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Current analytical models of the mammalian immune system typically assume a specialist predator–prey

relationship between invading pathogens and the active components of the immune response. However, in

reality, the specific immune system is not immediately effective following invasion by a novel pathogen.

First, there may be an explicit time delay between infection and immune initiation and, second, there may

be a gradual build-up in immune efficacy (for instance, during the period of B-cell affinity maturation)

during which the immune response develops, before reaching maximal specificity to the pathogen. Here,

we use a novel theoretical approach to show that these processes, together with the presence of long-lived

immune memory, decouple the immune response from current pathogen levels, greatly changing the

dynamics of the pathogen–immune system interaction and the ability of the immune response to eliminate

the pathogen. Furthermore, we use this model to show how distributed primary immune responses

combine with immune memory to greatly affect the optimal virulence of the pathogen, potentially resulting

in the evolution of highly virulent pathogens.

Keywords: affinity maturation; delay differential equations; evolution of virulence; immune memory;
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1. INTRODUCTION
The mammalian immune system is a highly complex,

dynamical system comprising many interacting processes.

Therefore, although there is considerable understanding

about many of the individual processes, the inherent

nonlinearities make it difficult to predict how the immune

system as a whole will behave when challenged by an

invading pathogen, and how the pathogen may evolve in

the face of this immune response. To help understand the

nature of these interactions, attempts have been made to

describe immune function using mathematical models.

While some large-scale, biologically realistic simulation

models have been developed (Bezzi et al. 1997; Kleinstein

& Seiden 2000; Kohler et al. 2000), arguably most

progress has been made through the use of generic,

mathematically tractable analytical models that are easy to

interpret and provide general insights into the overall

behaviour of the system; in particular, the work of Nowak

and May (Nowak & May 2000) and Antia and colleagues

(Antia & Koella 1994; Antia et al. 1994; Antia & Lipsitch

1997; Ganusov et al. 2002) have been instrumental in

developing this burgeoning field. However, in the desire

for simplicity, these models often make limiting assump-

tions about the nature of the various processes. In

particular, details concerning the build-up of the immune

response and the inherent time delays between pathogen

challenge and immune activation are often omitted.
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Time delays in the specific immune response may arise

through a number of different processes. For instance,

within the humoral response, the time taken for B cells to

bind to the novel antigens of an invading pathogen and

initiate the various pathways that lead to a fully effective

and highly specific immune response can be substantial.

One example of such a delay is the period of clonal

expansion where the binding B cells are stimulated to

divide by T cells that recognize the antigen–MHC

complex on their surface, resulting in a population of

clones producing massive quantities of antibodies that

target the invading antigen (Kelsoe 1996; Roitt & Delves

2001). During this division phase somatic hypermutation

produces sub-populations of B cells with differing affinities

for the antigen, which then undergo selective expansion, in

a process known as affinity maturation, resulting in a

highly efficient immune response against the specific

antigen (Eisen & Siskind 1964; MacLennan et al. 2000;

Tarlinton & Smith 2000; Roitt & Delves 2001). Similar

delays following infection occur during the development of

T-cell affinity, and substantial delays can even occur during

cell proliferation of the innate immune response (Ahmed &

Gray1996; Roitt& Delves2001). While the preciseduration

of these delays depend on the nature of the invading

pathogen, detectable levels of T and B cells may typically

be observed within 3–4 days following infection, with

proliferation and maturation continuing for up to six or

seven weeks (Ahmed & Gray 1996; Tarlinton & Smith

2000; Iber & Maini 2002). Clearly, these delays may be

considerable compared to the reproductive potential of an
q 2006 The Royal Society
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invading virus or bacterium, and the more prolonged the

period of cell proliferation or affinity maturation, the larger

the window of opportunity for the pathogen to exploit the

host before it is suppressed by the immune system.

However, a key feature of the adaptive immune response

is the ability to maintain long-lived immune memory

towards specific pathogens. This memory enables a rapid

and prolific secondary response that may either prevent re-

invasion of an eradicated pathogen, or maintain suppres-

sion of a circulating pathogen that was not eradicated by

the primary response. Hence, immune memory closes the

window of opportunity for the pathogen, further modify-

ing the endpoint of virulence evolution. Therefore, the

length of the time delay between infection and immune

initiation, the subsequent rate of effective immune build-

up and the presence of specific immune memory may all

have profound implications for the pathogen’s host

exploitation strategy and the evolution of virulence.

So, how should a pathogen exploit the time window

before initiation of host immunity? How should it respond to

the rate of immune build-up? How does the presence of

immune memory affect pathogen evolution? Our aim is to

address these issues using a novel modelling framework that

incorporates both an explicit time delay between pathogen

invasion and initiation of the specific immune response and

also a gradual build-up of immune competence following

initiation, mirroring the various pathways of the immune

system. We show that these time delays can have a profound

impact on the dynamics of the pathogen within the host and

on whether the immune system is able to eliminate the

invading pathogen. We then incorporate immune memory

and explore how this long-lived component to the host’s

immune system affects the pathogen’s population dynamics.

Finally, we use both models to explore how the within-host

selection pressures generated by the immune system

influence the evolution of pathogen virulence. Whereas

many models of the evolution of virulence assume that

increased host mortality acts as a cost to high pathogen

virulence, we show that over-stimulation of the host’s

immune system can be sufficient to impose an upper

limitation on virulence, potentially maintaining virulence

levels below those likely to cause harm to the host.
2. BASELINE PATHOGEN–IMMUNE SYSTEM
MODEL
We develop a series of structured population models to

explore how delayed specific immune responses and the

presence of immune memory affect the dynamics of the

pathogen–immune system interaction. First, we consider a

baseline model of the system with no long-lived memory

(further details are given in the electronic supplementary

material), describing the pathogen–immune interaction

with a series of delay differential equations which

incorporate an explicit time delay between pathogen

challenge and immune initiation (Buric et al. 2001; Buric

& Vasovic 2002). We do not attempt to explicitly model

each individual component of the immune response, but

rather we adopt a phenomenological approach to qualitat-

ively describe the gradual build-up of an effective immune

response. To achieve this we make use of a linear chain of

ordinary differential equations (MacDonald 1978, 1989;

Mangel & Bonsall 2004) to construct a distributed immune

response mimicking, for instance, the process of selective
Proc. R. Soc. B (2006)
expansion that leads to the build-up of specific immunity.

The full baseline model is:

dPðtÞ

dt
ZPðtÞ½rKdKf ðInÞ�;

dIi
dt

Z cðIiK1KIiÞ; i Z 1.n;

dI0

dt
Z cðl0PðtKtÞKI0Þ:

Here, the first equation describes the within-host dynamics

of a pathogen (P) such as a virus, bacterium or protozoan,

which replicates within the host at rate r and dies at a

background rate d; this loss rate incorporates both natural

pathogen decay and also loss through the action of the non-

specific immune system. Hence, in the absence of a specific

immune response, the pathogen load increases at net rate

(rKd ). However, assuming the host mounts a specific

immune response (In), pathogen density declines as some

function of the magnitude of this response, f(In). Note that

this is a general function that may take a range of forms

describing the impact of the immune system on the

pathogen, however, for simplicity, we assume a simple

linear response such that f(In)ZaIn where a measures the

per capita impact of immunity on the pathogen. The

immune response is distributed with shape parameter c,

which represents the rate of the cellular and biochemical

reactions involved in the immune pathway, and comprises a

chain of length nC1 (described by the equations

dI0=dt/dIn=dt), where n represents the physiological

complexity of the immune response. This distributed

response is a mixture of exponentials (see electronic

supplementary material), and may be thought of as

representing the period of affinity maturation leading to

the build-up of effective immunity following an initial

pathogen challenge. Similar approaches have been adopted

to model the intracellular development of viruses such as

HIV, showing that the predictions of these models differed

greatly from corresponding models without a distributed

delay in terms of both the transient dynamics and long-

term stability (Grossman et al. 1999; Lloyd 2001; Culshaw

et al. 2003). Finally, we allow for a possible discrete time

delay (t) between infection and initiation of the immune

response such that the level of immunity is l0 times the

infection load (P) t steps ago.

Analysis of the model follows standard methods for

analysing delay-differential equations (see electronic sup-

plementary material) showing there are two outcomes of the

interaction (figure 1). Combinations of high pathogen

replication rates (r) and high values of the shape parameter

(c) result in stable dynamics, where the pathogen persists as a

chronic infection within the host. However, low r and c

values lead to unstable dynamics, in the form of potentially

high-amplitude pathogen cycling within the host. By taking

the expectation of the solution of the chain with respect to

time to give the average delay (�t ) shows that as shape

parameter (c) increases, the mean delay (�t ) declines: short-

time delays are more likely to lead to stable dynamics (see

electronic supplementary material). The presence of a time

delay before the initiation of the immune response is crucial

in determining whether the pathogen is able to persist; the

region of stability (chronic infection) becomesvery small ast

tends towards 0, whereas chronic infection is more likely if
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Figure 1. Predictions of the baseline model showing the dynamic outcomes of the pathogen–immune system interaction as
functions of r, the pathogen replication rate and c, the immune pathway shape parameter. (a) Showing the boundary between
stable and unstable regions of parameter space as a function of the time delay between pathogen challenge and immune initiation
(t). Also shown (inset) are two time-series of the model run from different locations of rKc parameter space (i) rZ10, cZ10; (ii)
rZ10, cZ2. (b) Showing the boundary between stable and unstable regions of parameter space as a function of the chain length
(n) used to model the build-up of immunity.
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there is a large time delay (high t) between pathogen

challenge and immune initiation (figure 1a).

Stable pathogen persistence is also favoured if the

immune response is not highly distributed (i.e. there is a

short chain in the build-up of immunity; figure 1b). While

the impact of single time delays on dynamical systems is

well recognized, the interaction between fixed (t) and

distributed delays can lead to stability switches, resulting

in unintuitive dynamical consequences: explicit time

delays may disrupt the stability of equilibria but, less

frequently observed is the phenomenon observed here

where delays can lead to restabilization of unstable

equilibria (Cooke & Grossman 1982).
3. INCORPORATING IMMUNE MEMORY
The precise relationship between memory cells and those

of the primary immune response is the subject of some

debate, but it is generally believed that memory B cells

develop in parallel with the primary immune response,

derived from the same naive precursor cells (Ahmed &

Gray 1996; Tarlinton & Smith 2000; Gourley et al. 2004).

We, therefore, modify the baseline model to include a long-

lived specific memory component (M ) which is generated

during production of the primary immune response, at

rate g, and decays at a (low) density-independent rate, d.
Proc. R. Soc. B (2006)
It is unclear exactly at what point following infection that

memory cells begin to form, although there is some

evidence that memory cell formation may begin three to

four days after stimulation of the immune response, but it

may be as much as 14 days post-infection (Liu et al. 1987;

Tarlinton & Smith 2000; Iber & Maini 2002; Inamine et al.

2005). We, therefore, allow for such a lag by the inclusion of

an explicit delay term (tM) before initiation of the immune

memory. In the presence of the pathogen, this memory

component is activated to re-stimulate the immune

response at rate lM, which then combats the infection as

before. The full model incorporating immune memory is:

dPðtÞ

dt
ZPðtÞ½rKdKf ðInÞ�;

dIi
dt

Z cðIiK1KIiÞ; i Z1.n;

dI0

dt
Z cðl0PðtKtÞ ClMMðtÞPðtÞKI0Þ;

dM

dt
ZgI0ðtKtmÞKdMðtÞ:

Stability analysis (see electronic supplementary

material) shows that there are two outcomes of the
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Figure 2. Predictions of the model incorporating immune memory, showing the dynamic outcomes of the pathogen–immune
system interaction as functions of r, the pathogen replication rate, c, the immune pathway shape parameter and d, the rate of
memory decay. Eradication of the pathogen (defined as when P (t) falls below 0.007 and is then bounded at 0, else the dynamic is
defined as unstable) is ensured through numerical simulations (using a fourth order Runge–Kutta algorithm with step size (dt) of
10K3). The insets show: (i) stable chronic infection (rZ2, cZ6) above the stability boundaries and (ii) pathogen exclusion (rZ4,
cZ1) below the stability boundaries.
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interaction: stable, chronic infection and unstable

dynamics characterized by either sustained oscillations or

pathogen exclusion, defined as when pathogen load falls

below an arbitrarily low threshold value. Unlike the

baseline model, the presence of immune memory results

in fast-replicating pathogens being more prone to exclusion

(figure 2). Furthermore, if the pathogen can persist to

produce a chronic infection, the equilibrium level of the

pathogen in the presence of immune memory is the level

attained in the absence of memory multiplied by the factor,

dal0

dal0 CglmðrKdÞ
:

Hence, immune memory always reduces the equilibrium

level of the pathogen and the degree of reduction increases

as either g or lm is increased and, paradoxically, as the

pathogen’s net replication rate (rKd ) increases; chronic

infections with fast-replicating pathogens are likely to be

suppressed to a greater extent than those of slow-

replicating pathogens. Finally, the boundary separating

the regions of chronic infection and pathogen exclusion is

highly nonlinear, and this nonlinearity is exaggerated if the

memory is short lived (high d; figure 2).
4. THE EVOLUTION OF PATHOGEN VIRULENCE
Typically, models of the evolution of virulence assume the

cost (to the pathogen) of high virulence is host death

(Antia et al. 1994; Ganusov et al. 2002; Ganusov & Antia

2003); the more virulent the pathogen, the faster it kills

the host, and so the lower the pathogen’s fitness. These
Proc. R. Soc. B (2006)
models suggest that the optimal level of virulence is just

below that sufficient to kill the host. However, many

pathogens appear to be maintained at levels far below

those necessary to induce host mortality (Levin & Antia

2001; Meyers et al. 2003), with death only occurring in

immuno-compromised hosts. Hence, there may be some

other limitation to high virulence that is reached before

host mortality occurs and it may be that over-stimulation

of the host’s immune response can act as a sufficient

constraint to restrict the evolution of high levels of

pathogen virulence. It has previously been proposed that

levels of immunity and, in particular, the strength of cell-

directed immune responses are correlated with viral

replication rate such that fast-replicating viruses are

more ‘visible’ to the immune system (Almogy et al.

2002). Here, we use our model to explore how time

delays and distributed immune responses affect the

evolution of pathogen virulence, given a trade-off between

pathogen replication rate and immune stimulation.

Previous workers have highlighted the difficulty of

rigorously defining the term ‘virulence’ in such within-

host models (Antia et al. 1994; Ganusov et al. 2002;

Ganusov & Antia 2003). While there will be important

dose-effects determining the overall damage caused to a

host and the likelihood of pathogen-induced host

mortality, in an evolutionary context virulence should be

defined as a life-history trait of the pathogen that may be

subjected to natural selection. Hence, virulence acts at a

per capita rate such that for a given pathogen load and over

a given time period a more virulent virus, for instance, will
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lyse more host cells than a more benign virus, increasing

damage to the host. In this respect, Antia and colleagues

(Antia et al. 1994; Antia & Lipsitch 1997; Ganusov et al.

2002) showed that in a homogenous host population the

virulence of a pathogen, as measured by the dose required

to kill 50% of infected hosts (its LD50), increases with its

per capita growth rate, r. While it has been shown that

pathogen virulence (defined as the case fatality rate) in

heterogeneous populations may not be proportional to r

(Ganusov & Antia 2003), for simplicity given our model

structure and for ease of comparison with the majority of

previous models we assume that virulence, defined here as

the amount of cellular damage caused by a pathogen

within its host, is directly proportional to the pathogen’s

per capita reproductive rate, r.

Given a definition of virulence (the pathogen trait

under selection) it is also important to rigorously define

the measure of fitness of the pathogen that is maximized by

natural selection. In an epidemiological context the fitness

of the pathogen may be defined by its basic reproductive

ratio, R0, which is measured as the number of number of

secondary cases infected by a single infected host in a

completely susceptible population (Anderson & May

1992). Therefore, the overall infectiousness of a given

host will depend on the total number of infectious

particles produced by that host over the lifetime of the

infection, and the transmissibility of the pathogen at any

moment in time will be directly proportional to its

abundance within the host (Antia et al. 1994; Antia &

Lipsitch 1997; Ganusov et al. 2002; Gilchrist et al. 2004).

Therefore, since infection may be chronic, the appropriate

measure of the pathogen’s fitness is its ‘lifetime’ repro-

ductive success, i.e. the cumulative pathogen load

throughout the duration of infection.

Given the above considerations, we model the evol-

ution of virulence by determining the fitness of the

pathogen with respect to varying replication rate (r),

given that high r may increase stimulation of the host’s

immune response. That is

FðrÞZ

ðT
0

PðtÞdt; ð4:1Þ

where F(r) is the function to maximized with respect to the

pathogen’s replication rate (r), and T is the lifetime of the

infection. To calculate the pathogen’s fitness, equation

(4.1) is placed within the dynamic models presented

previously, allowing full consideration of the relationship

between pathogen reproductive rate, immune stimulation

and pathogen lifetime reproductive success. The optimal

virulence (r�) is the value of r that maximizes equation

(4.1) within the setting of the previous models either with

or without the presence of immune memory.

At present we have no a priori information about the

shape of the trade-off between replication rate (r) and

stimulation of the primary immune response (l0). There-

fore, we assume there is a monotonic increasing relation-

ship between pathogen replication and immune

stimulation, such as may occur through cells infected

with high reproducing pathogens presenting more targets

for the cell-directed immune response (Almogy et al.

2002; Gilchrist et al. 2004). In the simplest scenario, there

might be a linear relationship between r and l0 although

other functional forms may be possible, such as an
Proc. R. Soc. B (2006)
accelerating relationship due to increased rates of

stimulation, or a decelerating relationship due to immune

exhaustion. Therefore, to account for different possible

mechanisms of immune stimulation we explore the

evolution of pathogen virulence under two different

functional forms:

(i) decelerating at the origin (concave), of the form

l0Z
xr

1Cyr
and

(ii) accelerating at the origin (convex), of the form

l0Za expðrbÞ,

where the parameters a, b, x and y determine the strength

of the trade-off. Once again, these functional relationships

are placed within the full dynamic models described

previously and the cumulative pathogen load over the

duration of the infection is calculated as the measurement

of pathogen fitness.

Regardless of whether there is immune memory or not,

a concave relationship between pathogen virulence and

immune stimulation tends to result in pathogen fitness

being maximized at the highest values of r (figure 3a,b),

suggesting that a pathogen should evolve maximal

virulence (r�/N), irrespective of the strength of the

immune response (Gilchrist et al. 2004). Such a concave

trade-off implies that the pathogen experiences diminish-

ing costs, in terms of increased stimulation of the immune

system, and so it will always benefit from a further increase

in replication rate. Indeed, similar results are found

assuming a linear relationship between r and l0; it will

always pay the pathogen to increase its reproductive rate to

‘keep ahead’ of the immune response. Note, however, that

in the presence of immune memory, the distribution of

virulence may be bimodal, with a small, local optimum

approaching zero (figure 3b). Hence, even though there is

a greater benefit to being highly virulent, pathogens may

get caught in this locally fit, avirulent state. However,

pathogens with high mutation rates, such as RNA viruses

(Drake et al. 1998) may be able to jump across this fitness

trough and rapidly evolve to be highly virulent.

When the trade-off between pathogen virulence and

immune stimulation is convex, intermediate virulences

tend to be optimal (0!r�!N; figure 3c,d; Gilchrist et al.

2004). Clearly, very low replication rates are sub-optimal,

as they do not allow the pathogen to achieve its full

reproductive potential; of course if r!d, the pathogen is

unable to sustain itself even in the absence of host

immunity. Furthermore, high replication rates over-

stimulate the immune response, resulting in very short-

lived infections, with little opportunity for pathogen

transmission (Almogy et al. 2002; Coombs et al. 2003;

Gilchrist et al. 2004). Hence, intermediate replication

rates are optimal. Therefore, host immunity can impose

sufficient selective pressure on the pathogen to maintain

its virulence at sub-maximal levels, without the need to

invoke host mortality as a constraint.

It is interesting to consider the impact of innate

immunity on the evolution of pathogen virulence. In the

model, we account for innate immunity within the

density-independent mortality of the pathogen, d. The

fitness profiles plotted in figure 3 all assumed a constant,

arbitrary value of d. Increasing d would act to shift these

profiles to the right such that for a given per capita

reproductive rate, r, the net reproductive rate would be
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reduced. Therefore, in the case of a convex trade-off

(figure 3c,d ), the optimal replication rate (r�) would be

correspondingly larger to compensate for the greater

mortality rate. Hence, strong innate immune responses

may further drive the evolution of high pathogen

virulence.

For the remainder of this analysis, we only consider

pathogen evolution assuming a convex relationship

between replication rate and immune production, where

intermediate levels of pathogen virulence tend to be
Proc. R. Soc. B (2006)
optimal. For both the baseline model and the model

incorporating immune memory, the optimal virulence is

highly dependent on the physiological complexity of the

immune system and the rate of immune build-up (i.e. the

length of the chain in the model), although the trend is

opposite for the two models (figure 4). For the baseline

model, increasing immune complexity (i.e. increasing n)

leads to a decrease in the optimal virulence (figure 4a).

Long chain lengths (with a constant value of c) mean that

the active component of the immune response is
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increasingly decoupled from the current pathogen load

within the host. Therefore, with such a distributed

response, the over-stimulation of immunity caused by

high pathogen replication rates mean the pathogen is

highly likely to be eradicated. The best evolutionary

strategy is for the pathogen to replicate at lower rates,

effectively hiding from the immune response and max-

imizing its long-term persistence in the host, albeit at a

very low level. Conversely, when there is a long-lived

immune memory (figure 4b), long chain lengths mean the

pathogen is always ultimately excluded and so its best

strategy is to replicate at increasing rates, maximizing

transmissibility in the short-time window available before

it is eradicated.
5. DISCUSSION
We have developed a novel modelling framework of the

within-host pathogen–immune system dynamics that

mimic the delayed, distributed build-up of an effective

immune response following pathogen challenge. The

presence, and duration, of these time delays has funda-

mental implications for whether the immune system is

able to eliminate the pathogen and, ultimately, for the

optimal virulence of the pathogen.

Typically, most models describe the immunity–pathogen

interaction as a specialist predator–prey relationship,

whereby the immune response is instantaneously stimulated

by the presence of the pathogen and depletes the pathogen

population at a fixed rate determined by their relative

densities at any moment in time (Nowak & May 2000).

Therefore, when pathogen densities are suppressed to very

low levels, immunity is similarly reduced, releasing the

pathogen from its impact. In contrast, however, we have

shownhere that timedelays and distributed responseswithin

the immune system decouple it from the pathogen, so that

immunity acts much more like a generalist predator with its

abundance at any point in time remaining largely unchanged

by current levels of infection. This is particularly apparent

when there is a long-lived, highly distributed memory

component, which buffers the overall immune system

against fluctuations in pathogen levels. One expectation is

that the total immunepressure can remain at high levels even

when the pathogen is at very low levels, potentially resulting

in its eradication and imposing a strong selection pressure on

the evolution of virulence.

Related effects on the evolution of virulence due to

changes in the administering of vaccines and their efficacy

are also known to affect pathogen epidemiology and

evolution (McLean 1995; Gandon et al. 2001). Imperfect

vaccines, particularly those aimed at reducing pathogen

replication rates are predicted to lead to the evolution of

higher pathogen virulence (Gandon et al. 2001). In

comparison, we have shown here that host immunity can

impose selection to influence the evolution of pathogen

virulence; immune responses that effect a change in the

death rate of the pathogen are predicted to drive the

evolution of higher pathogen virulences. Hence, under-

standing the impact of different immune responses, similar

to elucidating the effects of imperfect vaccines, leads to

counter-intuitive predictions of the evolution of pathogen

virulence.

Owing to the decoupling between pathogen levels and

immune pressure that occurs with long developmental
Proc. R. Soc. B (2006)
chains we suggest that the model is able to approximate

the ‘program’-type dynamics that are known to occur for

particular immune responses such as the CD8 T cell

responses where the immune system tracks the pathogen

load for only a brief period following infection, before

committing to a response independent of subsequent

pathogen levels (Antia et al. 2003). Our model framework,

therefore, is sufficiently flexible to account for much of the

continuum of pathogen–immune system interactions

ranging from ‘predator–prey’-type immune stimulation

at one end and decoupled, ‘program’-type stimulation at

the other, with simple adjustments to relatively few

parameters. We believe this flexibility in the model

makes it an ideal framework with which to examine a

wide variety of possible scenarios of immune system

modelling.

Whereas the majority of models consider the cost to a

pathogen of high virulence is host death (Antia et al.

1994; Ganusov et al. 2002; Ganusov & Antia 2003), our

model suggests that virulence may be constrained by the

host’s immune response. Such a suggestion has pre-

viously been made for viruses replicating within host

cells (Almogy et al. 2002; Coombs et al. 2003; Gilchrist

et al. 2004). Infected host cells are probed by active T

cells with non-specific T-cell receptors (TCRs) and the

number of antigens on the surface of the cell that are

recognized by these TCRs is directly proportional to the

replication rate of the virus within that cell. Hence, the

more vigorous the virus’s replication rate, the more

antigens are presented and the quicker the cell, and the

associated virus, is destroyed. Conversely, a slow

replicating virus, although not producing many new

virions, will remain ‘hidden’ from the T cells (Almogy

et al. 2002). Since pathogen fitness depends on its total

progeny output throughout the duration of an infected

cell’s life (Coombs et al. 2003), there is a trade-off

between pathogen replication and cell lifespan, mediated

by the host’s immune response.

This immunity-imposed limitation on virulence

becomes particularly important when we consider how

it interacts with the inherent time delays in the immune

response. Since, in the presence of immune memory,

highly distributed responses inevitably lead to eradica-

tion of the pathogen, host immunity may select for

increased virulence, as the pathogen makes the most of

the short-time window available before it is removed.

Hence, there may be a trade-off as far as the host is

concerned between tolerating a chronic, relatively

benign infection, or inducing an acute, but highly

pathogenic infection (such as in respiratory diseases

like SARS or influenza). Such predictions and expec-

tations necessitate the development of more appropriate

theoretical frameworks that capture the details of the

biology of the immune system, the dynamics of the

infection and the evolution of virulence for explaining

the diversity and complexity of host immunity–pathogen

interactions.

We would like to thank Andrew Read, Susan McClure and
Mark Viney for earlier discussions about this work and
three anonymous reviewers for their helpful comments on
the manuscript. A.F. was funded by a fellowship from
NERC. M.B.B. is a Royal Society University Research
Fellow.



2090 A. Fenton and others Immune delays and the evolution of virulence
REFERENCES
Ahmed, R. & Gray, D. 1996 Immunological memory and

protective immunity: understanding their relation. Science
272, 54–60.

Almogy, G., Cohen, N., Stocker, S. & Stone, L. 2002
Immune response and virus population composition: HIV
as a case study. Proc. R. Soc. B 269, 809–815. (doi:10.
1098/rspb.2001.1895)

Anderson, R. M. & May, R. M. 1992 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

Antia, R. & Koella, J. C. 1994 A model of nonspecific
immunity. J. Theor. Biol. 168, 141–150. (doi:10.1006/jtbi.
1994.1094)

Antia, R. & Lipsitch, M. 1997 Mathematical models of
parasite responses to host immune defences. Parasitology
115, S155–S167. (doi:10.1017/S003118209700200X)

Antia, R., Levin, B. R. & May, R. M. 1994 Within-host
population-dynamics and the evolution and maintenance
of microparasite virulence. Am. Nat. 144, 457–472.
(doi:10.1086/285686)

Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M. &
Ahmed, R. 2003 Models of CD8C responses: 1. What is
the antigen-independent proliferation program. J. Theor.
Biol. 221, 585–598. (doi:10.1006/jtbi.2003.3208)

Bezzi, M., Celada, F., Ruffo, S. & Seiden, P. E. 1997 The
transition between immune and disease states in a cellular
automaton model of clonal immune response. Physica A
245, 145–163. (doi:10.1016/S0378-4371(97)00290-2)

Buric, N. & Vasovic, N. 2002 Sufficiently general framework
for simple models of the net immune response. Chaos
Solitons Fractals 13, 1771–1782. (doi:10.1016/S0960-
0779(01)00187-4)

Buric, N., Mudrinic, M. & Vasovic, N. 2001 Time delay in a
basic model of the immune response. Chaos Solitons
Fractals 12, 483–489. (doi:10.1016/S0960-0779(99)
00205-2)

Cooke, K. L. & Grossman, Z. 1982 Discrete delay,
distributed delay and stability switches. J. Math. Anal.
Appl.86, 592–627. (doi:10.1016/0022-247X(82)90243-8)

Coombs, D., Gilchrist, M. A., Percus, J. & Perelson, A. S.
2003 Optimal viral production. Bull. Math. Biol. 65,
1003–1023. (doi:10.1016/S0092-8240(03)00056-9)

Culshaw, R. V., Ruan, S. G. & Webb, G. 2003 A
mathematical model of cell-to-cell spread of HIV-1 that
includes a time delay. J. Math. Biol. 46, 425–444. (doi:10.
1007/s00285-002-0191-5)

Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow,
J. F. 1998 Rates of spontaneous mutation. Genetics 148,
1667–1686.

Eisen, H. N. & Siskind, G. N. 1964 Variations in affinities of
antibodies during the immune response. Biochemistry 3,
996–1008. (doi:10.1021/bi00895a027)

Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. 2001
Imperfect vaccines and the evolution of pathogen
virulence. Nature 414, 751–756. (doi:10.1038/414751a)

Ganusov, V. V. & Antia, R. 2003 Trade-offs and the evolution
of virulence of microparasites: do details matter? Theor.
Popul. Biol. 64, 211–220. (doi:10.1016/S0040-5809(03)
00063-7)

Ganusov, V. V., Bergstrom, C. T. & Antia, R. 2002 Within-
host population dynamics and the evolution of micro-
parasites in a heterogeneous host population. Evolution 56,
213–223.

Gilchrist, M. A., Coombs, D. & Perelson, A. S. 2004
Optimizing within-host viral fitness: infected cell lifespan
and virion production rate. J. Theor. Biol. 229, 281–288.
(doi:10.1016/j.jtbi.2004.04.015)
Proc. R. Soc. B (2006)
Gourley, T. S., Wherry, E. J., Masopust, D. & Ahmed, R.

2004 Generation and maintenance of immunological

memory. Sem. Immunol. 16, 323–333. (doi:10.1016/j.

smim.2004.08.013)

Grossman, Z. et al. 1999 Ongoing HIV dissemination during

HAART. Nat. Med. 5, 1099–1104. (doi:10.1038/13410)

Iber, D. & Maini, P. K. 2002 A mathematical model for

germinal centre kinetics and affinity maturation. J. Theor.

Biol. 219, 153–175. (doi:10.1006/jtbi.2002.3079)

Inamine, A., Takahashi, Y., Baba, N., Miyake, K., Tokuhisa,

T., Takemori, T. & Abe, R. 2005 Two waves of memory

B-cell generation in the primary immune response. Int.

Immunol. 17, 581–589. (doi:10.1093/intimm/dxh241)

Kelsoe, G. 1996 Life and death in germinal centers

(redux). Immunity 4, 107–111. (doi:10.1016/S1074-7613

(00)80675-5)

Kleinstein, S. H. & Seiden, P. E. 2000 Simulating the

immune system. Comput. Sci. Eng. 2, 69–77. (doi:10.

1109/5992.852392)

Kohler, B., Puzone, R., Seiden, P. E. & Celada, F. 2000 A

systematic approach to vaccine complexity using an

automaton model of the cellular and humoral immune

system I. Viral characteristics and polarized responses.

Vaccine 19, 862–876. (doi:10.1016/S0264-410X(00)

00225-5)

Levin, B. R. & Antia, R. 2001 Why we don’t get sick: the

within-host population dynamics of bacterial infections.

Science 292, 1112–1115. (doi:10.1126/science.1058879)

Liu, W. M., Hethcote, H. W. & Levin, S. A. 1987 Dynamic

behavior of epidemiologic models with nonlinear inci-

dence rates. J. Math. Biol. 25, 359–380. (doi:10.1007/

BF00277162)

Lloyd, A. L. 2001 The dependence of viral parameter

estimates on the assumed viral life cycle: limitations of

studies of viral load data. Proc. R. Soc. B 268, 847–854.

(doi:10.1098/rspb.2000.1572)

MacDonald, N. 1978 Time lags in biological models. Lecture

notes in biomathematics, vol. 27. Berlin, Germany:

Springer.

MacDonald, N. 1989 Biological delay systems: linear stability

theory. Cambridge, UK: Cambridge University Press.

MacLennan, I. C. M., de Vinuesa, C. G. & Casamayor-

Palleja, M. 2000 B-cell memory and the persistence of

antibody responses. Phil. Trans. R. Soc. B 355, 345–350.

(doi:10.1098/rstb.2000.0571)

Mangel, M. & Bonsall, M. B. 2004 The shape of things to

come: using models with physiological structure to predict

mortality trajectories. Theor. Popul. Biol. 65, 353–359.

(doi:10.1016/j.tpb.2003.07.005)

McLean, A. R. 1995 Vaccination, evolution and changes in

the efficacy of vaccines: a theoretical framework. Proc. R.

Soc. B 261, 389–393.

Meyers, L. A., Levin, B. R., Richardson, A. R. & Stojiljkovic,

I. 2003 Epidemiology, hypermutation, within-host evol-

ution and the virulence of Neisseria meningitidis. Proc. R.

Soc. B 270, 1667–1677. (doi:10.1098/rspb.2003.2416)

Nowak, M. A. & May, R. M. 2000 Virus dynamics:

mathematical principles of immunology and virology. Oxford,

UK: Oxford University Press.

Roitt, I. & Delves, P. J. 2001 Roitt’s essential immunology, 10th

edn. Oxford, UK: Blackwell Science Limited.

Tarlinton, D. M. & Smith, K. G. C. 2000 Dissecting affinity

maturation: a model explaining selection of antibody-

forming cells and memory B cells in the germinal centre.

Immunol. Today 21, 436–441. (doi:10.1016/S0167-

5699(00)01687-X)

http://dx.doi.org/doi:10.1098/rspb.2001.1895
http://dx.doi.org/doi:10.1098/rspb.2001.1895
http://dx.doi.org/doi:10.1006/jtbi.1994.1094
http://dx.doi.org/doi:10.1006/jtbi.1994.1094
http://dx.doi.org/doi:10.1017/S003118209700200X
http://dx.doi.org/doi:10.1086/285686
http://dx.doi.org/doi:10.1006/jtbi.2003.3208
http://dx.doi.org/doi:10.1016/S0378-4371(97)00290-2
http://dx.doi.org/doi:10.1016/S0960-0779(01)00187-4
http://dx.doi.org/doi:10.1016/S0960-0779(01)00187-4
http://dx.doi.org/doi:10.1016/S0960-0779(99)00205-2
http://dx.doi.org/doi:10.1016/S0960-0779(99)00205-2
http://dx.doi.org/doi:10.1016/0022-247X(82)90243-8
http://dx.doi.org/doi:10.1016/S0092-8240(03)00056-9
http://dx.doi.org/doi:10.1007/s00285-002-0191-5
http://dx.doi.org/doi:10.1007/s00285-002-0191-5
http://dx.doi.org/doi:10.1021/bi00895a027
http://dx.doi.org/doi:10.1038/414751a
http://dx.doi.org/doi:10.1016/S0040-5809(03)00063-7
http://dx.doi.org/doi:10.1016/S0040-5809(03)00063-7
http://dx.doi.org/doi:10.1016/j.jtbi.2004.04.015
http://dx.doi.org/doi:10.1016/j.smim.2004.08.013
http://dx.doi.org/doi:10.1016/j.smim.2004.08.013
http://dx.doi.org/doi:10.1038/13410
http://dx.doi.org/doi:10.1006/jtbi.2002.3079
http://dx.doi.org/doi:10.1093/intimm/dxh241
http://dx.doi.org/doi:10.1016/S1074-7613(00)80675-5
http://dx.doi.org/doi:10.1016/S1074-7613(00)80675-5
http://dx.doi.org/doi:10.1109/5992.852392
http://dx.doi.org/doi:10.1109/5992.852392
http://dx.doi.org/doi:10.1016/S0264-410X(00)00225-5
http://dx.doi.org/doi:10.1016/S0264-410X(00)00225-5
http://dx.doi.org/doi:10.1126/science.1058879
http://dx.doi.org/doi:10.1007/BF00277162
http://dx.doi.org/doi:10.1007/BF00277162
http://dx.doi.org/doi:10.1098/rspb.2000.1572
http://dx.doi.org/doi:10.1098/rstb.2000.0571
http://dx.doi.org/doi:10.1016/j.tpb.2003.07.005
http://dx.doi.org/doi:10.1098/rspb.2003.2416
http://dx.doi.org/doi:10.1016/S0167-5699(00)01687-X
http://dx.doi.org/doi:10.1016/S0167-5699(00)01687-X

	Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence
	Introduction
	Baseline pathogen-immune system model
	Incorporating immune memory
	The evolution of pathogen virulence
	Discussion
	We would like to thank Andrew Read, Susan McClure and Mark Viney for earlier discussions about this work and three anonymous reviewers for their helpful comments on the manuscript. A.F. was funded by a fellowship from NERC. M.B.B. is a Royal Society Un...
	References


