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Abstract
Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to understand
how knee kinematics influence joint injury, disease, and rehabilitation. Though recent studies have
measured three-dimensional knee kinematics by matching geometric bone models to single-plane
fluoroscopic images, factors limiting the accuracy of this approach have not been thoroughly
investigated. This study used a three-step computational approach to evaluate theoretical accuracy
limitations due to the shape matching process alone. First, cortical bone models of the femur, tibia/
fibula, and patella were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic
images were created by ray tracing the bone models in known poses. Finally, an automated matching
algorithm utilizing edge detection methods was developed to align flat-shaded bone models to the
synthetic images. Accuracy of the recovered pose parameters was assessed in terms of measurement
bias and precision. Under these ideal conditions where other sources of error were eliminated,
tibiofemoral poses were within 2 mm for sagittal plane translations and 1.5 deg for all rotations while
patellofemoral poses were within 2 mm and 3 deg. However, statistically significant bias was found
in most relative pose parameters. Bias disappeared and precision improved by a factor of two when
the synthetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray tracing
(i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed that the automated
matching algorithm systematically pushed the flat-shaded bone models too far into the image plane
to match the attenuated edges of the synthetic ray-traced images. These results suggest that biased
edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape
matching procedure.

1 Introduction
Between 1997 and 2002, the number of Americans afflicted with arthritis more than doubled
to 70 million, making arthritis the new leading cause of work disability [1]. According to the
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Arthritis Foundation, the most common form of arthritis, osteoarthritis (OA), appears in the
knee more than any other joint. Disease development and progression are influenced by
abnormal joint kinematics under dynamic, weight-bearing conditions [2,3]. Therefore,
knowledge of kinematics in healthy and arthritic knees would be extremely valuable for
understanding the disease’s etiology and predisposing factors as well as for guiding surgical
planning, technique, and procedure.

Few studies have measured three-dimensional (3D) knee kinematics under loaded,
physiological conditions with submillimeter accuracy as needed to study arthritis-related
issues. Video-based motion analysis with surface markers has been used widely to study gross
body motion but less to study detailed joint motion due to the problem of skin and soft tissue
motion artifacts [4–10]. Use of redundant surface markers to correct for motion artifacts shows
promise and evaluation of these methods is ongoing [9,10]. However, the most direct way to
eliminate these issues is to measure joint motion using x-ray techniques. For artificial knees,
single-plane fluoroscopy has been used to measure implant motion directly [11–15]. With this
approach, 3D computer aided design (CAD) models of the metallic components are aligned to
each 2D fluoroscopic image to quantify pose (translation and rotation) parameters. This
approach works well since the metallic components have precisely known geometric features
and produce sharp edges in fluoroscopic images. For natural knees, since CAD models of the
bones are not readily available from the manufacturer, biplane fluoroscopy with implanted
bone markers has been used instead [16–18]. Though more accurate than single-plane
fluoroscopy, this approach requires surgical implantation of metal beads which restricts its use
to research projects with limited populations.

Building on the example of artificial knee studies, researchers have recently begun to use
single-plane fluoroscopy to measure natural knee motion [19–21]. For the shape matching
procedure, implant CAD models are replaced with geometric bone models created from
medical imaging data. However, in fluoroscopic images, cortical bone edges are less well
defined than are metallic implant edges [16]. Consequently, to evaluate the extent to which
this approach can be used to study arthritis-related issues, a theoretical accuracy assessment is
needed to quantify expected errors in measured joint (relative) and bone (absolute) kinematics.

This study quantifies relative and absolute accuracy limitations due to the shape matching
process alone when natural knee kinematics are measured by aligning flat-shaded, edge
detected bone models to single plane fluoroscopic images. Similar to the approach used for
knee implant components, flat shading is used in the shape matching process due to the high
computational cost of repeatedly ray tracing the bone models in different trial poses. The four
specific goals were: (1) to generate synthetic fluoroscopic images by ray tracing the bone
models in known poses, (2) to develop an automated matching algorithm that finds relative
and absolute bone model pose parameters consistent with the synthetic images, (3) to assess
the procedure under conditions in which all sources of experimental error are eliminated except
those related to image generation and shape matching, and (4) to evaluate the extent to which
bone edge attenuation in images degrades the accuracy of the measurements. These results
help define the theoretical capabilities and limitations of the proposed single-plane shape
matching procedure and provide a bound on the best possible accuracy one can hope to achieve
with this approach.

2 Methods
A three-step computational approach was used to quantify the accuracy with which edge-
detected bone models can be matched to single-plane fluoroscopic images of the knee. First,
geometric cortical bone models were created from CT data. Next, synthetic (i.e., computer-
generated) fluoroscopic images were created with the bone models in known poses. Finally,

Fregly et al. Page 2

J Biomech Eng. Author manuscript; available in PMC 2006 November 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



an automated matching algorithm was developed to align the bone models to the synthetic
images. Though the methodology described here is tailored to accuracy assessment of synthetic
images, it can also be used to measure in vivo bone motion from single-plane fluoroscopic
images.

2.1 Bone Model Creation
Geometric cortical bone models of the femur, tibia/fibula, and patella were created from CT
scan data for synthetic image generation and automated shape matching. One healthy subject
gave informed consent to undergo fine and coarse axial CT scans of the left leg as approved
by the institutional review board. Both scans used a 512×512 image matrix with a pixel size
of 0.39×0.39 mm [Fig. 1(a)]. The fine scan used 1.25 mm slices spanning approximately 75
mm above and below the joint line of the knee, while the coarse scan used 5 mm slices from
the hip center to the ankle center. This approach minimized subject radiation exposure while
obtaining accurate geometric information in the knee region [20]. Interior and exterior cortical
bone edges for the femur, tibia, fibula, and patella were segmented using a commercial
watershed algorithm (Slice-Omatic, Tomovision, Montreal, CA) [Fig. 1(b)], and points
defining the segmented outlines of cortical bone [Fig. 1(c)] were exported by the software. The
segmentation process was semi-automatic, requiring user intervention only for slices near the
ends of the bones where volume averaging effects make edge detection more difficult.

The point clouds resulting from the segmentation process [Fig.2(a)] were converted into
polygonal surface models using commercial reverse engineering software (Geomagic Studio,
Raindrop Geomagic, Research Triangle Park, NC). Polygonal surfaces were fitted
automatically by the software to each fine and coarse point cloud. The coarse polygonal models
were then aligned to their fine counterparts using the software’s three-dimensional automatic
alignment algorithm. Alignment was performed only for the femur and tibia/fibula. For the
patella, the fine model was used directly. Coarse model polygons in the fine scan region were
deleted and the gap between fine and coarse models filled automatically. To create uniform
polygon density, all polygons were subdivided and then decimated back to the original number
of polygons using the software’s curvature-based decimation algorithm [Fig. 2(b)]. The final
bone models were created by boolean subtraction and contained the interior and exterior
cortical bone surfaces [Fig. 2(c)]. The tolerance between the final polygonal surfaces and
original point clouds was an average of 0.15 mm over all surfaces of all bones with a standard
deviation of 0.12 mm.

In preparation for fluoroscopic shape matching, anatomic coordinate systems were created in
each bone model following an approach similar to previous studies [17,18]. The mechanical
axis of the leg, as determined from CT slices through the hip and ankle centers, was used to
define the superior–inferior axis for the femur and the tibia/fibula. The medial–lateral axis of
the femur was de-fined by the transepicondylar axis and of the tibia/fibula by the line
connecting the most medial and lateral points on the tibial plateau. The third axis was formed
from the cross product of the first two. The coordinate system origin of the femur was defined
as the midpoint of the transepicondylar line, while the origin of the tibia/fibula was defined as
the centroid of the tibial plateau located at the level of the articular surfaces. The patella
coordinate system was identical to that of the tibia/fibula with the knee as scanned in full
extension. Relative translation and rotation between the tibia and fibula were assumed to be
negligible, and the two models were combined into one for shape matching purposes [20].

2.2 Synthetic Image Creation
Once the bone models were developed, synthetic (i.e., computer-generated) fluoroscopic
images were created with the bone models in known poses. Three sets of synthetic image sets
were analyzed: (1) images replicating an in vivo stair rise motion created using ray tracing with
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a bone transparency coefficient of 1.0 (completely transparent) and attenuation coefficient of
0.999 (high attenuation), (2) similar ray-traced images where the three bone models were
randomly transformed as a single rigid body, and (3) flat-shaded images identical to the second
sequence. Similar to the experimental conditions for the first set, approximately 30 synthetic
images were generated for each of the three image sets.

The first synthetic image set used ray-tracing to evaluate relative and absolute measurement
errors under conditions that simulated an in vivo, loaded experimental situation [18]. The same
subject who provided the CT data gave informed consent to perform a stair rise activity under
fluoroscopic analysis using a protocol approved by the institutional review board [Fig. 3(a)].
Images were collected at 30 frames/s producing approximately 30 frames for each of three
trials. Bone models of the femur, tibia/ fibula, and patella were manually aligned to the
fluoroscopic images from one of the trials using custom software [Fig. 3(b)][12]. Patellar poses
were not calculated for images where the patella moved outside of the field of view (13 images).
Pose parameters found for one frame seeded the initial guess for the subsequent frame, where
rotational pose parameters were calculated using the convention of Tupling and Pierrynowski
[22].

Synthetic fluoroscopic images were created from the manually-determined experimental poses
using commercial surface modeling and rendering software (Rhinoceros and Flamingo, Robert
McNeel and Associates, Seattle, WA). The viewing properties were configured to produce a
principal distance and image scale that matched the experimental setup, while the cortical bone
models were given light attenuating material properties to produce images similar to x rays.
Once the three bone models were placed in the desired pose, ray tracing was used to generate
a synthetic fluoroscopic image [Fig. 3(c)] that eliminated motion blur, nonuniform image
intensity, soft tissue effects, and other sources of experimental error. This process was repeated
for each pose and the resulting synthetic images output to the shape matching software. An
automated matching algorithm (details below) was then used to align the bone models to the
synthetic images to quantify the relative and absolute errors in the recovered pose parameters
[Fig. 3(d)].

The second synthetic image set tested a wider range of absolute bone poses by applying random
transforms to the bone models in a fixed relative pose. A single experimental image from the
first set was chosen to define realistic relative pose parameters for the three bone models [Fig.
4(a)]. Ray-tracing was used to generate synthetic images after random transformations were
applied to the three bone models treated as a single rigid body [Fig. 4(b)]. This approach assured
that the relative poses of the bones would be the same in all random images. The magnitudes
of the uniformly-distributed random transformations were ±50 mm for all three translations,
±15 deg for the x and y (out-of-plane) rotations, and ±45 deg for the z (in-plane) rotation
[11]. Random images were generated with these settings until 30 were obtained where all three
bones were within the field of view. For each image, the bone models were manually placed
close to their perceived best poses prior to automated matching [16,23] since random
transformations do not produce images with pose continuity.

The third image set was identical to the second except that flat shading was used in place of
ray tracing to evaluate the influence of bone edge attenuation on matching accuracy [Fig. 4
(c)]. Unlike ray-traced bone images, flat-shaded images possess sharp edges similar to those
of metallic implant components. Thus, flat shading eliminates bone edge attenuation visible in
both synthetic ray-traced and experimental fluoroscopic images.

2.3 Automated Shape Matching
To eliminate user expertise as a confounding factor in the accuracy assessment, an automated
shape matching algorithm was developed. For each bone, the general concept was to edge
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detect the flat-shaded bone model, then edge detect the same bone in the synthetic fluoroscopic
image, and finally move the bone model until its edges best matched those in the synthetic
image. For consistency, Canny edge detection was used on both the bone model and the
fluoroscopic image [23]. Matching was achieved via a novel optimization procedure (details
below) whose cost function minimized the normalized sum of the distances between the two
sets of edge points. Distances were measured in units of pixels and calculated from image
edges, which remain constant for a particular image, to bone edges, which change as the bone
model pose is modified. Normalization by the number of selected image edge points was
performed to make the results insensitive to this variable. Interior geometric features were not
detected or used in the cost function due to the high computational cost that would be incurred
by repeatedly ray tracing, instead of flat shading, each bone model. To simplify bone edge
detection in each fluoroscopic image, a mask (±4−10 pixels) was placed around the edges of
the bone model in its initial pose, and only those image points located within the mask were
used for image edge detection.

The optimization procedure was based on a univariate search method minimizing errors in one
pose parameter at a time rather than all six pose parameters simultaneously. The order in which
the six pose parameters were optimized was determined by calculating the sensitivity of the
cost function to changes in each pose parameter separately. The pose parameters were defined
such that x and y corresponded to in-plane translations while z corresponded to out-of-plane
translation measured with respect to the fixed image plane. The three most sensitive directions
(in-plane pose parameters: x and y translation and z rotation) were optimized first, followed by
the three least sensitive directions (out-of-plane pose parameters: x and y rotation and z
translation). The entire sequence of six one-dimensional optimizations was iterated until the
specified absolute or relative convergence tolerance was met.

For each one-dimensional search, a six-step curve-fitting approach was used to find the
minimum. First, seven points with wide initial spacing were sampled along the search direction
[Fig.5(a)]. Second, these points were resampled so that the lowest point was in the middle,
shifting the sampled points in one direction or the other while maintaining the same spacing
[Fig. 5(b)]. Third, a cubic polynomial, which only requires four sampled points, was fit through
the seven points using linear least squares [Fig. 5(c)]. A cubic was chosen instead of a quadratic
since the cost function was asymmetric about the minimum for each search direction. Fourth,
the redundant points were used to assess the goodness of fit and noise present in the cubic.
Goodness of fit was quantified by calculating the adjusted R2 value, while noise was quantified
by calculating the standard error of the estimate s. Fifth, an automatic step size adjustment
algorithm was used to modify the point spacing until R2 was greater than 0.99 and s was less
than 1. These values were chosen empirically based on experience with the algorithm. Finally,
the minimum was calculated analytically from the converged cubic curve fit.

Central to this approach is the automatic step size adjustment algorithm used to produce stable
and rapid convergence. Neither R2 nor s alone was sufficient to identify cubic curve fits that
accurately predicted the minimum. However, when R2 and s information were combined, four
separate combinations (or regions) were identified that could be used to guide the step size
adjustment process (Fig. 6). These regions were defined as follows: Region 1—R2<0.99, s<1;
Region 2—R2>0.99, s<1; Region 3—R2>0.99, s>1; Region 4—R2<0.99, s>1. The goal was to
find a cubic curve fit in Region 2, where the goodness of fit was high and noise low. Once a
candidate cubic fit was generated, the region was identified from the fits R2 and s values. The
step size was then adjusted based on the following general algorithm: Region 1, double the
step size; Region 2, test for convergence; Region 3, halve the step size; Region 4, quarter the
step size. If the fit lay in region 2 but did not pass the convergence test, the step size was halved.
In addition, the previous region found was stored and used to make additional step size
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adjustments to avoid stepping over Region 2 in one direction or the other. This six-step process
was iterated until the specified absolute or relative tolerance was met.

2.4 Data Analysis
The accuracy of the automated shape matching process was quantified in terms of bias and
precision [11,18,23]. Bias was calculated from the mean matching error for each of the six
pose parameters in each synthetic image set, while precision was calculated from the
corresponding standard deviations. For bias results, a Student’s t-test (p<0.05) was performed
to determine if the values were statistically different from zero, indicating the presence of a
systematic error. All synthetic image generation and automated matching calculations were
performed on a 1.8 GHz Pentium IV PC.

3 Results
Measurement precision for relative pose parameters for image set 1 was approximately 2 mm
for sagittal plane translations and 1.5 deg for all rotations for tibiofemoral kinematics and about
2 mm and 3 deg for patellofemoral kinematics (Table 1). Measurement precision for medial-
lateral translation was approximately 7 mm for tibiofemoral and 16 mm for patellofemoral
kinematics. Systematic error or bias comparable in magnitude to the precision values was found
in most relative pose parameters. When larger absolute motions were analyzed using image
set 2, bias and precision results were generally consistent with those of image set 1. The main
differences were worse sagittal plane translational precision and a decrease in varus–valgus
and internal–external rotational bias. Measurement precision improved by a factor of 2 when
flat shading was used in place of ray tracing for image set 3 and nearly all bias disappeared,
with the one remaining bias being small (< 0.06 deg). For all three image sets, relative
precisions were generally less than the sum of the closest corresponding absolute precisions
(see below) with the exception of sagittal plane translations. For example, for image set 1,
tibiofemoral anterior–posterior translation precision was 2.1 mm, which was greater than the
sum of the femur and tibia/fibula x translation precisions of 0.27 and 0.42 mm, respectively.

Measurement precision for absolute pose parameters for image set 1 was within 0.4 mm for
in-plane (x and y) translations and 1.3 deg for all rotations for the femur and fibula/tibia and
0.7 mm and 2.8 deg for the patella (Table 2). Precision for out-of-plane translations was within
6 mm for the femur and tibia/fibula and 13 mm for the patella. For all three bones, a negative
statistically significant bias was present in the out-of-plane (z) translation that tended to push
the bone models into the image plane. Other statistically significant biases were present but
were not consistent for all three bones. When image set 2 was analyzed with a larger range of
absolute motions, precision and bias results were generally consistent with those from image
set 1. Significant bias for all three bones was found for the out-of-plane translation. When the
image generation process was switched to flat shading for the third image set, precision results
improved by roughly a factor of 2, and nearly all statistically significant biases disappeared,
including all out-of-plane translation biases. The three remaining statistically significant biases
were small (<0.08 mm and 0.05 deg).

4 Discussion
This study used a computational approach to quantify the theoretical accuracy with which
natural knee kinematics can be measured using single-plane fluoroscopy and flat-shaded, edge
detected bone models when all sources of error are eliminated except those related to image
generation and shape matching. Three-dimensional cortical bone models were created from
CT scan data and ray traced to generate synthetic fluoroscopic images with the bones in known
poses. An automated matching algorithm was developed to assess the theoretical accuracy with
which the known pose parameters could be recovered by aligning flat-shaded bone models to
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the synthetic images. For synthetic images that simulated an in vivo, loaded stair rise motion,
precision for tibiofemoral kinematics was 2 mm for sagittal plane translations and 1.5 deg for
all rotations, while precision for patellofemoral kinematics was 2 mm and 3 deg. Medial–lateral
translations were much less precise, with statistically significant bias present in nearly all
relative pose parameters. Evaluation of absolute pose parameter errors in images generated
using flat shading instead of ray tracing revealed that systematic out-of-plane translation errors
due to bone edge attenuation were the primary source of measurement bias.

A computational rather than experimental approach was used in this study to provide a well-
controlled environment for evaluating theoretical accuracy. If the accuracy determined by this
method was poor, little motivation would exist for a thorough experimental evaluation. Similar
errors for the two ray-traced image sets suggest that the results were reliable and representative
of the accuracy that could be obtained from single-plane fluoroscopic images under ideal
conditions. In experimental practice, however, additional confounding factors such as
imperfect image distortion correction, motion blur due to long exposure times [16], less clear
bone edges due to surrounding soft tissue [16], and imperfect bone geometric models [23]
would make the accuracy worse. For example, the bone geometric models used in our shape
matching process were identical to those used to generate the synthetic images, whereas in real
life, bone geometric models derived from CT scan data will never be completely consistent
with bone images measured using fluoroscopy. For one, CT and fluoroscopic x-ray techniques
have different energy absorption and scatter characteristics. For another, CT scans do not
capture bone geometry perfectly due to limited in-plane resolution, volume averaging over a
finite slice thickness, imperfect segmentation of bone edges, and smoothing during polygonal
surface creation. None of these sources of error were included in our analysis.

Direct comparison of our tibial and femoral precision results with those reported by other knee
fluoroscopy studies is difficult due to differences in accuracy assessment methods and included
sources of error. Nonetheless, comparison still provides a general sense of the extent to which
bone edge attenuation may affect the overall accuracy of the measurement process (Table 3).
Single-plane fluoroscopy studies of natural knees using image-matched bone models reported
precision results comparable to those of our study [19,20], even though these studies used
internal bone contours as well as bone edges for matching. Studies of artificial knees have
reported comparable or better precision, likely due to unambiguous edge identification [11,
13,15]. Bi-plane studies using implanted bone markers or implants achieved an order of
magnitude improvement for all absolute pose parameters [18,23]. However, when bone models
were matched to bi-plane fluoroscopic images, precision results were closer to those of our
study, apart from out-of-plane translation [16]. Only two studies reported relative precision
results for the tibiofemoral joint [11,15]. Those studies used single-plane fluoroscopy with
implant models and reported relative rotation precisions comparable to our study and relative
translation precisions that were approximately two to four times better. No other studies have
reported precision results for the patella or the patellofemoral joint. High uncertainty for
patellar out-of-plane rotations is consistent with limited distinguishing bone geometry.

Off-the-shelf optimization methods were not chosen for our automated matching algorithm
due to the characteristics of the system being analyzed. Global optimization would have
required excessive CPU time due to a large number of costly function evaluations. Gradient-
based optimization was implemented but not chosen due to a discontinuous cost function in
each search direction (Fig. 5). As the bone model pose was modified during gradient
calculations, image edge points were compared with changing bone model edge points,
producing inaccurate search directions and convergence to a local minimum. Response surface
methods fitting more than one pose parameter at a time were also unsuccessful, since the noisy
nature of the search space made it difficult to select the correct distance between sample points
in multiple dimensions.
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Attenuated bone edges appear to be the primary source of systematic error in the analysis.
Elimination of large z translation bias in the flat-shaded synthetic images indicates that this
bias was due to bone edge attenuation in the ray-traced synthetic images. In addition to negative
z translation bias, y rotation bias was also strong though not consistent for all three bones. For
the two ray-traced image sets, the femur and patella demonstrated statistically significant
positive y rotation bias. In contrast, the tibia/fibula demonstrated negative y rotation bias that
was statistically significant only for image set 1, where smaller out-of-plane rotations provided
less y rotation information from the fibula than in image set 2. It is therefore possible that
shrinking the bone model edges to accommodate edge attenuation in the ray-traced images was
accomplished not only by pushing the bone models into the image plane but also by rotating
them about the y axis.

The relative precision and bias results for the ray traced image sets were influenced by
kinematic coupling between the absolute pose parameter errors. Based on kinematics theory,
each absolute translation error can contribute to all three relative translations errors and each
absolute rotation error to all six relative pose parameter errors. For example, if a 90° y axis
rotation was applied to all three bones, anterior–posterior translation would now be in the z
direction, which is the least precise. Thus, the worse-than-expected relative precision results
for sagittal plane translations were likely due to contributions from poor z translation precision.
Relative precision results for medial–lateral translation were actually better than expected since
the two contributing z translation precisions were biased in the same direction, producing some
cancellation of errors. Bias in nearly all relative pose parameters can be explained by
contributions from z translation bias to all three relative translations and y rotation bias to all
six relative pose parameters.

Although many factors contribute to inaccuracies in kinematic measurements made from
single-plane fluoroscopy, this study was limited to a subset of those factors. Only one pixel
size and grid were selected to represent experimental conditions. Smaller pixels with a higher
resolution would likely produce more accurate results. Principle distance between the bone
models and the image detector was representative of experimental conditions (1100 mm). As
the principle distance decreases, the sensitivity to out-of-plane translation increases. However,
if the principal distance becomes too small, shaft geometry from the femur and tibia/ fibula
will no longer be visible in the image, reducing the sensitivity in other directions.

Pixel size may determine the minimum errors for single-plane fluoroscopy if bone edge
attenuation were not an issue. In our study, the virtual fluoroscope was positioned so that the
images had a resolution of 512×512 pixels covering a region of 200 × 200 mm. An edge
displayed on the pixel grid could lie between two pixels, producing an error of half a pixel, or
about 0.2 mm in our set up. The in-plane translation precision for image set 3 was between
0.13 and 0.20 mm (Table 2). For the perspective used in our synthetic images, shifting the bone
model edges by half a pixel would require approximately 2 mm of translation in the z direction.
The out-of-plane translation precision for the flat-shaded femur and tibia/fibula, which have
the most geometry, was 2.3–3.1 mm (Table 2). Thus, increasing the image resolution should
have a predictable effect on absolute precision for synthetic flat-shaded images with
appreciable geometric features.

Additional bone geometry could be used for matching by detecting bone model inner contours
with ray-tracing methods [20,21]. Since cortical bone attenuates x rays much more than does
cancellous bone, ray tracing of bone models produces internal edges that would approximately
double the matchable geometry while also producing attenuated edges in the bone models.
However, ray tracing is much more costly computationally than is edge detection, which is
why ray tracing was not used for bone model internal edge detection in this study. The extent
to which ray tracing would decrease bias is unknown, though results of previous studies [19,
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20] suggest that use of internal bone contours improves precision in out-of-plane rotations by
roughly a factor of 2.

5 Conclusions
This study quantified theoretical accuracy limitations in a shape matching process used to
measure natural knee kinematics with single-plane fluoroscopy and flat-shaded, edge detected
bone models. Since the computational assessment was performed under ideal conditions,
results under real life conditions would likely be worse. Apart from medial-lateral translation,
the precision of tibiofemoral (2 mm and 1.5 deg) and patellofemoral (2 mm and 3.0 deg) pose
parameters may be sufficient for studying changes in knee kinematics due to different ligament
reconstruction methods [19,21], differences in anterior–posterior translation between the
medial and lateral condyles [20], or the approximate location of the closest point of contact on
each tibial condyle [12,13]. However, further investigation is required to determine the extent
to which other sources of error contribute to accuracy degradation. The approach is clearly
insufficient for measuring in vivo contact areas for arthritis-related research applications. If
knowledge of articular surface interactions is desired, bi-plane fluoroscopy with implanted
bone markers should be used [17]. Less accurate model-based contact area estimates can be
derived from single-plane fluoroscopy if directions to which contact conditions are less
sensitive (i.e., anterior–posterior translation, internal–external rotation, and flexion–extension)
are constrained to match the fluoroscopic measurements while directions to which contact
conditions are highly sensitive (i.e., superior–inferior translation, varus–valgus rotation) are
free to equilibrate using estimated or measured loading conditions [24]. Future efforts to
improve this measurement approach should focus on addressing the bone edge attenuation
issue in the fluoroscopic images, possibly by replacing flat shading with ray tracing of the bone
models during the matching process.
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Fig. 1.
Segmentation of CT data to generate point clouds for geometric cortical bone models. (a)
Sample CT image of the femur and patella. (b) Boundaries identified by the watershed
algorithm. (c) Cortical bone contours defined from the segmentation.
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Fig. 2.
Creation of polygonal cortical bone models from the point cloud data. (a) Segmented point
clouds demonstrating the outer and inner cortical bone boundaries as well as the regions
covered by the fine and coarse scans. (b) Polygonal surface models fitted to the point clouds
using commercial reverse engineering software. (c) Cutaway view of polygonal models
showing the outer and inner cortical surfaces of each bone.
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Fig. 3.
Synthetic fluoroscopic image creation process to simulate an in vivo stair rise motion. (a)
Sample experimental fluoroscopic image. (b) Femur, tibia/fibula, and patella bone models
manually matched to the experimental image. (c) orresponding synthetic fluoroscopic image
generated by ray tracing the cortical bone models in their manually matched poses. (d) Femur,
tibia/fibula, and patella bone models automatically matched to the synthetic image to evaluate
the accuracy of the recovered pose parameters.
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Fig. 4.
Synthetic fluoroscopic image creation process to simulate a wide array of random poses with
the bone models in a fixed relative pose. (a) Experimental fluoroscopic image with manually
matched bone models used to define the relative pose parameters for all random images. (b)
Synthetic fluoroscopic image generated using ray tracing after application of a random
transformation to the cortical bone models. (c) The same synthetic fluoroscopic image
generated using flat shading instead of ray tracing to eliminate bone edge attenuation.
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Fig. 5.
Univariate optimization using cubic curve fitting to account for noise in the cost function. (a)
Example of a noisy cost function in one direction along with seven initial sampled points. (b)
Shifted sampled points using the same spacing to move the lowest point to the middle. (c)
Least-squares cubic curve fit of the sampled points to evaluate fit accuracy, adjust sampled
point spacing if needed, and calculate the minimum analytically.

Fregly et al. Page 15

J Biomech Eng. Author manuscript; available in PMC 2006 November 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Automatic step size adjustment rationale to select sampled point spacing for an accurate cubic
curve fit. Left axis is goodness of fit quantified using the adjusted R2 value, while right axis is
noise quantified using the standard error of the estimate s. Four potential regions can be
identified by combining R2 and s information: Region 1—R2<0.99, s<1; Region 2—R2>0.99,
s<1; Region 3—R2>0.99, s>1; Region 4—R2<0.99, s >1. Knowledge of the region for the
current fit can be used to adjust the sampled point spacing automatically (see text) until the fit
is in region 2, where R2 is high and s is low.
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