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Humans Can Adopt Optimal Discounting
Strategy under Real-Time Constraints
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Critical to our many daily choices between larger delayed rewards, and smaller more immediate rewards, are the shape
and the steepness of the function that discounts rewards with time. Although research in artificial intelligence favors
exponential discounting in uncertain environments, studies with humans and animals have consistently shown
hyperbolic discounting. We investigated how humans perform in a reward decision task with temporal constraints, in
which each choice affects the time remaining for later trials, and in which the delays vary at each trial. We
demonstrated that most of our subjects adopted exponential discounting in this experiment. Further, we confirmed
analytically that exponential discounting, with a decay rate comparable to that used by our subjects, maximized the
total reward gain in our task. Our results suggest that the particular shape and steepness of temporal discounting is
determined by the task that the subject is facing, and question the notion of hyperbolic reward discounting as a
universal principle.
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Introduction

In the limited amount of time available before nighttime,
winter, or retirement, we need to make a large number of
choices to maximize our total reward gain. In particular,
when choosing between a larger, but delayed, reward, and a
smaller, but more immediate reward, we compare the values
associated with each reward, and choose the reward associ-
ated with the larger value [1]. Critical to these choices are the
shape and the steepness of the reward values, which monotoni-
cally decrease as a function of the delay: the rewards are said
to be discounted as a function of the delays (Figure 1A).

Two main classes of models that characterize the shape of
reward discounting have been proposed: exponential [2-4]
and hyperbolic [5-13]. Although researchers in artificial
intelligence favor exponential discounting in uncertain
environments, e.g., [4,14,15], all behavioral studies that have
directly compared the two types of discounting in animals or
humans have concluded that hyperbolic discounting better
fits delayed reward choice data than does exponential
discounting, e.g., [6-8,16-18].

In exponential discounting, the reward value V is given by:

V=R exp(—kD), (1)

where R is the reward magnitude, D the delay, and k& > 0 the
decay rate. This equation is equivalently given by:

V= RYD7 (2)

where 7 is the discount factor (0 <y < 1), and y = exp(—k); we
note here that a large decay rate corresponds to a small
discount factor and vice versa. Because of constant decay
rate, exponential discounting is “rational,” as it predicts
constant preference.

Typical human studies are questionnaire-based: subjects
are asked to make a number of choices between small
immediate rewards and larger rewards weeks, months, or
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years in the future, after thinking about the consequences of
each alternative [19] (but see [20]). In these studies, the
hyperbolic discounted reward value is given by:

V =R/(1+ KD),with k> 0, (3)

In animal studies, animals are trained to make repeated
reward choices, and experience both delays (on the order of a
few dozen seconds) and rewards. Assuming a constant inter-
trial interval (ITI), if the animal consistently makes a choice
that gives the same reward R after the same delay D, the
average reward rate is the hyperbolic function of the delay
[21]:

V=R /(T+ D), with T > 0, (4)

where T is the sum of all times except the delay in each trial
(T is often equal to the ITI), and V the reward value. Because
of the decreasing decay rate as a function of delay [22],
hyperbolic discounting has been termed “irrational,” as it
predicts preference reversal and impulsive choice (Figure 1B).
For instance, an individual may prefer one apple today to two
apples tomorrow, but at the same time prefer two apples in
51 days to one apple in 50 days [23]. Hyperbolic discounting is
often presented as a struggle between oneself and one’s alter
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ego in the future, or similarly, between a myopic doer and a
farsighted planner—see [23,24].

In what situations is it theoretically advantageous to make
delayed reward choices based on exponential or hyperbolic
discounting? Exponential discounting maximizes total gain in
situations of constant probability of reward loss per unit
time, and exact estimate of the time of the future reward
delivery—see [21,25]. Because hyperbolic discounted value, as
given by Equation 4, is the reward rate, it maximizes the total
gain in situations of constant delays at each trial (with no
reward loss and with an exact estimate of the time of future
reward delivery).

But does hyperbolic discounting maximize the total gain in
foraging-like situations, that is, in situations of repeated
forced choices with varying delays to the rewards, constant
ITI, and limited total time? In these situations, the hyperbolic
discounting model maximizes the instantaneous reward rate.
But, as the trials are not independent from each other,
hyperbolic discounting may not maximize the average reward
rate, and thus the total gain. For instance, in a relatively
unfavorable trial with long delays to both rewards, although
hyperbolic discounting may favor the large reward, pursuing
the small more immediate reward may result in a smaller
overall decrease of the average reward rate. By choosing the
small but less-delayed reward, the subject can quickly move to
the next (hopefully) more favorable trials. Thus, we hypothe-
size that, in these situations, a discounting strategy that values
rewards with longer delays less than hyperbolic discounting,
as exponential discounting does (see Figure 1A), would
maximize total gain.

The steepness of discounting specifies how far in the future
delayed rewards should be considered. A large decay rate
biases individuals to acquire small and more immediate
rewards. Individuals with impulse-control disorders, as well as
heroin-, alcohol-, cigarette-, and cocaine-addicted individu-
als, have steeper discounting functions than controls [10,26-
29]. A small decay rate promotes the acquisition of large and
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more delayed rewards. Yet, individuals must obtain some
rewards in time; for instance, an animal must find food before
it starves, or before it is exhausted, or before winter arrives.
Thus, the discount rate should be carefully adjusted to
maximize total gain in task situations of repeated forced
choices with varying delays to the rewards and limited total
time [14,15].

Here, we designed a task that mimics animal foraging to
study whether humans could adopt a discounting function
whose shape and steepness maximize total gain. At each trial,
subjects had to choose between a smaller more immediate
reward (5 Japanese yen, about US$.05) and a larger delayed
reward (20 Japanese yen, about US$.20), with varying
experienced delays to the rewards, and fixed ITI. To avoid
subjects trying to compute explicit reward ratios, or other
objective measures of reward discounting, we did not provide
direct access to the delay. Instead, subjects had to select, at
each trial, between one of two squares made of 100 small
patches (Figure 2). The stimulus color (white- or yellow-)
coded for the monetary reward amount (5 Japanese yen and
20 Japanese yen). At each trial, the initial number of black
patches in the white stimulus indicated the small delay Dy,
and the initial number of black patches in the yellow stimulus
indicated large delay D;. The subject was then prompted to
choose one of the two stimuli: the stimulus that had been
selected in the previous step showed more filled patches, and
the other stimulus was identical to that of the previous step.
The stimuli were always displayed for one time step (1.5 s).
This chain of events was repeated until either square was
completely filled. Then a display of the acquired reward was
shown during ITI = 1.5 s (see Figure 2).

In the experiment, total time was limited to five sessions of
210 s each, separated by 15 s to give the subject some rest
time. Thus, each subject had 700 steps (210 s * 5 sessions / 1.5
s) available to maximize the total reward. Because the subjects
performed a minimum of one training session of equal
duration before the experiment, they were highly familiar
with the task. Subjects were compensated by the total reward
earned at the end of the experiment.

Results

With data from all trials, we first constructed Dg versus Dy
scatter plots for each subject (Figure 3A). We first classified
subjects’ choices with a logistic regression model (see
Materials and Methods). All models were significant (p <
0.05), and gave a good fit to the data: R2__logit = 0.55 = 0.11
SD. An “indifference line,” for which there is equal
probability to take either reward, divides the rectangular
delay space into two trapezoids (see Figure 3): in the area
above the indifference line, the delays D, are long, and
subjects tend to select small rewards. Conversely, in the area
below the indifference line, subjects tend to select large
rewards. The average slope of the indifference line for all
subjects was 1.1 = 0.51 SD. Thus, on average, subjects made
choices with an indifference line that is much closer to that of
an exponential model—the theoretical slope is equal to 1 and
independent of the rewards—than that of a hyperbolic
model—the theoretical slope is equal to the ratio of the
large reward to the small reward, i.e., % =4 in our experi-
ment (see Materials and Methods).

Then, we directly fit the exponential model (Equation 2)
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Figure 1. Hyperbolic and Exponential Reward Discounting Models

(A) Hyperbolic versus exponential reward discounting models as a
function of the delay to the reward for two different sets of steepness
parameters. The hyperbolic model has an initial steep decay followed by
a flatter “tail”; thus, delayed rewards are less discounted with hyperbolic
models than with exponential models.

(B) Preference reversal, which is commonly observed in humans and
animals, is predicted by the hyperbolic model and is due to a decrease in
the decay rate as the delay increases. Initially (at time 0), the large reward
has a higher value than the small reward, and is therefore preferred. As
the small reward draws near, the preference shifts to the small reward.
The exponential model, which has a constant decay rate, does not
predict preference reversal.

doi:10.1371/journal.pcbi.0020152.g001

and the hyperbolic model (Equations 3 and 4) to the choice
data (see Materials and Methods). In each case, two
parameters were estimated: y and P, which controls the
variability of reward choice, for the exponential model, K and
B for the first hyperbolic model (Equation 3), and T and f for
the second hyperbolic model (Equation 4). The exponential
model fit gave: y = 0.77 * 0.035 SD and f = 7.3 £ 2.4 SD.
Hyperbolic model fits gave K=2.6 = 0.94 SD and B=13.8 =
3.6 SD, and T=0.30 = 0.34 SD and B=7.3 * 3.0 SD. As can be
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seen in Figure 3B, the average indifference line obtained with
the exponential model (i.e., with y = 0.77, which corresponds
to a decay rate k = 0.26) is close to that obtained with the
logistic regression model above (compare with the line
obtained with the hyperbolic model of Equation 4).

To evaluate the goodness of fit between the different two-
parameter models, we computed the negative logarithm of
the likelihood (F), also called the cross entropy error
function, which is smaller for better-fitting models. Results
from all subjects gave £ = 94.6 = 24 SD for the logistic
regression model, E=107 * 25 SD for the exponential model,
E =161 = 32 SD for the first hyperbolic model (Equation 3),
and E = 155 £ 31 SD for the second hyperbolic model
(Equation 4). A two-tail t-test showed that E for the two
hyperbolic models were not significantly different (p = 0.47),
indicating that both models fit the data equally well (this gives
validity to our optimization method, as rescaling of one
equation leads to the other equation). A two-tail t-test showed
that E for the exponential model was significantly smaller
than that for the hyperbolic models (p < 0.005 for both
hyperbolic models), indicating that the exponential model
better fits the data.

The generalized hyperbolic model has been proposed to be
a better model of delayed reward discounting than simple
hyperbolic discounting [30]. The generalized hyperbolic
discounting model is given by:

V=RI14AD)™ "™ with &, v > 0, 5)

where the A coefficient determines how much the function
departs from exponential discounting. In the limit, as A goes
to zero the function becomes the exponential discounting
model V=R exp(—vD). Fitting this model to the data gave: A=
0.28 = 0.73 SD, v=0.54 £ 0.74 SD, =129 = 14.2 SD, and E
= 101 £ 23.1 SD. Despite the increase in the number of
parameters from two to three, and although E appears to be
slightly lower for the generalized hyperbolic model than for
the exponential model, a two-tail t-test shows that the
difference is not significant (p = 0.46). The slope of the
indifference line for this model was 1.42 = 0.79 SD.
Interestingly, for 14 subjects, the coefficient A was very close
to zero, and the slope of the indifference line was between 1
and <1.0001, indicating pure exponential discounting for
most subjects. The slope of the indifference line for four
subjects was less than 2.5 (S10: 1.8, S14: 2.4, S17: 2.0, and S20
1.4), indicating near exponential discounting for these
subjects. The slope for the last two subjects (S3: 3.5, and
S16: 3.2) was close to the ratio of the large to the small reward,
that is, 4, indicating discounting closer to hyperbolic
discounting for these subjects.

Next, we estimated the coefficients of a semiparametric
value model with exponential basis functions (see Materials
and Methods). Because integrating the exponential discount-
ing function with respect to the decay rate k from 0 to infinity
yields a hyperbolic function of the delay D, a sum of several
exponentials with different decay rates approximates a
hyperbola [31]. Thus, if a number of coefficients in the
semiparametric model are positive, subjects would discount
reward approximately hyperbolically. In contrast, if only one
or a few nearby coefficients are positive, then subjects would
discount reward exponentially. Figure 4 shows that the
distribution of coefficients was sparse: all subjects exhibited
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Figure 2. Experimental Task

At each trial the subject must select either a white or a yellow mosaic
after the fixation cross turns red (“Go” signal). Each button press (green
disk) adds a number of colored patches to the selected mosaic. In the
example shown here, if the white mosaic is selected, the subject receives
5 yen in two steps of 1.5 s each. If the yellow mosaic is selected, the
subject receives 20 yen in four steps. The position of the squares (left or
right) was changed randomly at each step. For each trial, the initial
numbers of black patches for both mosaics were randomly drawn from
uniform distributions, and indicated different delays. The ITI, which
corresponds to the reward display, was fixed (one time step). Thus, just
after the reward display, a new trial began. The subjects had a total of
700 time steps to maximize their total gain.
doi:10.1371/journal.pcbi.0020152.g002

a single narrow first peak (peak width: 0.050 = 0.008 SD
sec ). Further, the average decay rate was 0.25 * 0.06 SD
sec”! (a very similar average decay rate was obtained with the
direct exponential fit method—see above), with a sharp
distribution ranging between 0.13 and 0.35 sec '. For 13
subjects, this peak was the only peak, indicating pure
exponential discounting. For seven subjects the first peak
was followed by a prominent second peak; two of these
subjects had a secondary isolated peak (near k = 0.75 sec b,
and for five of these subjects, a higher frequency component
appeared at k = 1 sec ' (e.g., subject 3). This method
confirmed the results of the generalized hyperbolic model
fit, as 13 subjects were identified as pure exponential
discounters by both methods.

In our experiment, the subjects gained an average of 1840
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Figure 3. Reward Choice as a Function of Delays

(A) Example of a subject’s reward choice as a function of delays. At each
trial, the subject had the choice between a large reward R; and a small
reward Rs. The indifference line (solid line) was obtained with a logistic
regression model (see Materials and Methods).

(B) Comparison of average indifference lines derived from the experi-
ment with the theoretical indifference line that maximizes total gain in
the experiment. Black solid line: average indifference line for all subjects
obtained with the logistic regression model. Dotted blue line: average
indifference line for all subjects obtained by fitting an exponential
discounting model (the slope of the indifference line is 1). Dash-dotted
red line: average indifference line for all subjects obtained by fitting a
hyperbolic model (the slope of the indifference line is 4). Dashed green
line: theoretical indifference line that maximizes the total gain in the
experiment (the slope of the indifference line is 1).
doi:10.1371/journal.pcbi.0020152.g003

* 71 SD yen. Could the subjects have earned more if they had
adopted different decision lines? In other words, were the
subjects’ choices optimal with regard to maximizing their
total gain? To answer this question, we estimated the
indifference line that yields the maximum theoretical total
reward in our experimental setting, independently of any
particular model (hyperbolic or exponential). We first
computed the expected reward rate—the “value” V (see
Materials and Methods). Then, we computed the maximum
expected reward rate Vmax, by computing the two partial
derivatives of the expected reward rate with respect to the
slope a and the intercept b of the indifference line D;, = aD, +
b. A maximum of V is obtained when both partial derivatives
are equal to zero.

We found only one (real number) solution with respect to
the slope a of the indifference line, @ = 1, and one (real
number) solution for the intercept that maximizes V, b= 6.93.
Furthermore, taking into account the ITI, the intercept
corresponds to an exponential decay rate of k = 0.25
(discount rate 0.77), very close to the average decay rate of
our subjects (average decay rate found with the exponential
model: k= 0.26). Thus, our analytical analysis shows that the
theoretical indifference line is very close to the lines obtained
with the logistic regression model fit and with the exponential
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Figure 4. Coefficients of the Exponential Basis Functions Normalized to
Unity for Each of the 20 Subjects (S1 to S20)

Note the sparseness of the coefficient distribution: all subjects exhibit a
single peak for decay rates in the range 0.125 and 0.35 sec .
doi:10.1371/journal.pcbi.0020152.g004

model fit (see Figure 3B). It is also noteworthy that the slope a
=1 that maximizes V was independent of the maximum and
minimum of the boundaries of the (Ds, Dy) space (&, B, 1, and
1), and independent of the ITT as well.

Finally, using an optimization method (see Materials and
Methods), we then confirmed that we did not find such an
indifference line “by chance”: any experiment similar to ours,
but with different boundaries of the (Ds, D;) space, different
rewards, and/or different /71, would also yield an indifference
line of slope 1. Table 1 shows that the optimization method
gives the same results as the exact analytical method for the
experimental parameters (“original parameters”). Further,
although the intersect value b and the maximum reward rate
Vmax depended on the various experimental parameters, the
slope a stayed exactly equal to 1 as we varied the experimental
parameters.

Discussion

In our experiment, most of our subjects adopted a
discounting function with a shape (exponential) and steepness
(the decay rate) appropriate to maximize the total reward in
the experiment. Using a logistic regression model, we found
that the average indifference line had a slope near 1, as
predicted by exponential discounting. Then, a direct fit of the
data with exponential and hyperbolic models indicated that
the exponential model better fitted the data overall. A fit with
the generalized hyperbolic model [30] showed pure expo-
nential discounting for 14 out of 20 subjects, and near
exponential discounting for three more subjects. Next, using
a semiparametric method to approximate the value function
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with exponential bases, we found a sparse distribution of
positive basis coefficients, with a single isolated peak for most
subjects, further supporting exponential discounting. Finally,
we showed both analytically and with an optimization
technique that the theoretical indifference line that max-
imizes the total gain in our experiment had a slope of exactly
1. Importantly, this result was not affected by the magnitude
of the reward ratio; thus, we predict that this result would
hold for different reward magnitudes. However, as it has been
suggested that the value of a positive reinforcer increases as a
hyperbolic function of its size [11], this prediction needs to be
further tested.

The use of exponential discounting by our subjects appears
to be a farsighted strategy that allows an optimal tradeoff
between (the relatively short) delays at each trial and (the
relatively long) total time remaining in the experiment. The
use of hyperbolic discounting, in contrast, would be a greedy,
but myopic strategy, which would maximize the instanta-
neous reward rate at each trial, not the total reward gain.
Thus, our results suggest that humans can overcome their
hyperbolic discounting when it is suboptimal, and discount
time exponentially instead to maximize total gain.

Not all our subjects exhibited pure exponential discount-
ing, however. Our direct-fit method using the generalized
hyperbolic model notably showed that two subjects exhibited
discounting closer to hyperbolic discounting, and four
subjects exhibited intermediate discounting closer to expo-
nential discounting. Our semiparametric method mostly
yielded similar results, with the addition of one other near-
exponential discounter. These subjects had a discount
function with two decay rates: one similar to the other
subjects, around 0.25 sec”', and a second higher decay rate
above 0.67 sec . Because the time step in the experiment was
1.5 s, we can interpret any decay rate beyond 0.67 sec™" as the
bias for a small reward choice available within one step (see
Figure 4). Thus, for these subjects, the discounting functions
are qualitatively similar to that proposed by the quasi-
hyperbolic model [32,33], for which initial discounting after
the first time step is steeper than subsequent discounting,
which is exponential.

The decay rates used by our subjects were in good
agreement with the theoretical discount rate that maximizes
the total gain. These decay rates were close to that observed
in animal studies [34], and similar to that reported in a
related human experiment [20], but several order of
magnitudes larger than that observed in other question-
naire-based human studies [19], suggesting that humans can
select decay rates based on the task at hand. Note that our
optimization methods give us an overall estimate of the
discount factor, that is, it does not allow us to tract variations,
if any, of the discount factor within the session. However,
since the subjects had one training session before the
experiment, it is probable that most meta-learning of the
discount parameter occurred previous to the experiment.

Although, to our knowledge, exponential discounting had
not been previously demonstrated in human reward dis-
counting, a number of investigators have suggested that, in
some circumstances, humans can be less impulsive than
predicted by hyperbolic discounting, and behave in a more
rational manner. Forzano and Logue [35] showed that
subjects are more impulsive in conditions when juice is given
during the experiment (after each choice), compared with
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Table 1. Parameter Sensitivity Analysis

Parameter Original Parameters R./2 Rs*2 a*2 p*2, n*2 w2 ITI*2
a 1 1 1 1 1 1 1

b 6.93 3.52 3.52 7.14 9.00 511 8.54
Vmax 2.16 1.42 2.84 2.10 1.67 2.93 175

Values of the slope a and the intersect b of the indifference line that maximizes the reward rate Vmax (in yen/s) for the original parameters of our experiment, and for a number of other
parameters, as found using an optimization parameter. R, and Rs are the magnitude of the large and small rewards, respectively, o and f are the lower and upper bound of the range of
the small delays, and 1 and p are the lower and upper bounds of the range of large delays.

doi:10.1371/journal.pcbi.0020152.t001

conditions when subjects are given money or points
exchangeable for a total (juice) reward at the end of the
experiment (as in the present experiment). Loewenstein [36]
pointed out that people are impulsive as a result of the effect
of visceral factors, such as hunger, thirst, and sexual desire, on
the desirability of immediate consumption. When no imme-
diate visceral factors are involved, people tend to be less
impulsive. Montague and Berns [25] proposed that because of
uncertainty in reward estimation, reward values should be
more steeply discounted than exponential discounting.
However, according to their model, if there is no uncertainty
of reward estimation, then discounting is exponential.
Finally, Read [37] showed that humans do not discount
rewards hyperbolically but subadditively, that is, they tend to
discount rewards more if the delay is divided into subinterv-
als than when it is left undivided. Subadditivity is then
explained by a modified exponential function, where the
delay D is taken to the power of a parameter s, 0 < s <1
reflecting nonlinear time perception. As this parameter
approaches 1, discounting becomes exponential.

What may be the possible neural correlates of exponential
or hyperbolic discounting? We have previously found that
parallel cortico-basal ganglia loops are involved in reward
prediction with different discounting factors [38]. Because
summation of several exponential discounting can yield
hyperbolic discounting [31], simultaneous activation of a
number of exponential parallel cortico-basal ganglia loops
could generate hyperbolic discounting. If reward prediction
at a larger time scale is required, as in questionnaire-based
human experiments, the frontal cortex would be additionally
recruited [39]. If, however, exponential discounting of
rewards at relatively short delays is required, as in the
present experiment, a particular cortico-striatial loop with
the appropriate discount rate would be selected, possibly via
serotonin modulation (Tanaka SC, Schweighofer N, Asahi S,
Okamoto Y, Yamawaki S, et al. (2006) Serotonin regulates
striatal activities in delay discounting, unpublished data).

Materials and Methods

Subjects. Twenty-two healthy, right-handed male volunteers, with
no history of psychiatric or neurological disorders, gave written
informed consent after the nature and possible consequences of the
study were explained. The study was approved by the ethics and
safety committees of the Advanced Telecommunications Research
Institute International and of Hiroshima University. We recruited
only male subjects to avoid estrogen-level fluctuation during the
menstrual cycle in women, which affects central serotonin levels.
The results reported here are part of an experiment to study the
role of serotonin in reward choice and learning. In this within-
subject experiment, six hours before the beginning of the behavioral
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task, the subject consumed one of three amino acid drinks: one
containing a standard amount of tryptophan (2.3 g per 100 g amino
acid mixture), one containing excess tryptophan (10.3 g), and one
without tryptophan (0g )—more experimental details of serotoner-
gic manipulation are described elsewhere (Tanaka SC, Schweighofer
N, Asahi S, Okamoto Y, Yamawaki S, et al. (2006) Serotonin
regulates striatal activities in delay discounting, unpublished data).
Here, we present the results for twenty subjects in the control
condition, who drank the solution containing the standard amount
of tryptophan. The mean plasma-free tryptophan concentrations at
the time of the experiment in the control condition was 2.42 = 0.98
SD mg/ml. These levels are slightly higher than normal physiological
levels, about 1.3-1.5 mg/ml [40-42], but much lower than those in
the high-tryptophan condition (61.2 * 34 SD mg/ml).

Two subjects were excluded from the study. The first subject was
excluded because no change in plasma-free tryptophan measure-
ments between the control-tryptophan and the high-tryptophan
conditions could be detected. This can be explained by either an
error in the procedure, or by digestive problems, as all other subjects
exhibited a dramatic increase in plasma-free tryptophan measure-
ments in the high-tryptophan condition (close to a 40-fold increase
compared with preingestion measurements). The second subject was
excluded because of a technical problem that prevented us from
recording the choice data in the low-tryptophan condition.

Task. Two stimuli (one white-coded for the small reward, and one
yellow-coded for the large reward) were presented during a time
selected from a uniform distribution ranging from 0.4 to 0.7 s from
the onset of the presentation of the stimuli. Then, a change of color
in the fixation cross from white to red acted as a “Go” signal; then the
subject had to decide to pursue either the large or the small reward.
The subject then clicked on the mouse button associated with the
position of the chosen stimulus (i.e., left button to choose the left
stimulus, for instance). After 1.5 s from the beginning of the step, two
new stimuli were presented, and a new step started—the stimulus that
was chosen showed more filled patches and the stimulus that was not
chosen was identical to that of the previous step. A trial ended when
either square was completely filled (100 patches were filled). The
corresponding monetary reward then appeared on the screen for 1.5
sec (corresponding to an ITI of 1.5 s). To maintain the subjects’
attention, the position of the squares (left or right) was changed
randomly at each step.

At each trial, the delays to the small and large rewards Dg and Dy,
are theoretically given by:

Dg= (100 — Ny) | S * ts and D; = (100 — N;) [ Sy, * ts (6)

where s is the time step (1.5 s), Ny and N, are the initial number of
white and yellow patches, and Sg and §;, are the number of patches
added per step (10 = 2 patches/step). At the onset of each trial, the
white and yellow patches were drawn from random uniform
distributions: white patches were in the range 85 * 10 and initial
yellow patches in the range 40 = 35. Thus, the white square always
appeared brighter than the yellow square on the first step of each
trial, and the average delay needed to get a large reward was 4X that
to get a small reward (excluding the IT]). For the average value of Sg
and S;, the range of theoretical delays for the small rewards was 0.75
to 3.75 s, and for the large rewards 3.75 to 14.25 s. Because the
experimental step was 1.5 s, however, the actual delays were the delays
above rounded to the next 1.5-s increment; further, every trial also
contained an additional step due to IT1=1.5s.

Data analysis. We first approximated the choices with a two-
parameter logistic regression model:
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1
1+ exp(—(a.Dy. + Ds + a,))’

P(L) =

(7)

where P(L) is the probability to choose the large reward, a;, and «a, are
parameters that were determined using the Matllab function gimfit
with a maximum likelihood loss function. Note that for the logistic
regression model of Equation 7, —l/g; gives the slope of the
indifference line (for which P(L) = 0.5).

Then, we directly fit different discounting models to the data. For
this, we used the following equation, which gives the probability of
choosing the large reward:

P(L) = !

14 exp(=B (VL= Vs))’

where V;, and Vg, are the large and small reward values, and B the
“inverse temperature,” which controls the randomness of the reward
choice. V was replaced by Equation 2 (exponential model), Equations
3 and 4 (hyperbolic models), and Equation 5 (generalized hyperbolic
model).

By taking V; = Vg, it can be easily shown that the indifference line’s
equation for the exponential discounting model is:

Ry
X log(R—L)

(8)

D =Ds +

log(v)

The slope of the indifference of line is 1, independent of the
reward amounts. For the hyperbolic model, the indifference line is:
R
RLXDS+T>< (rp —7s) (10)

’ s

)

Dy

The slope of this line is the ratio of the rewards ﬁ—’\‘; thus, in our

specific case, the slope is 40/10 = 4 (Note: for the other form of the
hyperbolic model, it can easily be shown that the slope is also the
ratio of the rewards). For the generalized hyperbolic model, the
indifference line is given by:

D, = (B MUD +
L — RS S

The parameters for these three models (k and B for the exponential
model, K, or T and B for the hyperbolic models, and A, v, and B for the
generalized hyperbolic model) were constrained the be positive (>0),
and were found by fitting the models to the subjects’ choices with a
maximum likelihood loss function. Such optimization can be
performed using sequential dynamic programming, which is available
in Matlab using the optimization function fmincon. This function
estimates the Hessian of the Lagrangian through the BFGS formula at
each iteration. Then, the line search method is used with this
estimation to find the parameters that minimize the maximum
likelihood loss function.

Next, we estimated the discounting function directly with a
semiparametric model. Specifically, each value function was com-
puted as a weighted sum of exponential basis functions:

(11)

V()= Y R(t+ D) G(D), (12)
where the basis functions were given by
Gi(D) = ciexp(—kiD), (13)

Where 0 < k < ky,x and ¢; are the basis coefficients. We replaced the
two value functions in Equation 8 by their semiparametric
expression, which gives:

P(L) !

- 1+ exp(—( Zci(RLeXp(—kiDz‘) — Rgexp(—kiDs))))

i

(14)

The basis coefficients ¢; were constrained to be positive, and were
found by fitting subjects’ choices with a maximum likelihood loss
function. The optimization was performed with the function fmincon,
as above. We estimated the coefficients for decay rates k between 0
and 1 sec ! with increments of 0.05 sec .

Mathematical analysis. To estimate the indifference line that gives
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the maximum theoretical total reward, we computed the expected
reward rate (in yen/s), given by:

(RLPL(Ds,Dyr) + Rs(1 — P(Ds,Dy)))dDsdDy.
_ Elreward]
E[time]

Q
(DLPL(Ds,Dyr) + Ds(1 — Pr(Ds,Dy)))dDsdDy,
Q

(15)

where Q is the D;,Dg space, modified by rounding the space boundary
to the next time step and by adding the ITI, and P (Ds, D;) is the
probability of choosing the large reward for the delays Dg and D;. The
total reward is then the reward rate times the total time in the
experiment. We parameterized the expected reward rate with a
family of indifference line modeled with

Dy =aDgs+b. (16)

To find the parameters ¢ and b that maximize the value given by
Equation 15, we simplified the problem by assuming that subjects
made deterministic decisions. If in a one-trial, D; < aDg+ b, then the
large reward is chosen; the small reward is chosen otherwise. We then
noted that the value function equation can be evaluated with two
separated trapezoids, one above and the other below the indifference
line. Thus, Efreward] consists of two terms.

Elreward] = /RSdDLst+ /RLdDLdDS

PL=0 P=1

B pn B paDs+b
= Rg / / dD;dDs + Ry, / / dDydDg
Jo  JaDs+b Ja  Jn

where o, B, 11, and p are the lower and upper bounds of the D;,Dg
space. Similarly

; (17)

E[[lm(’]: /quD[dDg-‘r /D]dD]dDg
Pr=1

PL=0
B pn B paDs+b ’
= / / DsdD;dDs + / / Dy dDydDyg
o aDs+b o n

We then computed the partial derivative of V with respect to the
parameters,a and b:

(18)

ov ov
da b
and solved these equations analytically using Mathematica software.
Sensitivity analysis. We used an optimization method (1) to verify
our analytical results and (2) to perform a sensitivity analysis to
examine how variations in experimental parameters affected the
values of a and b that maximized the expected reward rate V. We
computed the maximum of V using the Matlab function fminunc,
which is similar to the function fimincon, but without any constraints
on the parameters.

0, (19)
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