, in
100-mm culture dishes and maintained in DMEM supplemented
with 10% FBS. Cells were incubated in 5% CO2, 95% humidity
incubator for 3 days to reach 50–70% confluency. Then all cells
were switched to serum-free medium. The next day U87-
EGFRvIII cells were treated by 5 �M OSI-774, whereas U87MG
and U87-EGFRvIII control group received the equivalent ve-
hicle. Twenty-four hours later, cell total RNA was isolated by
Qiagen RNeasy Mini Kit. RT-PCR analysis of expression of
selected genes after treatment is described in the Supporting
Methods, which is published as supporting information on the
PNAS web site. The specific methods for siRNA studies are
available in Supporting Methods. For proliferation assays, 1,500
cells per well in eight replicates were seeded into 96-well plates.
Cells were fixed and stained by 0.25% crystal violet in methanol
every day or every other day. Stained plates were densitometry
scored by AlphaImager 2200 software and plot in Microsoft
(Redmond, WA) Excel.

Neurosphere Cell Culture and Transfection. Cerebral cortex was
isolated from embryonic day 12 mice. Cells were dissociated and
cultured at 50,000 cells�ml in neurosphere formation medium
[Neural Basal medium (Invitrogen, Carlsbad, CA) with B27
(GIBCO BRL, Carlsbad, CA), basic fibroblast growth factor
(Peprotech, Rocky Hill, NJ), EGF (Chemicon, Temecula, CA),
heparin (Sigma-Aldrich, St. Louis, MO) and penicillin-
streptomycin (Gemini Bioproducts, West Sacramento, CA)] for
a week. Growth factors were added every 3 days. Neurospheres
were dissociated and plated onto polyL-ornithine (Sigma)�
fibronectin-coated six-well plates in neural basal medium with
2% FBS (GIBCO BRL). Six hours later, the serum medium was
removed and replaced with neurosphere formation medium
without heparin and penicillin-streptomycin. Twenty-four hours
later, cells were transfected with 100 nM siRNA targeting ASPM
and 100 nM control siRNA targeting firefly luciferase by using
lipofectAMINE 2000 (Invitrogen). The cells were incubated
with reagents for 6 h and passaged for secondary neurosphere
formation assay.

Secondary Neurosphere Formation Assay. Cells were lifted off the
plate with TriplExpress (GIBCO BRL) and then placed into
neurosphere formation medium at 1,000 cells�ml and 100 cells�
ml. Neurospheres were propagated for 1 week, and the number
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and the size of the secondary neurospheres formed were mea-
sured by using Microcomputer Imaging Device program.

A comprehensive materials and methods section is available
upon request. We also provide the entire statistical code, the
data, and a weighted gene coexpression network analysis tutorial
so that the reader can reproduce all of our findings.
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