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Odours emitted by flowers are complex blends of volatile compounds. These odours are learnt by flower-

visiting insect species, improving their recognition of rewarding flowers and thus foraging efficiency. We

investigated the flexibility of floral odour learning by testing whether adult moths recognize single

compounds common to flowers on which they forage. Dual choice preference tests onHelicoverpa armigera

moths allowed free flying moths to forage on one of three flower species; Argyranthemum frutescens

(federation daisy), Cajanus cajan (pigeonpea) or Nicotiana tabacum (tobacco). Results showed that, (i) a

benzenoid (phenylacetaldehyde) and a monoterpene (linalool) were subsequently recognized after visits to

flowers that emitted these volatile constituents, (ii) in a preference test, other monoterpenes in the flowers’

odour did not affect the moths’ ability to recognize the monoterpene linalool and (iii) relative preferences

for two volatiles changed after foraging experience on a single flower species that emitted both volatiles.

The importance of using free flying insects and real flowers to understand the mechanisms involved in

floral odour learning in nature are discussed in the context of our findings.
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1. INTRODUCTION
Floral odour learning by insects serves as a model system

for understanding how animals process complex environ-

mental stimuli (Joerges et al. 1997; Sadek et al. 2002;

Hansson et al. 2003). Each flower species produces a

unique scent, comprising an intricate blend of low-

molecular weight compounds (volatiles; Dudareva &

Pichersky 2000). Learning of these odours by nectar

foraging insects can improve their recognition of flower

species on which they have previously found rewards

(Gould 1993). Different flower species often share many

volatile components (Dudareva & Pichersky 2000, Bruce

et al. 2005), but their combination and concentration is

unique to each species, forming an ‘odour code’. Under-

standing how this code is learnt presents a major challenge

in insect neurophysiology and behaviour (Galizia &

Menzel 2000b).

New techniques have recently led to significant

advances in our understanding of odour processing,

particularly in honeybees (Galizia & Menzel 2000a;

Menzel & Giurfa 2001; Menzel et al. 2005) and moths

(Carlsson & Hansson 2003; Hansson et al. 2003;

Masante-Roca et al. 2005). In insect antennal lobes,

complex floral odours elicit unique patterns of excitation,

which are specific to the combinations of volatiles present

(Joerges et al. 1997; Galizia & Menzel 2000a) and their

concentrations (Carlsson & Hansson 2003). These

patterns can also be modulated through associative

learning (Faber et al. 1999; Galizia & Menzel 2000a)
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and may represent a coding mechanism that underlies

floral blend recognition (Galizia & Menzel 2000a;

Carlsson et al. 2002).

Flowers of a single species, however, can vary markedly

in the presence and concentration of volatile components

(Loughrin et al. 1992; Shaver et al. 1997; Kolosova et al.

2001; Pichersky & Gershenzon 2002; Raguso et al. 2003).

Thus, for insects to use information gained from odour

learning, their recognition system must be sufficiently

flexible to cope with this variation. This raises the crucial

question of how many volatiles and how much of each

volatile needs to be present for an insect to recognize a

particular species (Galizia & Menzel 2000b).

We investigated flexibility of odour learning and

perception in experiments with the moth Helicoverpa

armigera (Hübner; Lepidoptera: Noctuidae) foraging on

three different flower species; Argyranthemum frutescens

(federation daisy), Cajanus cajan (pigeonpea) or Nicotiana

tabacum (tobacco). Specifically, we tested the moths’

recognition of single volatile components from rewarding

flowers, by comparing (i) moths conditioned on flowers

with those of unconditioned moths, for preference of

volatile components, (ii) the moths’ ability to recognize

the monoterpene linalool in flowers with a single versus a

number of monoterpenes in their odour and (iii) the

moths’ preferences for two volatile constituents of a single

flower after foraging experience versus preferences of

unconditioned moths.

Throughout, we extended earlier studies (Meiners et al.

2003) by conditioning and testing free flying moths on real

flowers, in a wind tunnel. We thus look specifically at how

the moths perceive odours in a more natural context,
q 2006 The Royal Society
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where odours do not exist in isolation, but as a complex of

sensory cues, associated with the visual, gustatory and

tactile features of the flower (Kelber et al. 2002; Raguso &

Willis 2002).
2. MATERIAL AND METHODS
Helicoverpa armigera moths were reared from a laboratory

culture (maintained at Queensland Department of Primary

Industries, Toowoomba, Australia), using a soyflour based

artificial diet. Pupae were sexed and male moths were placed

in a separate holding cage until eclosion. Newly emerged

adult males were transferred to sealed 450 ml diameter plastic

containers 2 h before sunset each day in order to obtain

discrete age groups. We used only male moths in experiments

to avoid possible interactions that may occur in female moths

as a result of attraction to host odours for oviposition.

We initially selected plant species on the basis of previous

daytime odour samplings, which had shown the presence of

either phenylacetaldehyde or linalool, but not both odours, in

the floral profile. N. tabacum and C. cajan were cultivated

from seed under glasshouse conditions and A. frutescens were

obtained as flowering plants (Bunnings, Queensland,

Australia). We used volatile-trapping techniques followed by

GC–MS analysis to characterize the odours emitted by flowers,

which were cut not more than 1 h before the start of the

experiment and kept hydrated in floral foam (Smithers-Oasis

Ltd) until sampled (NZ5 samplings for each flower species).

For odour sampling, six to ten pigeonpea flowers, tobacco

flowers or daisy inflorescences were placed in a conical flask

enveloped in aluminium foil, allowing sufficient space above the

flowers to accommodate a Solid Phase Micro Extraction

(SPME) fibre. Samplings onto a 100 mm polydimethylsiloxane

fibre (Supelco) were obtained over a 2 h period in the early

evening. SPME fibres were desorbed into the GC–MS the

following day. We classed the absence of an odour as one that

could not be detected at a level of 0.01% of the total area of the

gas chromatogram.

(a) Conditioning experiments

In all experiments we used 3 day old moths which had been

deprived access to food or water. To determine feeding

responsiveness prior to conditioning, the antenna of the moth

was gently touched with a cotton wool bud soaked in 25% w/v

sucrose solution. Moths that extended their proboscis once

the cotton wool bud had made contact with an antenna were

treated as being motivated to feed. Only these moths were

used in conditioning trials. Each moth was only used once.

Conditioning treatments and dual-choice preference tests

were carried out in a wind tunnel with a central Perspex flight

chamber measuring 1600!650!650 mm (see Cunningham

et al. (2004) for details). A laminar flow of clean air was

circulated using a fan system through the flight chamber at

0.7 m sK1. All preference trials commenced 15 min after

sunset and were confined to a 90 min testing period in order

to correspond with natural peak feeding hours forH. armigera

(Topper 1987). Moths were exposed to changing ambient

light conditions associated with sunset and temperature was

held at 27 8C. Additional overhead lighting was supplied in

order to monitor moth activity, holding light intensity in the

flight chamber at 1 lux.

Odour sources (lures hereafter) were created by inserting

an absorbent cotton wool plug to a depth of 25 mm below the

wide end (5 mm diameter) of a 145 mm glass pipette; 2 ml of
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either phenylacetaldehyde or linalool solution (equivalent to

0.004 ml of pure odour) were pipetted onto the cotton wool

no more than 2 min before the start of each preference test.

Fresh lures were used in each test. We used the odours

linalool (racemic, 95% purity, Sigma-Aldrich reagents),

phenylacetaldehyde (90% purity Sigma-Aldrich reagents)

and b-caryophyllene (CA Aromatics Company, more than

80% purity) in the conditioning experiments; 2 ml of the

volatile were added to 1 ml of paraffin oil to create a 0.2% v/v

solution.
(b) Experiment 1: can moths recognize individual

volatiles from learnt floral odours?

We tested whether foraging experience on different flowers

influenced H. armigera preference for two odours; linalool

(a monoterpene) and phenylacetaldehyde (an aromatic

compound) compared to moths with no flower foraging

experience. Pigeonpea and tobacco odours contain the

volatile linalool (and not phenylacetaldehyde) and federation

daisy odour contains the volatile phenylacetaldehyde (and not

linalool), allowing us to investigate whether moths could

recognize individual volatiles from learnt floral odours. By

testing the response to linalool in moths conditioned on two

flower species (pigeonpea and tobacco), we aimed to

investigate whether the ability to recognize a volatile might

be influenced by odour profile of the flower, in particular by

the number of monoterpene constituents present.

Flowers were clipped to the top of wooden splints, holding

them at a height of 10 cm above the floor of the wind tunnel.

A single tobacco flower, a daisy inflorescence or two

pigeonpea flowers were used for each conditioning treatment,

using new flowers in each trial (to allow for size differences).

We placed a sucrose feeding source on flowers to provide a

feeding site for moths and avoid foraging biases, which may

result from differences in handling times (Laverty 1994).

Feeding sources were cotton wool wicks immersed in sucrose

solution (25% w/v) and were placed either at the entrance to

the corolla in tobacco flowers, on the top of the daisy

inflorescence or suspended between two adjacent pigeonpea

flowers. All moths located and fed on the sucrose source upon

alighting.

We carried out conditioning trials by placing an individual

moth on the flower and allowing a 30 s feeding bout

(identified as contact of the extended proboscis with the

sucrose wick). After 30 s, we removed the moth using a

wooden toothpick and placed it 400 mm directly downwind

from the flower. Moths were then allowed to fly freely back to

the flower. Upon contact with the sucrose wick, we allowed

each moth to feed for a further 20 s before returning it to the

downwind starting position. We repeated this process until

moths had been given a total of four feeding visits; one initial

30 s feed and 3!20 s return feeds.

We tested for odour preferences in a dual-choice test using

the volatiles phenylacetaldehyde and linalool, presented in

odour lures. The lures were placed 300 mm apart at the

upwind end of the wind tunnel, with the lure mouth at a

height of 100 mm. Prior smoke tests (titanium tetra-chloride)

showed that these plumes remained separate within the wind

tunnel. Two perspex wedges were placed at the downwind

end of the wind tunnel bringing odour plumes together at a

distance of 800 mm from the lures and leaving a 200 mm gap

through which the odours were directed into the rear 350 mm

portion of the flight chamber.
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Figure 1. Typical gas chromatograms for volatile odours released from (a) C. cajan (pigeonpea) (b) N. tabacum (tobacco) and
(c) A. frutescens (federation daisy), collected over a 2 h period commencing at dusk. Identified compounds: 1, linalool; 2,
phenylacetaldehyde; 3, b-caryophyllene; 4, a-pinene; 5, b-myrcene; 6, limonene.
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Volatile preferences of each moth were tested immediately

following the conditioning treatment. Odour lures were

placed in position only when moths were in the 350 mm

long section at the downwind end of the wind tunnel (where

both the plumes had merged). If a moth remained in the

upwind end of the tunnel after a 2 min period, it was caught

and released downwind once the lures were in position.

Preference for a volatile was seen as upwind flight to within

100 mm of a lure. If moths failed to approach either lure

within a 10 min period, we terminated the test and recorded

this as an aborted trial. The position of the flower in the

conditioning trials (centrally placed) differed from that of

either lure in the preference trials (200 mm from either the

right or left hand side wall) to prevent positional effects or

biases. We continued tests until 20 moths from each

treatment group flew to an odour source. We tested the

preference of unconditioned moths for the odours phenyl-

acetaldehyde and linalool. These moths had not been given

foraging experience on flowers (no conditioning trials). Lures

were constructed and positioned as in the volatile preference

test. Male H. armigera moths were tested individually,

releasing each moth into the downwind end of the wind

tunnel.
(c) Experiment 2: does flower foraging change

the moths’ relative preference for different volatiles

within the floral odour?

Tobacco flowers (N. tabacum) are known to emit the volatile

constituents linalool and b-caryophyllene in their odour profile

(Loughrin et al. 1990). Here, we tested whether flower visiting

led to any subsequent changes in the insect’s relative preference

for these two volatiles. We used the same method for volatile

preference tests as in Experiment 1, this time using the volatiles

linalool and b-caryophyllene in lures.We tested the preferences

of 60 moths for linalool versus b-caryophyllene where (i) 30

moths were given no conditioning trials (using the methods for

testing unconditioned moths in Experiment 1) and (ii) 30

moths were conditioned on tobacco flowers (usingmethods for

conditioning trials in Experiment 1).
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It is conceivable that a ‘no preference’ result in this

experiment could occur if moths were physiologically unable

to distinguish between the two odours used in the preference

test (Laloi et al. 2000; Daly et al. 2001). We investigated this

by conditioning moths (NZ10 per odour treatment) to either

linalool or b-caryophyllene using the same regime as in flower

conditioning trials (see Cunningham et al. (2004) for further

details).
(d) Statistical analysis

Data were analysed using generalized linear modelling

techniques (McCullagh & Nelder 1989) in the GLIM

statistical package (Crawley 1993). Choice test outcomes

were analysed as proportions (G-test) and within treatment

odour preferences were determined using a c2 test.
3. RESULTS
(a) Flower odour profiles

Odour profiles taken from 2 h evening samples of the three

flower species used in Experiment 1 (figure 1) showed the

presence of the volatile phenylacetaldehyde and absence of

linalool in daisy flowers (A. frutescens) and the absence of

phenylacetaldehyde and presence of linalool in tobacco

(N. tabacum) and pigeonpea (C. cajan) flowers. The

concentration of b-caryophyllene in tobacco flowers was

found to be 10.5 (G1.15) times greater than linalool in

tobacco flowers (NZ5 samplings of 6–10 flowers; see

figure 1b).
(b) Experiment 1: can moths recognize individual

volatiles from learnt floral odours?

In Experiment one, we tested the preference of 80 male

H. armigeramoths for linalool versus phenylacetaldehyde,

over a period of 31 days, obtaining preferences for 20

moths per treatment. Details of numbers conditioned and

tested in each conditioning treatment and lure choices of

moths in each treatment are displayed in figure 2.
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Figure 2. Proportion of maleH. armigera selecting linalool (of
total number of moths selecting either linalool or phenylace-
taldehyde) following conditioning on C. cajan, N. tabacum,
A. frutescens or after no conditioning. Numbers of moths
responding to odours after training (total number trained in
parentheses) are presented under conditioning treatments
(not applicable for no conditioning trial). Symbols within
bars denote whether proportions were significantly different
from 0.5 (equal preference; ��p!0.005; n.s., not significant).
Bars with different letters denote significant differences
between treatments (p!0.005), common letters are not
significantly different (pO0.05).
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Figure 3. Proportion of male H. armigera selecting linalool
(of total number of moths selecting either linalool or
b-caryophyllene) following conditioning on N. tabacum,
pure linalool, pure b-caryophyllene or after no conditioning.
Numbers of moths responding to odours after training (total
number trained in parentheses) are presented under con-
ditioning treatments (not applicable for no conditioning
trial). Symbols within bars denote whether proportions were
significantly different from 0.5 (equal preference; ��p!0.001;
�p!0.05; n.s., not significant). Between treatment differ-
ences are displayed above bars.
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Flower feeding experience had a significant effect on

the volatile lure approached by H. armigera moths

(c2
2Z47.09; p!0.001, figure 2). In all cases, once moths

had been conditioned on a flower, they showed a

significant preference for the volatile present in the floral

odour (daisy: c1
2Z19.79, p!0.001; tobacco: c1

2Z19.79,

p!0.001; pigeonpea: c1
2Z10.82, p!0.005) and a signifi-

cant difference in preference compared to unconditioned

moths (daisy: c1
2Z11.39, p!0.001; tobacco: c1

2Z11.39,

p!0.001; pigeonpea: c1
2Z5.81, p!0.025). In preference

tests, moths conditioned on tobacco showed no significant

difference in preference for linalool compared to moths

conditioned on pigeonpea (c1
2Z1.16, pO0.05; figure 2).

Our results therefore did not provide any evidence that the

odour profile of the flower might influence the ability to

learn one of the (monoterpene) constituents. The number

of moths that did not respond to either volatile during the

preference tests (aborted trials) was not statistically

significant between flowers (c1
2Z1.17, pO0.05). The

difference in ‘no choice’ moth counts between flower

feeding and lure feeding experiments was statistically

significant (c1
2Z13.11, p!0.001).
(c) Experiment 2: does flower foraging change

the moths’ relative preference for different volatiles

within the floral odour?

We conditioned 30 male moths on tobacco flowers and

tested their preference for linalool versus b-caryophyllene,
over a period of 23 days. The relative preferences for the

two volatiles in conditioned moths was compared to the

volatile preferences of 30 unconditioned moths to

investigate whether flower foraging experience could

alter relative preferences for volatile components present

in a floral odour. Details of numbers conditioned and

tested in each conditioning treatment and lure choices for

each moth are displayed in figure 3.
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Foraging experience on tobacco flowers resulted in

significantly different preferences for linalool versus

b-caryophyllene, compared to moths with no experience

(c1
2Z24.6, p!0.001). Unconditioned moths showed a

significant preference for linalool (c1
2Z22.08, p!0.001)

whereas moths conditioned on tobacco flowers showed a

significant preference for b-caryophyllene (c1
2Z4.94,

p!0.05). We confirmed the ability for moths to

distinguish between linalool and b-caryophyllene odours

by carrying out conditioning trials on the individual

volatiles. When conditioned on a single volatile, all

moths showed a significant preference for the learned

volatile compared to the volatile that the insect had not

been conditioned on (figure 3; c1
2Z27.73, p!0.001).
4. DISCUSSION
Moths showed an increased preference for the single

volatiles present in the odours of flowers on which they had

foraged. Volatile recognition was demonstrated for a

benzenoid (phenylacetaldehyde) present in A. frutescens

(federation daisy) and for a monoterpene (linalool)

present inN. tabacum (tobacco) and C. cajan (pigeonpea).

Individual odour components were therefore recognized

by H. armigera in isolation from the blend in which they

were learnt. This ability for insects to recognize individual

compounds using simple artificial blends has recently

been demonstrated in laboratory experiments on Hyme-

noptera (Meiners et al. 2003). Here, we demonstrate,

using free flying moths and real flowers, that recognition is

not confined to experiments using such blends and may

underlie a process that occurs naturally during foraging

behaviour.

No differences were found in the preference for the

volatile linalool, when learnt through foraging on pigeonpea

flowers compared with tobacco. GC–MS showed that

tobacco had just one monoterpene (linalool) and one
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sesquiterpene (b-caryophyllene). By contrast, linalool was

one of four identified monoterpenes and a complex of

sesquiterpene odours (including b-caryophyllene) in

pigeonpea. These monoterpenes are all known to

stimulate physiological activity in H. armigera in electro-

antennogram analyses (Burguiere et al. 2001), and studies

on the noctuid mothHeliothis virescens (which has a similar

host range to H. armigera) have demonstrated that adults

can discriminate between learnt monoterpenes, even

when they activate the same receptor neurone type (Skiri

et al. 2005). Together, these studies suggest that each

monoterpene represents a different olfactory signal to the

moth. Despite differences in the number of such

‘monoterpene signals’ that would be evoked by pigeonpea

and tobacco, moths showed equal ability to learn linalool.

However, the extent by which pigeonpea odour is more

‘complex’ than tobacco to H. armigera is uncertain,

particularly as moths are capable of extreme odour

sensitivity, below the level which can be recorded by

GC–MS methods (Angioy et al. 2003).

Following flower foraging experience, the moths’

relative preference for two volatiles was shown to change

significantly when both volatiles were present in the learnt

odour.Moths without flower foraging experience showed a

significant preference for linalool over b-caryophyllene.
Following experience on tobacco flowers (containing both

odours), moths preferred b-caryophyllene. This indicates

that learning of odours involves individual changes in the

recognition or perception of volatile components. The

concentration of b-caryophyllene in tobacco flowers was

ten times greater than linalool, and this may have increased

learning for b-caryophyllene. Increased odour concen-

tration has been shown to improve odour learning and

discrimination in studies with artificial volatiles (Wright &

Smith 2004; Skiri et al. 2005). Alternatively, a learning bias

may exist within the insects’ nervous system (Laloi et al.

2000), eliciting greater learning for b-caryophyllene
compared to linalool.

Our results support the prediction that for insects to

forage optimally, recognition of odours emitted by learnt

flower species must be flexible. Moths demonstrated

recognition of single odour components, thereby demon-

strating simple representation of a complex blend. If

odour blend learning influences the response towards

individual volatiles or blends (Paldi et al. 2003), learning

of one flower species may thus influence preferences

towards species with shared common volatiles. This

implies that the preferences of foraging insects for known

and novel flowers species may be highly dynamic, unique

to each individual and shaped by a history of flower visits.
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